Commit b93bc02a authored by Deomid Ryabkov's avatar Deomid Ryabkov Committed by Cesanta Bot

Delete mos tool and related libraries from dev

Moved to https://github.com/mongoose-os/mos

PUBLISHED_FROM=8a0475678dba38fd6e057b8a530e9d08054ff74f
parent 747e393a
Copyright (c) 2011 The stlink project (github.com/texane/stlink) contributors.
All rights reserved.
Copyright (c) 2011 The "Capt'ns Missing Link" Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Martin Capitanio nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "stlink.h"
#include "usb.h"
#ifndef _WIN32
#define O_BINARY 0 //! @todo get rid of this OH MY (@xor-gate)
#endif
/* todo: stm32l15xxx flash memory, pm0062 manual */
/* stm32f FPEC flash controller interface, pm0063 manual */
// TODO - all of this needs to be abstracted out....
// STM32F05x is identical, based on RM0091 (DM00031936, Doc ID 018940 Rev 2,
// August 2012)
#define FLASH_REGS_ADDR 0x40022000
#define FLASH_REGS_SIZE 0x28
#define FLASH_ACR (FLASH_REGS_ADDR + 0x00)
#define FLASH_KEYR (FLASH_REGS_ADDR + 0x04)
#define FLASH_SR (FLASH_REGS_ADDR + 0x0c)
#define FLASH_CR (FLASH_REGS_ADDR + 0x10)
#define FLASH_AR (FLASH_REGS_ADDR + 0x14)
#define FLASH_OBR (FLASH_REGS_ADDR + 0x1c)
#define FLASH_WRPR (FLASH_REGS_ADDR + 0x20)
// For STM32F05x, the RDPTR_KEY may be wrong, but as it is not used anywhere...
#define FLASH_RDPTR_KEY 0x00a5
#define FLASH_KEY1 0x45670123
#define FLASH_KEY2 0xcdef89ab
#define FLASH_SR_BSY 0
#define FLASH_SR_EOP 5
#define FLASH_CR_PG 0
#define FLASH_CR_PER 1
#define FLASH_CR_MER 2
#define FLASH_CR_STRT 6
#define FLASH_CR_LOCK 7
// 32L = 32F1 same CoreID as 32F4!
#define STM32L_FLASH_REGS_ADDR ((uint32_t) 0x40023c00)
#define STM32L_FLASH_ACR (STM32L_FLASH_REGS_ADDR + 0x00)
#define STM32L_FLASH_PECR (STM32L_FLASH_REGS_ADDR + 0x04)
#define STM32L_FLASH_PDKEYR (STM32L_FLASH_REGS_ADDR + 0x08)
#define STM32L_FLASH_PEKEYR (STM32L_FLASH_REGS_ADDR + 0x0c)
#define STM32L_FLASH_PRGKEYR (STM32L_FLASH_REGS_ADDR + 0x10)
#define STM32L_FLASH_OPTKEYR (STM32L_FLASH_REGS_ADDR + 0x14)
#define STM32L_FLASH_SR (STM32L_FLASH_REGS_ADDR + 0x18)
#define STM32L_FLASH_OBR (STM32L_FLASH_REGS_ADDR + 0x1c)
#define STM32L_FLASH_WRPR (STM32L_FLASH_REGS_ADDR + 0x20)
#define FLASH_L1_FPRG 10
#define FLASH_L1_PROG 3
// 32L4 register base is at FLASH_REGS_ADDR (0x40022000)
#define STM32L4_FLASH_KEYR (FLASH_REGS_ADDR + 0x08)
#define STM32L4_FLASH_SR (FLASH_REGS_ADDR + 0x10)
#define STM32L4_FLASH_CR (FLASH_REGS_ADDR + 0x14)
#define STM32L4_FLASH_OPTR (FLASH_REGS_ADDR + 0x20)
#define STM32L4_FLASH_SR_BSY 16
#define STM32L4_FLASH_SR_ERRMASK 0x3f8 /* SR [9:3] */
#define STM32L4_FLASH_CR_LOCK 31 /* Lock control register */
#define STM32L4_FLASH_CR_PG 0 /* Program */
#define STM32L4_FLASH_CR_PER 1 /* Page erase */
#define STM32L4_FLASH_CR_MER1 2 /* Bank 1 erase */
#define STM32L4_FLASH_CR_MER2 15 /* Bank 2 erase */
#define STM32L4_FLASH_CR_STRT 16 /* Start command */
#define STM32L4_FLASH_CR_BKER 11 /* Bank select for page erase */
#define STM32L4_FLASH_CR_PNB 3 /* Page number (8 bits) */
// Bits requesting flash operations (useful when we want to clear them)
#define STM32L4_FLASH_CR_OPBITS \
((1lu << STM32L4_FLASH_CR_PG) | (1lu << STM32L4_FLASH_CR_PER) | \
(1lu << STM32L4_FLASH_CR_MER1) | (1lu << STM32L4_FLASH_CR_MER1))
// Page is fully specified by BKER and PNB
#define STM32L4_FLASH_CR_PAGEMASK (0x1fflu << STM32L4_FLASH_CR_PNB)
#define STM32L4_FLASH_OPTR_DUALBANK 21
// STM32L0x flash register base and offsets
// same as 32L1 above
// RM0090 - DM00031020.pdf
#define STM32L0_FLASH_REGS_ADDR ((uint32_t) 0x40022000)
#define FLASH_ACR_OFF ((uint32_t) 0x00)
#define FLASH_PECR_OFF ((uint32_t) 0x04)
#define FLASH_PDKEYR_OFF ((uint32_t) 0x08)
#define FLASH_PEKEYR_OFF ((uint32_t) 0x0c)
#define FLASH_PRGKEYR_OFF ((uint32_t) 0x10)
#define FLASH_OPTKEYR_OFF ((uint32_t) 0x14)
#define FLASH_SR_OFF ((uint32_t) 0x18)
#define FLASH_OBR_OFF ((uint32_t) 0x1c)
#define FLASH_WRPR_OFF ((uint32_t) 0x20)
// STM32F4
#define FLASH_F4_REGS_ADDR ((uint32_t) 0x40023c00)
#define FLASH_F4_KEYR (FLASH_F4_REGS_ADDR + 0x04)
#define FLASH_F4_OPT_KEYR (FLASH_F4_REGS_ADDR + 0x08)
#define FLASH_F4_SR (FLASH_F4_REGS_ADDR + 0x0c)
#define FLASH_F4_CR (FLASH_F4_REGS_ADDR + 0x10)
#define FLASH_F4_OPT_CR (FLASH_F4_REGS_ADDR + 0x14)
#define FLASH_F4_CR_STRT 16
#define FLASH_F4_CR_LOCK 31
#define FLASH_F4_CR_SER 1
#define FLASH_F4_CR_SNB 3
#define FLASH_F4_CR_SNB_MASK 0xf8
#define FLASH_F4_SR_BSY 16
#define L1_WRITE_BLOCK_SIZE 0x80
#define L0_WRITE_BLOCK_SIZE 0x40
#define STLINK_REG_CM3_CPUID 0xE000ED00
#define STLINK_REG_CM3_FP_CTRL 0xE0002000
#define STLINK_REG_CM3_FP_COMP0 0xE0002008
/* Cortex™-M3 Technical Reference Manual */
/* Debug Halting Control and Status Register */
#define STLINK_REG_DHCSR 0xe000edf0
#define STLINK_REG_DHCSR_DBGKEY 0xa05f0000
#define STLINK_REG_DCRSR 0xe000edf4
#define STLINK_REG_DCRDR 0xe000edf8
struct stlink_chipid_params {
uint32_t chip_id;
char *description;
uint32_t flash_size_reg;
uint32_t flash_pagesize;
uint32_t sram_size;
uint32_t bootrom_base;
uint32_t bootrom_size;
};
void write_uint32(unsigned char *buf, uint32_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char *) &ui)[0];
buf[1] = ((unsigned char *) &ui)[1];
buf[2] = ((unsigned char *) &ui)[2];
buf[3] = ((unsigned char *) &ui)[3];
} else {
buf[0] = ((unsigned char *) &ui)[3];
buf[1] = ((unsigned char *) &ui)[2];
buf[2] = ((unsigned char *) &ui)[1];
