backend_api.in.cpp 6.53 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************

#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/random.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"

using namespace std;
using namespace ngraph;

static string s_manifest = "${MANIFEST}";

// This tests a backend's implementation of the two parameter version of create_tensor
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_1)
{
    Shape shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape);
    auto B = make_shared<op::Parameter>(element::f32, shape);
    auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    vector<float> av = {1, 2, 3, 4};
    vector<float> bv = {5, 6, 7, 8};
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
    copy_data(a, av);
    copy_data(b, bv);

48 49
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);

50 51 52
    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    vector<float> expected = {6, 8, 10, 12};
53
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
54 55 56
}

// This tests a backend's implementation of the three parameter version of create_tensor
57 58
// Testing using this tensor as a Function input
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_2_input)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
{
    Shape shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape);
    auto B = make_shared<op::Parameter>(element::f32, shape);
    auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    vector<float> av = {1, 2, 3, 4};
    vector<float> bv = {5, 6, 7, 8};
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape, av.data());
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape, bv.data());
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    vector<float> expected = {6, 8, 10, 12};
77
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
78
}
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
// This tests a backend's implementation of the three parameter version of create_tensor
// Testing using this tensor as a Function output
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_2_output)
{
    Shape shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape);
    auto B = make_shared<op::Parameter>(element::f32, shape);
    auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    vector<float> av = {1, 2, 3, 4};
    vector<float> bv = {5, 6, 7, 8};
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
    copy_data(a, av);
    copy_data(b, bv);

    vector<float> actual(4);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape, actual.data());

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    vector<float> expected = {6, 8, 10, 12};
    EXPECT_TRUE(test::all_close_f(actual, expected, MIN_FLOAT_TOLERANCE_BITS));
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
// This tests a backend's implementation of the copy_from for tensor
NGRAPH_TEST(${BACKEND_NAME}, tensor_copy_from)
{
    Shape shape{2, 2};

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    vector<float> av = {1, 2, 3, 4};
    vector<float> bv = {5, 6, 7, 8};
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
    copy_data(a, av);
    copy_data(b, bv);

    a->copy_from(*b);
124
    EXPECT_TRUE(test::all_close_f(bv, read_vector<float>(a), MIN_FLOAT_TOLERANCE_BITS));
125
}
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

NGRAPH_TEST(${BACKEND_NAME}, get_parameters_and_results)
{
    Shape shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape);
    auto B = make_shared<op::Parameter>(element::f32, shape);
    auto C = make_shared<op::Parameter>(element::f32, shape);
    auto f = make_shared<Function>((A + B) * C, ParameterVector{A, B, C});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
    shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shape);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);

    copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
    copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
    copy_data(c, test::NDArray<float, 2>({{9, 10}, {11, 12}}).get_vector());

    auto handle = backend->compile(f);
    auto parameters = handle->get_parameters();
    auto results = handle->get_results();
    ASSERT_EQ(parameters.size(), 3);
    ASSERT_EQ(results.size(), 1);

    // This part can't be enabled until we force backends to make a copy of the source graph
    // auto func_parameters = f->get_parameters();
    // auto func_results = f->get_results();
    // for (size_t i = 0; i < 3; ++i)
    // {
    //     EXPECT_NE(parameters[i], func_parameters[i]);
    // }
    // for (size_t i = 0; i < 1; ++i)
    // {
    //     EXPECT_NE(results[i], func_results[i]);
    // }
}