buf[3] = ((unsigned char *) &ui)[0];
}
}
void write_uint16(unsigned char *buf, uint16_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char *) &ui)[0];
buf[1] = ((unsigned char *) &ui)[1];
} else {
buf[0] = ((unsigned char *) &ui)[1];
buf[1] = ((unsigned char *) &ui)[0];
}
}
uint32_t read_uint32(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt + 0];
p[1] = c[pt + 1];
p[2] = c[pt + 2];
p[3] = c[pt + 3];
} else {
p[0] = c[pt + 3];
p[1] = c[pt + 2];
p[2] = c[pt + 1];
p[3] = c[pt + 0];
}
return ui;
}
static uint32_t __attribute__((unused)) read_flash_rdp(stlink_t *sl) {
uint32_t rdp;
stlink_read_debug32(sl, FLASH_WRPR, &rdp);
return rdp & 0xff;
}
static inline uint32_t read_flash_cr(stlink_t *sl) {
uint32_t res;
stlink_read_debug32(sl, FLASH_F4_CR, &res);
return res;
}
static inline unsigned int is_flash_locked(stlink_t *sl) {
/* return non zero for true */
uint32_t cr_lock_shift = FLASH_F4_CR_LOCK, cr = read_flash_cr(sl);
return cr & (1 << cr_lock_shift);
}
static void unlock_flash(stlink_t *sl) {
uint32_t key_reg = FLASH_F4_KEYR;
stlink_write_debug32(sl, key_reg, FLASH_KEY1);
stlink_write_debug32(sl, key_reg, FLASH_KEY2);
}
static int unlock_flash_if(stlink_t *sl) {
/* unlock flash if already locked */
if (is_flash_locked(sl)) {
unlock_flash(sl);
if (is_flash_locked(sl)) {
printf("Failed to unlock flash!\n");
return -1;
}
}
return 0;
}
static void lock_flash(stlink_t *sl) {
uint32_t n;
uint32_t cr_reg = FLASH_F4_CR;
uint32_t cr_lock_shift = FLASH_F4_CR_LOCK;
n = read_flash_cr(sl) | (1 << cr_lock_shift);
stlink_write_debug32(sl, cr_reg, n);
}
static void set_flash_cr_pg(stlink_t *sl) {
uint32_t cr_reg, x;
x = read_flash_cr(sl);
cr_reg = FLASH_F4_CR;
x |= 1 << FLASH_CR_PG;
stlink_write_debug32(sl, cr_reg, x);
}
static void __attribute__((unused)) clear_flash_cr_pg(stlink_t *sl) {
uint32_t cr_reg, n;
cr_reg = FLASH_F4_CR;
n = read_flash_cr(sl) & ~(1 << FLASH_CR_PG);
stlink_write_debug32(sl, cr_reg, n);
}
static void set_flash_cr_per(stlink_t *sl) {
const uint32_t n = 1 << FLASH_CR_PER;
stlink_write_debug32(sl, FLASH_CR, n);
}
static void __attribute__((unused)) clear_flash_cr_per(stlink_t *sl) {
const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_PER);
stlink_write_debug32(sl, FLASH_CR, n);
}
static void set_flash_cr_mer(stlink_t *sl, bool v) {
uint32_t val, cr_reg, cr_mer, cr_pg;
cr_reg = FLASH_F4_CR;
cr_mer = 1 << FLASH_CR_MER;
cr_pg = 1 << FLASH_CR_PG;
stlink_read_debug32(sl, cr_reg, &val);
if (val & cr_pg) {
/* STM32F030 will drop MER bit if PG was set */
val &= ~cr_pg;
stlink_write_debug32(sl, cr_reg, val);
}
if (v)
val |= cr_mer;
else
val &= ~cr_mer;
stlink_write_debug32(sl, cr_reg, val);
}
static void __attribute__((unused)) clear_flash_cr_mer(stlink_t *sl) {
uint32_t val, cr_reg, cr_mer;
cr_reg = FLASH_F4_CR;
cr_mer = 1 << FLASH_CR_MER;
stlink_read_debug32(sl, cr_reg, &val);
val &= ~cr_mer;
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr_strt(stlink_t *sl) {
uint32_t val, cr_reg, cr_strt;
cr_reg = FLASH_F4_CR;
cr_strt = 1 << FLASH_F4_CR_STRT;
stlink_read_debug32(sl, cr_reg, &val);
val |= cr_strt;
stlink_write_debug32(sl, cr_reg, val);
}
static inline uint32_t read_flash_sr(stlink_t *sl) {
uint32_t res, sr_reg;
sr_reg = FLASH_F4_SR;
stlink_read_debug32(sl, sr_reg, &res);
return res;
}
static inline unsigned int is_flash_busy(stlink_t *sl) {
uint32_t sr_busy_shift;
sr_busy_shift = FLASH_F4_SR_BSY;
return read_flash_sr(sl) & (1 << sr_busy_shift);
}
static void wait_flash_busy(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_busy(sl))
;
}
static void wait_flash_busy_progress(stlink_t *sl) {
while (is_flash_busy(sl)) {
usleep(10000);
}
}
static inline unsigned int is_flash_eop(stlink_t *sl) {
return read_flash_sr(sl) & (1 << FLASH_SR_EOP);
}
static void __attribute__((unused)) clear_flash_sr_eop(stlink_t *sl) {
const uint32_t n = read_flash_sr(sl) & ~(1 << FLASH_SR_EOP);
stlink_write_debug32(sl, FLASH_SR, n);
}
static void __attribute__((unused)) wait_flash_eop(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_eop(sl) == 0)
;
}
static inline void write_flash_ar(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, FLASH_AR, n);
}
static inline void write_flash_cr_psiz(stlink_t *sl, uint32_t n) {
uint32_t x = read_flash_cr(sl);
x &= ~(0x03 << 8);
x |= (n << 8);
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
static inline void write_flash_cr_snb(stlink_t *sl, uint32_t n) {
uint32_t x = read_flash_cr(sl);
x &= ~FLASH_F4_CR_SNB_MASK;
x |= (n << FLASH_F4_CR_SNB);
x |= (1 << FLASH_F4_CR_SER);
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
static inline void write_flash_cr_bker_pnb(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, STM32L4_FLASH_SR,
0xFFFFFFFF & ~(1 << STM32L4_FLASH_SR_BSY));
uint32_t x = read_flash_cr(sl);
x &= ~STM32L4_FLASH_CR_OPBITS;
x &= ~STM32L4_FLASH_CR_PAGEMASK;
x &= ~(1 << STM32L4_FLASH_CR_MER1);
x &= ~(1 << STM32L4_FLASH_CR_MER2);
x |= (n << STM32L4_FLASH_CR_PNB);
x |= (1lu << STM32L4_FLASH_CR_PER);
stlink_write_debug32(sl, STM32L4_FLASH_CR, x);
}
void stlink_close(stlink_t *sl) {
if (!sl) return;
_stlink_usb_close(sl);
free(sl);
}
int stlink_exit_debug_mode(stlink_t *sl) {
int ret;
ret = stlink_write_debug32(sl, STLINK_REG_DHCSR, STLINK_REG_DHCSR_DBGKEY);
if (ret == -1) return ret;
return _stlink_usb_exit_debug_mode(sl);
}
int stlink_enter_swd_mode(stlink_t *sl) {
return _stlink_usb_enter_swd_mode(sl);
}
// Force the core into the debug mode -> halted state.
int stlink_force_debug(stlink_t *sl) {
return _stlink_usb_force_debug(sl);
}
int stlink_exit_dfu_mode(stlink_t *sl) {
return _stlink_usb_exit_dfu_mode(sl);
}
int stlink_core_id(stlink_t *sl) {
int ret;
ret = _stlink_usb_core_id(sl);
if (ret == -1) {
printf("Failed to read core_id\n");
return ret;
}
return ret;
}
int stlink_chip_id(stlink_t *sl, uint32_t *chip_id) {
int ret;
ret = stlink_read_debug32(sl, 0xE0042000, chip_id);
if (ret == -1) return ret;
if (*chip_id == 0)
ret = stlink_read_debug32(
sl, 0x40015800,
chip_id); // Try Corex M0 DBGMCU_IDCODE register address
return ret;
}
/**
* reads and decodes the flash parameters, as dynamically as possible
* @param sl
* @return 0 for success, or -1 for unsupported core type.
*/
static const struct stlink_chipid_params F7_params = {
// RM0385 and DS10916 document was used to find these paramaters
.chip_id = STLINK_CHIPID_STM32_F7,
.description = "F7 device",
.flash_size_reg = 0x1ff0f442, // section 41.2
.flash_pagesize = 0x800, // No flash pages
.sram_size = 0x50000, // "SRAM" byte size in hex from DS Fig 18
.bootrom_base =
0x00100000, // "System memory" starting address from DS Fig 18
.bootrom_size = 0xEDC0 // "System memory" byte size in hex from DS Fig 18
};
int stlink_load_device_params(stlink_t *sl) {
const struct stlink_chipid_params *params = &F7_params;
stlink_core_id(sl);
uint32_t chip_id;
uint32_t flash_size;
stlink_chip_id(sl, &chip_id);
sl->chip_id = chip_id & 0xfff;
/* Fix chip_id for F4 rev A errata , Read CPU ID, as CoreID is the same for
* F2/F4*/
if (sl->chip_id == 0x411) {
uint32_t cpuid;
stlink_read_debug32(sl, 0xE000ED00, &cpuid);
if ((cpuid & 0xfff0) == 0xc240) sl->chip_id = 0x413;
}
if (sl->chip_id != STLINK_CHIPID_STM32_F7) {
printf("unsupported chip id! %d\n", chip_id);
return -1;
}
// These are fixed...
sl->flash_base = STM32_FLASH_BASE;
sl->sram_base = STM32_SRAM_BASE;
stlink_read_debug32(sl, (params->flash_size_reg) & ~3, &flash_size);
if (params->flash_size_reg & 2) flash_size = flash_size >> 16;
flash_size = flash_size & 0xffff;
sl->flash_size = flash_size * 1024;
sl->flash_pgsz = params->flash_pagesize;
sl->sram_size = params->sram_size;
sl->sys_base = params->bootrom_base;
sl->sys_size = params->bootrom_size;
return 0;
}
int stlink_reset(stlink_t *sl) {
return _stlink_usb_reset(sl);
}
int stlink_jtag_reset(stlink_t *sl, int value) {
return _stlink_usb_jtag_reset(sl, value);
}
int stlink_run(stlink_t *sl) {
return _stlink_usb_run(sl);
}
int stlink_set_swdclk(stlink_t *sl, uint16_t divisor) {
return _stlink_usb_set_swdclk(sl, divisor);
}
int stlink_status(stlink_t *sl) {
int ret;
ret = _stlink_usb_status(sl);
stlink_core_stat(sl);
return ret;
}
int stlink_target_voltage(stlink_t *sl) {
return _stlink_usb_target_voltage(sl);
}
int stlink_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data) {
return _stlink_usb_read_debug32(sl, addr, data);
}
int stlink_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data) {
return _stlink_usb_write_debug32(sl, addr, data);
}
int stlink_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
if (len % 4 != 0) {
fprintf(stderr,
"Error: Data length doesn't have a 32 bit alignment: +%d byte.\n",
len % 4);
abort();
}
return _stlink_usb_write_mem32(sl, addr, len);
}
int stlink_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
if (len % 4 != 0) { // !!! never ever: fw gives just wrong values
fprintf(stderr,
"Error: Data length doesn't have a 32 bit alignment: +%d byte.\n",
len % 4);
abort();
}
return _stlink_usb_read_mem32(sl, addr, len);
}
int stlink_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
if (len > 0x40) { // !!! never ever: Writing more then 0x40 bytes gives
// unexpected behaviour
fprintf(stderr, "Error: Data length > 64: +%d byte.\n", len);
abort();
}
return _stlink_usb_write_mem8(sl, addr, len);
}
int stlink_write_reg(stlink_t *sl, uint32_t reg, int idx) {
return _stlink_usb_write_reg(sl, reg, idx);
}
int stlink_read_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp) {
if (r_idx > 20 || r_idx < 0) {
fprintf(stderr, "Error: register index must be in [0..20]\n");
return -1;
}
return _stlink_usb_read_reg(sl, r_idx, regp);
}
bool stlink_is_core_halted(stlink_t *sl) {
bool ret = false;
stlink_status(sl);
if (sl->q_buf[0] == STLINK_CORE_HALTED) ret = true;
return ret;
}
int stlink_step(stlink_t *sl) {
return _stlink_usb_step(sl);
}
int stlink_current_mode(stlink_t *sl) {
return _stlink_usb_current_mode(sl);
}
// End of delegates.... Common code below here...
// Endianness
// http://www.ibm.com/developerworks/aix/library/au-endianc/index.html
// const int i = 1;
// #define is_bigendian() ( (*(char*)&i) == 0 )
unsigned int is_bigendian(void) {
static volatile const unsigned int i = 1;
return *(volatile const char *) &i == 0;
}
uint16_t read_uint16(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt + 0];
p[1] = c[pt + 1];
} else {
p[0] = c[pt + 1];
p[1] = c[pt + 0];
}
return ui;
}
// same as above with entrypoint.
void stlink_run_at(stlink_t *sl, stm32_addr_t addr) {
stlink_write_reg(sl, addr, 15); /* pc register */
stlink_run(sl);
while (stlink_is_core_halted(sl)) usleep(3000000);
}
void stlink_core_stat(stlink_t *sl) {
if (sl->q_len <= 0) return;
switch (sl->q_buf[0]) {
case STLINK_CORE_RUNNING:
sl->core_stat = STLINK_CORE_RUNNING;
return;
case STLINK_CORE_HALTED:
sl->core_stat = STLINK_CORE_HALTED;
return;
default:
sl->core_stat = STLINK_CORE_STAT_UNKNOWN;
fprintf(stderr, " core status: unknown\n");
}
}
void stlink_fwrite_finalize(stlink_t *sl, stm32_addr_t addr) {
unsigned int val;
/* set stack*/
stlink_read_debug32(sl, addr, &val);
stlink_write_reg(sl, val, 13);
/* Set PC to the reset routine*/
stlink_read_debug32(sl, addr + 4, &val);
stlink_write_reg(sl, val, 15);
stlink_run(sl);
}
typedef bool (*save_block_fn)(void *arg, uint8_t *block, ssize_t len);
static int stlink_read(stlink_t *sl, stm32_addr_t addr, size_t size,
save_block_fn fn, void *fn_arg) {
int error = -1;
if (size < 1) size = sl->flash_size;
if (size > sl->flash_size) size = sl->flash_size;
size_t cmp_size = (sl->flash_pgsz > 0x1800) ? 0x1800 : sl->flash_pgsz;
for (size_t off = 0; off < size; off += cmp_size) {
size_t aligned_size;
/* adjust last page size */
if ((off + cmp_size) > size) cmp_size = size - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1)) aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, addr + (uint32_t) off, aligned_size);
if (!fn(fn_arg, sl->q_buf, aligned_size)) {
goto on_error;
}
}
/* success */
error = 0;
on_error:
return error;
}
int write_buffer_to_sram(stlink_t *sl, flash_loader_t *fl, const uint8_t *buf,
size_t size) {
/* write the buffer right after the loader */
size_t chunk = size & ~0x3;
size_t rem = size & 0x3;
if (chunk) {
memcpy(sl->q_buf, buf, chunk);
stlink_write_mem32(sl, fl->buf_addr, chunk);
}
if (rem) {
memcpy(sl->q_buf, buf + chunk, rem);
stlink_write_mem8(sl, (fl->buf_addr) + (uint32_t) chunk, rem);
}
return 0;
}
uint32_t calculate_F7_sectornum(uint32_t flashaddr) {
flashaddr &= ~STM32_FLASH_BASE; // Page now holding the actual flash address
if (flashaddr < 0x20000)
return (flashaddr / 0x8000);
else if (flashaddr < 0x40000)
return (4);
else
return (flashaddr / 0x40000) + 4;
}
uint32_t stlink_calculate_pagesize(stlink_t *sl, uint32_t flashaddr) {
if (sl->chip_id == STLINK_CHIPID_STM32_F7) {
uint32_t sector = calculate_F7_sectornum(flashaddr);
if (sector < 4)
sl->flash_pgsz = 0x8000;
else if (sector < 5)
sl->flash_pgsz = 0x20000;
else
sl->flash_pgsz = 0x40000;
}
return (uint32_t) sl->flash_pgsz;
}
/**
* Erase a page of flash, assumes sl is fully populated with things like
* chip/core ids
* @param sl stlink context
* @param flashaddr an address in the flash page to erase
* @return 0 on success -ve on failure
*/
int stlink_erase_flash_page(stlink_t *sl, stm32_addr_t flashaddr) {
/* wait for ongoing op to finish */
wait_flash_busy(sl);
/* unlock if locked */
unlock_flash_if(sl);
/* select the page to erase */
// calculate the actual page from the address
uint32_t sector = calculate_F7_sectornum(flashaddr);
write_flash_cr_snb(sl, sector);
/* start erase operation */
set_flash_cr_strt(sl);
/* wait for completion */
wait_flash_busy(sl);
/* relock the flash */
// todo: fails to program if this is in
lock_flash(sl);
return 0;
}
/**
* Verify addr..addr+len is binary identical to base...base+len
* @param sl stlink context
* @param address stm device address
* @param data host side buffer to check against
* @param length how much
* @return 0 for success, -ve for failure
*/
int stlink_verify_write_flash(stlink_t *sl, stm32_addr_t address, uint8_t *data,
unsigned length) {
size_t off;
size_t cmp_size = (sl->flash_pgsz > 0x1800) ? 0x1800 : sl->flash_pgsz;
printf("Verifying flash...\n");
for (off = 0; off < length; off += cmp_size) {
size_t aligned_size;
/* adjust last page size */
if ((off + cmp_size) > length) cmp_size = length - off;
aligned_size = cmp_size;
if (aligned_size & (4 - 1)) aligned_size = (cmp_size + 4) & ~(4 - 1);
stlink_read_mem32(sl, address + (uint32_t) off, aligned_size);
if (memcmp(sl->q_buf, data + off, cmp_size)) {
printf("Verification of flash failed at offset: %u\n",
(unsigned int) off);
return -1;
}
}
return 0;
}
int stlink_write_flash(stlink_t *sl, stm32_addr_t addr, uint8_t *base,
uint32_t len, uint8_t eraseonly) {
size_t off;
flash_loader_t fl;
printf("Writing %d (%#x) bytes to stm32 address: %u (%#x)\n", len, len, addr,
addr);
/* check addr range is inside the flash */
stlink_calculate_pagesize(sl, addr);
if (addr < sl->flash_base) {
printf("addr too low %#x < %#x\n", addr, sl->flash_base);
return -1;
} else if ((addr + len) < addr) {
printf("addr overruns\n");
return -1;
} else if ((addr + len) > (sl->flash_base + sl->flash_size)) {
printf("addr too high\n");
return -1;
} else if (addr & 1) {
printf("unaligned addr 0x%x\n", addr);
return -1;
} else if (len & 1) {
printf("unaligned len 0x%x -- padding with zero\n", len);
len += 1;
} else if (addr & (sl->flash_pgsz - 1)) {
printf("addr not a multiple of pagesize, not supported\n");
return -1;
}
// Make sure we've loaded the context with the chip details
stlink_core_id(sl);
/* erase each page */
int page_count = 0;
for (off = 0; off < len;
off += stlink_calculate_pagesize(sl, addr + (uint32_t) off)) {
fprintf(stdout, "Erasing flash page at addr 0x%08X\n", (int) (addr + off));
/* addr must be an addr inside the page */
if (stlink_erase_flash_page(sl, addr + (uint32_t) off) == -1) {
printf("Failed to erase_flash_page(%#zx) == -1\n", addr + off);
return -1;
}
page_count++;
}
if (eraseonly) return 0;
/* flash loader initialization */
if (stlink_flash_loader_init(sl, &fl) == -1) {
printf("stlink_flash_loader_init() == -1\n");
return -1;
}
/* First unlock the cr */
unlock_flash_if(sl);
/* TODO: Check that Voltage range is 2.7 - 3.6 V */
/* set parallelisim to 32 bit*/
int voltage = stlink_target_voltage(sl);
if (voltage == -1) {
printf("Failed to read Target voltage\n");
return voltage;
} else if (voltage > 2700) {
write_flash_cr_psiz(sl, 2);
} else {
printf(
"Target voltage (%d mV) too low for 32-bit flash, using 8-bit "
"flash writes\n",
voltage);
write_flash_cr_psiz(sl, 0);
}
/* set programming mode */
set_flash_cr_pg(sl);
for (off = 0; off < len;) {
size_t size = len - off > 0x8000 ? 0x8000 : len - off;
printf("Writing %d bytes at 0x%08X\n", (int) size,
(int) (addr + (uint32_t) off));
if (stlink_flash_loader_run(sl, &fl, addr + (uint32_t) off, base + off,
size) == -1) {
printf("stlink_flash_loader_run(%#zx) failed! == -1\n", addr + off);
return -1;
}
off += size;
}
/* Relock flash */
lock_flash(sl);
return stlink_verify_write_flash(sl, addr, base, len);
}
/* simple wrapper around the stlink_flash_write function */
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include "stlink.h"
#include "usb.h"
#define FLASH_ADDRESS 0x8000000
int stm32_flash(const char *device_name, void *data, int len) {
stlink_t *sl = NULL;
int err = -1;
uint8_t serial[16];
int j = (int) strlen(device_name);
int length = j / 2; // the length of the destination-array
if (j % 2 != 0) return -1;
for (size_t k = 0; j >= 0 && k < sizeof(serial); ++k, j -= 2) {
char buffer[3] = {0};
memcpy(buffer, device_name + j, 2);
serial[length - k] = (uint8_t) strtol(buffer, NULL, 16);
}
sl = stlink_open_usb(1, (char *) serial);
if (sl == NULL) return -1;
if (stlink_current_mode(sl) == STLINK_DEV_DFU_MODE) {
if (stlink_exit_dfu_mode(sl)) {
printf("Failed to exit DFU mode\n");
goto on_error;
}
}
if (stlink_current_mode(sl) != STLINK_DEV_DEBUG_MODE) {
if (stlink_enter_swd_mode(sl)) {
printf("Failed to enter SWD mode\n");
goto on_error;
}
}
if (stlink_jtag_reset(sl, 2)) {
printf("Failed to reset JTAG\n");
goto on_error;
}
if (stlink_reset(sl)) {
printf("Failed to reset device\n");
goto on_error;
}
// Core must be halted to use RAM based flashloaders
if (stlink_force_debug(sl)) {
printf("Failed to halt the core\n");
goto on_error;
}
if (stlink_status(sl)) {
printf("Failed to get Core's status\n");
goto on_error;
}
size_t size = 0;
if ((FLASH_ADDRESS > sl->flash_base + sl->flash_size)) {
printf("Unknown memory region\n");
goto on_error;
}
err = stlink_write_flash(sl, FLASH_ADDRESS, (uint8_t *) data, len, 0);
stlink_fwrite_finalize(sl, FLASH_ADDRESS);
if (err == -1) {
printf("stlink_fwrite_flash() == -1\n");
goto on_error;
}
stlink_jtag_reset(sl, 2);
stlink_reset(sl);
err = 0;
on_error:
stlink_exit_debug_mode(sl);
stlink_close(sl);
return err;
}
#include "stlink.h"
#include <stdio.h>
#include <string.h>
#include <unistd.h>
static const uint8_t loader_code_stm32f7[] = {
0x08, 0x4b, 0x72, 0xb1, 0x04, 0x68, 0x0c, 0x60,
0xbf, 0xf3, 0x4f, 0x8f, // DSB Memory barrier for in order flash write
0xdc, 0x89, 0x14, 0xf0, 0x01, 0x0f, 0xfb, 0xd1,
0x00, 0xf1, 0x04, 0x00, 0x01, 0xf1, 0x04, 0x01,
0xa2, 0xf1, 0x01, 0x02, 0xef, 0xe7, 0x00, 0xbe, // bkpt #0x00
0x00, 0x3c, 0x02, 0x40,
};
#define WAIT_ROUNDS 10000
int stlink_flash_loader_init(stlink_t *sl, flash_loader_t *fl) {
size_t size;
/* allocate the loader in sram */
if (stlink_flash_loader_write_to_sram(sl, &fl->loader_addr, &size) == -1) {
printf("Failed to write flash loader to sram!\n");
return -1;
}
/* allocate a one page buffer in sram right after loader */
fl->buf_addr = fl->loader_addr + (uint32_t) size;
return 0;
}
int stlink_flash_loader_write_to_sram(stlink_t *sl, stm32_addr_t *addr,
size_t *size) {
memcpy(sl->q_buf, loader_code_stm32f7, sizeof(loader_code_stm32f7));
stlink_write_mem32(sl, sl->sram_base, sizeof(loader_code_stm32f7));
*addr = sl->sram_base;
*size = sizeof(loader_code_stm32f7);
/* success */
return 0;
}
int stlink_flash_loader_run(stlink_t *sl, flash_loader_t *fl,
stm32_addr_t target, const uint8_t *buf,
size_t size) {
struct stlink_reg rr;
int i = 0;
size_t count = 0;
// FIXME This can never return -1
if (write_buffer_to_sram(sl, fl, buf, size) == -1) {
// IMPOSSIBLE!
printf("write_buffer_to_sram() == -1\n");
return -1;
}
count = size / sizeof(uint32_t);
if (size % sizeof(uint32_t)) ++count;
/* setup core */
stlink_write_reg(sl, fl->buf_addr, 0); /* source */
stlink_write_reg(sl, target, 1); /* target */
stlink_write_reg(sl, (uint32_t) count, 2); /* count */
stlink_write_reg(
sl, 0,
3); /* flash bank 0 (input), only used on F0, but armless fopr others */
stlink_write_reg(sl, fl->loader_addr, 15); /* pc register */
/* run loader */
stlink_run(sl);
/* wait until done (reaches breakpoint) */
for (i = 0; i < WAIT_ROUNDS; i++) {
usleep(10);
if (stlink_is_core_halted(sl)) break;
}
if (i >= WAIT_ROUNDS) {
printf("flash loader run error\n");
return -1;
}
/* check written byte count */
stlink_read_reg(sl, 2, &rr);
if (rr.r[2] != 0) {
printf("write error, count == %u\n", rr.r[2]);
return -1;
}
return 0;
}
/*
* File: stlink.h
*
* This should contain all the common top level stlink interfaces, regardless
* of how the backend does the work....
*/
#ifndef STLINK_FLASH_LOADER_H_
#define STLINK_FLASH_LOADER_H_
#include <stdint.h>
#include <stddef.h>
#include "stlink.h"
#ifdef __cplusplus
extern "C" {
#endif
int stlink_flash_loader_init(stlink_t *sl, flash_loader_t *fl);
int stlink_flash_loader_write_to_sram(stlink_t *sl, stm32_addr_t *addr,
size_t *size);
int stlink_flash_loader_run(stlink_t *sl, flash_loader_t *fl,
stm32_addr_t target, const uint8_t *buf,
size_t size);
#ifdef __cplusplus
}
#endif
#endif /* STLINK_FLASH_LOADER_H_ */
// +build linux
package stm32
// #cgo CFLAGS: -I/usr/include/libusb-1.0/
// #cgo LDFLAGS: -lusb-1.0
// #include "stm32_flash.h"
import "C"
import (
"time"
"unsafe"
"cesanta.com/common/go/fwbundle"
"github.com/cesanta/errors"
)
type FlashOpts struct {
ShareName string
Timeout time.Duration
}
func Flash(fw *fwbundle.FirmwareBundle, opts *FlashOpts) error {
data, err := fw.GetPartData("boot")
if err != nil {
return errors.Annotatef(err, "invalid manifest")
}
flash_res := C.stm32_flash(C.CString(opts.ShareName),
unsafe.Pointer(&data[0]),
C.int(len(data)))
if flash_res != 0 {
return errors.Errorf("flash failed")
}
return nil
}
/*
* File: stlink.h
*
* This should contain all the common top level stlink interfaces, regardless
* of how the backend does the work....
*/
#ifndef STLINK_H
#define STLINK_H
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
#define STLINK_ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
// Max data transfer size.
// 6kB = max mem32_read block, 8kB sram
//#define Q_BUF_LEN 96
#define Q_BUF_LEN (1024 * 100)
// STLINK_DEBUG_RESETSYS, etc:
#define STLINK_CORE_RUNNING 0x80
#define STLINK_CORE_HALTED 0x81
#define STLINK_CORE_STAT_UNKNOWN -1
#define STLINK_GET_VERSION 0xf1
#define STLINK_GET_CURRENT_MODE 0xf5
#define STLINK_GET_TARGET_VOLTAGE 0xF7
#define STLINK_DEBUG_COMMAND 0xF2
#define STLINK_DFU_COMMAND 0xF3
#define STLINK_DFU_EXIT 0x07
// STLINK_GET_CURRENT_MODE
#define STLINK_DEV_DFU_MODE 0x00
#define STLINK_DEV_MASS_MODE 0x01
#define STLINK_DEV_DEBUG_MODE 0x02
#define STLINK_DEV_UNKNOWN_MODE -1
// TODO - possible poor names...
#define STLINK_SWD_ENTER 0x30
#define STLINK_SWD_READCOREID 0x32 // TBD
#define STLINK_JTAG_WRITEDEBUG_32BIT 0x35
#define STLINK_JTAG_READDEBUG_32BIT 0x36
#define STLINK_JTAG_DRIVE_NRST 0x3c
#define STLINK_DEBUG_APIV2_SWD_SET_FREQ 0x43
/* cortex core ids */
// TODO clean this up...
#define STM32VL_CORE_ID 0x1ba01477
#define STM32F7_CORE_ID 0x5ba02477
// Constant STM32 memory map figures
#define STM32_FLASH_BASE 0x08000000
#define STM32_SRAM_BASE 0x20000000
// Baud rate divisors for SWDCLK
#define STLINK_SWDCLK_4MHZ_DIVISOR 0
#define STLINK_SWDCLK_1P8MHZ_DIVISOR 1
#define STLINK_SWDCLK_1P2MHZ_DIVISOR 2
#define STLINK_SWDCLK_950KHZ_DIVISOR 3
#define STLINK_SWDCLK_480KHZ_DIVISOR 7
#define STLINK_SWDCLK_240KHZ_DIVISOR 15
#define STLINK_SWDCLK_125KHZ_DIVISOR 31
#define STLINK_SWDCLK_100KHZ_DIVISOR 40
#define STLINK_SWDCLK_50KHZ_DIVISOR 79
#define STLINK_SWDCLK_25KHZ_DIVISOR 158
#define STLINK_SWDCLK_15KHZ_DIVISOR 265
#define STLINK_SWDCLK_5KHZ_DIVISOR 798
#define STLINK_CHIPID_STM32_F7 0x449
/* Enough space to hold both a V2 command or a V1 command packaged as generic
* scsi*/
#define C_BUF_LEN 32
struct stlink_reg {
uint32_t r[16];
uint32_t s[32];
uint32_t xpsr;
uint32_t main_sp;
uint32_t process_sp;
uint32_t rw;
uint32_t rw2;
uint8_t control;
uint8_t faultmask;
uint8_t basepri;
uint8_t primask;
uint32_t fpscr;
};
typedef uint32_t stm32_addr_t;
typedef struct flash_loader {
stm32_addr_t loader_addr; /* loader sram adddr */
stm32_addr_t buf_addr; /* buffer sram address */
} flash_loader_t;
typedef struct stlink_version_ {
uint32_t stlink_v;
uint32_t jtag_v;
uint32_t swim_v;
uint32_t st_vid;
uint32_t stlink_pid;
} stlink_version_t;
typedef struct _stlink stlink_t;
struct _stlink {
void *backend_data;
// Room for the command header
unsigned char c_buf[C_BUF_LEN];
// Data transferred from or to device
unsigned char q_buf[Q_BUF_LEN];
int q_len;
// transport layer verboseness: 0 for no debug info, 10 for lots
uint32_t core_id;
uint32_t chip_id;
int core_stat;
char serial[16];
int serial_size;
stm32_addr_t flash_base;
size_t flash_size;
size_t flash_pgsz;
/* sram settings */
stm32_addr_t sram_base;
size_t sram_size;
// bootloader
stm32_addr_t sys_base;
size_t sys_size;
struct stlink_version_ version;
};
int stlink_enter_swd_mode(stlink_t *sl);
int stlink_enter_jtag_mode(stlink_t *sl);
int stlink_exit_debug_mode(stlink_t *sl);
int stlink_exit_dfu_mode(stlink_t *sl);
void stlink_close(stlink_t *sl);
int stlink_core_id(stlink_t *sl);
int stlink_reset(stlink_t *sl);
int stlink_jtag_reset(stlink_t *sl, int value);
int stlink_run(stlink_t *sl);
int stlink_status(stlink_t *sl);
int stlink_version(stlink_t *sl);
int stlink_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data);
int stlink_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len);
int stlink_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data);
int stlink_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len);
int stlink_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len);
int stlink_read_all_regs(stlink_t *sl, struct stlink_reg *regp);
int stlink_read_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp);
int stlink_write_reg(stlink_t *sl, uint32_t reg, int idx);
int stlink_step(stlink_t *sl);
int stlink_current_mode(stlink_t *sl);
int stlink_force_debug(stlink_t *sl);
int stlink_target_voltage(stlink_t *sl);
int stlink_set_swdclk(stlink_t *sl, uint16_t divisor);
int stlink_write_flash(stlink_t *sl, stm32_addr_t address, uint8_t *data,
uint32_t length, uint8_t eraseonly);
int stlink_fwrite_flash(stlink_t *sl, const char *path, stm32_addr_t addr);
int stlink_verify_write_flash(stlink_t *sl, stm32_addr_t address, uint8_t *data,
uint32_t length);
int stlink_chip_id(stlink_t *sl, uint32_t *chip_id);
int stlink_erase_flash_page(stlink_t *sl, stm32_addr_t flashaddr);
uint32_t stlink_calculate_pagesize(stlink_t *sl, uint32_t flashaddr);
uint16_t read_uint16(const unsigned char *c, const int pt);
void stlink_core_stat(stlink_t *sl);
unsigned int is_bigendian(void);
uint32_t read_uint32(const unsigned char *c, const int pt);
void write_uint32(unsigned char *buf, uint32_t ui);
void write_uint16(unsigned char *buf, uint16_t ui);
bool stlink_is_core_halted(stlink_t *sl);
int write_buffer_to_sram(stlink_t *sl, flash_loader_t *fl, const uint8_t *buf,
size_t size);
int write_loader_to_sram(stlink_t *sl, stm32_addr_t *addr, size_t *size);
int stlink_load_device_params(stlink_t *sl);
void stlink_fwrite_finalize(stlink_t *sl, stm32_addr_t addr);
#include "usb.h"
#include "flash_loader.h"
#ifdef __cplusplus
}
#endif
#endif /* STLINK_H */
#ifndef STM32_FLASH_H_
#define STM32_FLASH_H_
int stm32_flash(const char *device_name, void *data, int len);
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <sys/time.h>
#include <sys/types.h>
#include <libusb.h>
#include <errno.h>
#include <unistd.h>
#include "stlink.h"
enum SCSI_Generic_Direction { SG_DXFER_TO_DEV = 0, SG_DXFER_FROM_DEV = 0x80 };
enum stlink_debug_commands {
STLINK_DEBUG_ENTER_JTAG = 0x00,
STLINK_DEBUG_GETSTATUS = 0x01,
STLINK_DEBUG_FORCEDEBUG = 0x02,
STLINK_DEBUG_RESETSYS = 0x03,
STLINK_DEBUG_READALLREGS = 0x04,
STLINK_DEBUG_READREG = 0x05,
STLINK_DEBUG_WRITEREG = 0x06,
STLINK_DEBUG_READMEM_32BIT = 0x07,
STLINK_DEBUG_WRITEMEM_32BIT = 0x08,
STLINK_DEBUG_RUNCORE = 0x09,
STLINK_DEBUG_STEPCORE = 0x0a,
STLINK_DEBUG_SETFP = 0x0b,
STLINK_DEBUG_WRITEMEM_8BIT = 0x0d,
STLINK_DEBUG_CLEARFP = 0x0e,
STLINK_DEBUG_WRITEDEBUGREG = 0x0f,
STLINK_DEBUG_ENTER = 0x20,
STLINK_DEBUG_EXIT = 0x21,
STLINK_DEBUG_READCOREID = 0x22,
STLINK_DEBUG_ENTER_SWD = 0xa3
};
void _stlink_usb_close(stlink_t *sl) {
if (!sl) return;
struct stlink_libusb *const handle = sl->backend_data;
// maybe we couldn't even get the usb device?
if (handle != NULL) {
if (handle->usb_handle != NULL) {
libusb_close(handle->usb_handle);
}
libusb_exit(handle->libusb_ctx);
free(handle);
}
}
ssize_t send_recv(struct stlink_libusb *handle, int terminate,
unsigned char *txbuf, size_t txsize, unsigned char *rxbuf,
size_t rxsize) {
/* note: txbuf and rxbuf can point to the same area */
int res = 0;
int t;
t = libusb_bulk_transfer(handle->usb_handle, handle->ep_req, txbuf,
(int) txsize, &res, 3000);
if (t) {
printf("[!] send_recv send request failed: %s\n", libusb_error_name(t));
return -1;
} else if ((size_t) res != txsize) {
printf("[!] send_recv send request wrote %u bytes (instead of %u).\n",
(unsigned int) res, (unsigned int) txsize);
}
if (rxsize != 0) {
t = libusb_bulk_transfer(handle->usb_handle, handle->ep_rep, rxbuf,
(int) rxsize, &res, 3000);
if (t) {
printf("[!] send_recv read reply failed: %s\n", libusb_error_name(t));
return -1;
}
}
if ((handle->protocoll == 1) && terminate) {
/* Read the SG reply */
unsigned char sg_buf[13];
t = libusb_bulk_transfer(handle->usb_handle, handle->ep_rep, sg_buf, 13,
&res, 3000);
if (t) {
printf("[!] send_recv read storage failed: %s\n", libusb_error_name(t));
return -1;
}
/* The STLink doesn't seem to evaluate the sequence number */
handle->sg_transfer_idx++;
}
return res;
}
static inline int send_only(struct stlink_libusb *handle, int terminate,
unsigned char *txbuf, size_t txsize) {
return (int) send_recv(handle, terminate, txbuf, txsize, NULL, 0);
}
static int fill_command(stlink_t *sl, enum SCSI_Generic_Direction dir,
uint32_t len) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const cmd = sl->c_buf;
int i = 0;
memset(cmd, 0, sizeof(sl->c_buf));
if (slu->protocoll == 1) {
cmd[i++] = 'U';
cmd[i++] = 'S';
cmd[i++] = 'B';
cmd[i++] = 'C';
write_uint32(&cmd[i], slu->sg_transfer_idx);
write_uint32(&cmd[i + 4], len);
i += 8;
cmd[i++] = (dir == SG_DXFER_FROM_DEV) ? 0x80 : 0;
cmd[i++] = 0; /* Logical unit */
cmd[i++] = 0xa; /* Command length */
}
return i;
}
int _stlink_usb_version(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
uint32_t rep_len = 6;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_GET_VERSION;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_GET_VERSION\n");
return (int) size;
}
return 0;
}
int32_t _stlink_usb_target_voltage(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const rdata = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
uint32_t rep_len = 8;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
uint32_t factor, reading;
int voltage;
cmd[i++] = STLINK_GET_TARGET_VOLTAGE;
size = send_recv(slu, 1, cmd, slu->cmd_len, rdata, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_GET_TARGET_VOLTAGE\n");
return -1;
} else if (size != 8) {
printf("[!] wrong length STLINK_GET_TARGET_VOLTAGE\n");
return -1;
}
factor =
(rdata[3] << 24) | (rdata[2] << 16) | (rdata[1] << 8) | (rdata[0] << 0);
reading =
(rdata[7] << 24) | (rdata[6] << 16) | (rdata[5] << 8) | (rdata[4] << 0);
voltage = 2400 * reading / factor;
return voltage;
}
int _stlink_usb_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const rdata = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
const int rep_len = 8;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_JTAG_READDEBUG_32BIT;
write_uint32(&cmd[i], addr);
size = send_recv(slu, 1, cmd, slu->cmd_len, rdata, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_JTAG_READDEBUG_32BIT\n");
return (int) size;
}
*data = read_uint32(rdata, 4);
return 0;
}
int _stlink_usb_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const rdata = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
const int rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_JTAG_WRITEDEBUG_32BIT;
write_uint32(&cmd[i], addr);
write_uint32(&cmd[i + 4], data);
size = send_recv(slu, 1, cmd, slu->cmd_len, rdata, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_JTAG_WRITEDEBUG_32BIT\n");
return (int) size;
}
return 0;
}
int _stlink_usb_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
int i, ret;
i = fill_command(sl, SG_DXFER_TO_DEV, len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_WRITEMEM_32BIT;
write_uint32(&cmd[i], addr);
write_uint16(&cmd[i + 4], len);
ret = send_only(slu, 0, cmd, slu->cmd_len);
if (ret == -1) return ret;
ret = send_only(slu, 1, data, len);
if (ret == -1) return ret;
return 0;
}
int _stlink_usb_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
int i, ret;
i = fill_command(sl, SG_DXFER_TO_DEV, 0);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_WRITEMEM_8BIT;
write_uint32(&cmd[i], addr);
write_uint16(&cmd[i + 4], len);
ret = send_only(slu, 0, cmd, slu->cmd_len);
if (ret == -1) return ret;
ret = send_only(slu, 1, data, len);
if (ret == -1) return ret;
return 0;
}
int _stlink_usb_current_mode(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const cmd = sl->c_buf;
unsigned char *const data = sl->q_buf;
ssize_t size;
int rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_GET_CURRENT_MODE;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_GET_CURRENT_MODE\n");
return -1;
}
return sl->q_buf[0];
}
int _stlink_usb_core_id(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const cmd = sl->c_buf;
unsigned char *const data = sl->q_buf;
ssize_t size;
int rep_len = 4;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_READCOREID;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_READCOREID\n");
return -1;
}
sl->core_id = read_uint32(data, 0);
return 0;
}
int _stlink_usb_status(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_GETSTATUS;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_GETSTATUS\n");
return (int) size;
}
sl->q_len = (int) size;
return 0;
}
int _stlink_usb_force_debug(stlink_t *sl) {
struct stlink_libusb *slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_FORCEDEBUG;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_FORCEDEBUG\n");
return (int) size;
}
return 0;
}
int _stlink_usb_enter_swd_mode(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
const int rep_len = 0;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_ENTER;
cmd[i++] = STLINK_DEBUG_ENTER_SWD;
size = send_only(slu, 1, cmd, slu->cmd_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_ENTER\n");
return (int) size;
}
return 0;
}
int _stlink_usb_exit_dfu_mode(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int i = fill_command(sl, SG_DXFER_FROM_DEV, 0);
cmd[i++] = STLINK_DFU_COMMAND;
cmd[i++] = STLINK_DFU_EXIT;
size = send_only(slu, 1, cmd, slu->cmd_len);
if (size == -1) {
printf("[!] send_recv STLINK_DFU_EXIT\n");
return (int) size;
}
return 0;
}
/**
* TODO - not convinced this does anything...
* @param sl
*/
int _stlink_usb_reset(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_RESETSYS;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_RESETSYS\n");
return (int) size;
}
return 0;
}
int _stlink_usb_jtag_reset(stlink_t *sl, int value) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_JTAG_DRIVE_NRST;
cmd[i++] = value;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_JTAG_DRIVE_NRST\n");
return (int) size;
}
return 0;
}
int _stlink_usb_step(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_STEPCORE;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_STEPCORE\n");
return (int) size;
}
return 0;
}
/**
* This seems to do a good job of restarting things from the beginning?
* @param sl
*/
int _stlink_usb_run(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_RUNCORE;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_RUNCORE\n");
return (int) size;
}
return 0;
}
int _stlink_usb_set_swdclk(stlink_t *sl, uint16_t clk_divisor) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int rep_len = 2;
int i;
// clock speed only supported by stlink/v2 and for firmware >= 22
if (sl->version.stlink_v >= 2 && sl->version.jtag_v >= 22) {
i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_APIV2_SWD_SET_FREQ;
cmd[i++] = clk_divisor & 0xFF;
cmd[i++] = (clk_divisor >> 8) & 0xFF;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_APIV2_SWD_SET_FREQ\n");
return (int) size;
}
return 0;
} else {
return -1;
}
}
int _stlink_usb_exit_debug_mode(stlink_t *sl) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int i = fill_command(sl, SG_DXFER_FROM_DEV, 0);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_EXIT;
size = send_only(slu, 1, cmd, slu->cmd_len);
if (size == -1) {
printf("[!] send_only STLINK_DEBUG_EXIT\n");
return (int) size;
}
return 0;
}
int _stlink_usb_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
int i = fill_command(sl, SG_DXFER_FROM_DEV, len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_READMEM_32BIT;
write_uint32(&cmd[i], addr);
write_uint16(&cmd[i + 4], len);
size = send_recv(slu, 1, cmd, slu->cmd_len, data, len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_READMEM_32BIT\n");
return (int) size;
}
sl->q_len = (int) size;
return 0;
}
int _stlink_usb_read_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
uint32_t r;
uint32_t rep_len = 4;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_READREG;
cmd[i++] = (uint8_t) r_idx;
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_READREG\n");
return (int) size;
}
sl->q_len = (int) size;
r = read_uint32(sl->q_buf, 0);
switch (r_idx) {
case 16:
regp->xpsr = r;
break;
case 17:
regp->main_sp = r;
break;
case 18:
regp->process_sp = r;
break;
case 19:
regp->rw = r; /* XXX ?(primask, basemask etc.) */
break;
case 20:
regp->rw2 = r; /* XXX ?(primask, basemask etc.) */
break;
default:
regp->r[r_idx] = r;
}
return 0;
}
int _stlink_usb_write_reg(stlink_t *sl, uint32_t reg, int idx) {
struct stlink_libusb *const slu = sl->backend_data;
unsigned char *const data = sl->q_buf;
unsigned char *const cmd = sl->c_buf;
ssize_t size;
uint32_t rep_len = 2;
int i = fill_command(sl, SG_DXFER_FROM_DEV, rep_len);
cmd[i++] = STLINK_DEBUG_COMMAND;
cmd[i++] = STLINK_DEBUG_WRITEREG;
cmd[i++] = idx;
write_uint32(&cmd[i], reg);
size = send_recv(slu, 1, cmd, slu->cmd_len, data, rep_len);
if (size == -1) {
printf("[!] send_recv STLINK_DEBUG_WRITEREG\n");
return (int) size;
}
sl->q_len = (int) size;
return 0;
}
stlink_t *stlink_open_usb(bool reset, char serial[16]) {
stlink_t *sl = NULL;
struct stlink_libusb *slu = NULL;
int ret = -1;
int config;
sl = calloc(1, sizeof(stlink_t));
slu = calloc(1, sizeof(struct stlink_libusb));
if (sl == NULL) goto on_malloc_error;
if (slu == NULL) goto on_malloc_error;
sl->backend_data = slu;
sl->core_stat = STLINK_CORE_STAT_UNKNOWN;
if (libusb_init(&(slu->libusb_ctx))) {
printf("failed to init libusb context, wrong version of libraries?\n");
goto on_error;
}
libusb_device **list;
/** @todo We should use ssize_t and use it as a counter if > 0. As per libusb
* API: ssize_t libusb_get_device_list (libusb_context *ctx, libusb_device
* ***list) */
int cnt = (int) libusb_get_device_list(slu->libusb_ctx, &list);
struct libusb_device_descriptor desc;
int devBus = 0;
int devAddr = 0;
/* @TODO: Reading a environment variable in a usb open function is not very
nice, this
should be refactored and moved into the CLI tools, and instead of giving
USB_BUS:USB_ADDR a real stlink
serial string should be passed to this function. Probably people are using
this but this is very odd because
as programmer can change to multiple busses and it is better to detect them
based on serial. */
char *device = getenv("STLINK_DEVICE");
if (device) {
char *c = strchr(device, ':');
if (c == NULL) {
printf("STLINK_DEVICE must be <USB_BUS>:<USB_ADDR> format\n");
goto on_error;
}
devBus = atoi(device);
*c++ = 0;
devAddr = atoi(c);
printf("bus %03d dev %03d\n", devBus, devAddr);
}
while (cnt--) {
libusb_get_device_descriptor(list[cnt], &desc);
if (desc.idVendor != STLINK_USB_VID_ST) continue;
if (devBus && devAddr) {
if ((libusb_get_bus_number(list[cnt]) != devBus) ||
(libusb_get_device_address(list[cnt]) != devAddr)) {
continue;
}
}
if ((desc.idProduct == STLINK_USB_PID_STLINK_32L) ||
(desc.idProduct == STLINK_USB_PID_STLINK_NUCLEO)) {
struct libusb_device_handle *handle;
ret = libusb_open(list[cnt], &handle);
if (ret) continue;
sl->serial_size = libusb_get_string_descriptor_ascii(
handle, desc.iSerialNumber, (unsigned char *) sl->serial,
sizeof(sl->serial));
libusb_close(handle);
if ((serial == NULL) || (*serial == 0)) break;
if (sl->serial_size < 0) continue;
if (memcmp(serial, &sl->serial, sl->serial_size) == 0) break;
continue;
}
if (desc.idProduct == STLINK_USB_PID_STLINK) {
slu->protocoll = 1;
break;
}
}
if (cnt < 0) {
printf("Couldn't find %s ST-Link/V2 devices\n",
(devBus && devAddr) ? "matched" : "any");
goto on_error;
} else {
ret = libusb_open(list[cnt], &slu->usb_handle);
if (ret != 0) {
printf("Error %d (%s) opening ST-Link/V2 device %03d:%03d\n", ret,
strerror(errno), libusb_get_bus_number(list[cnt]),
libusb_get_device_address(list[cnt]));
goto on_error;
}
}
libusb_free_device_list(list, 1);
if (libusb_kernel_driver_active(slu->usb_handle, 0) == 1) {
ret = libusb_detach_kernel_driver(slu->usb_handle, 0);
if (ret < 0) {
printf("libusb_detach_kernel_driver(() error %s\n", strerror(-ret));
goto on_libusb_error;
}
}
if (libusb_get_configuration(slu->usb_handle, &config)) {
/* this may fail for a previous configured device */
printf("libusb_get_configuration()\n");
goto on_libusb_error;
}
if (config != 1) {
printf("setting new configuration (%d -> 1)\n", config);
if (libusb_set_configuration(slu->usb_handle, 1)) {
/* this may fail for a previous configured device */
printf("libusb_set_configuration() failed\n");
goto on_libusb_error;
}
}
if (libusb_claim_interface(slu->usb_handle, 0)) {
printf(
"Stlink usb device found, but unable to claim (probably already in "
"use?)\n");
goto on_libusb_error;
}
// TODO - could use the scanning techniq from stm8 code here...
slu->ep_rep = 1 /* ep rep */ | LIBUSB_ENDPOINT_IN;
if (desc.idProduct == STLINK_USB_PID_STLINK_NUCLEO) {
slu->ep_req = 1 /* ep req */ | LIBUSB_ENDPOINT_OUT;
} else {
slu->ep_req = 2 /* ep req */ | LIBUSB_ENDPOINT_OUT;
}
slu->sg_transfer_idx = 0;
// TODO - never used at the moment, always CMD_SIZE
slu->cmd_len = (slu->protocoll == 1) ? STLINK_SG_SIZE : STLINK_CMD_SIZE;
if (stlink_current_mode(sl) == STLINK_DEV_DFU_MODE) {
printf("-- exit_dfu_mode\n");
stlink_exit_dfu_mode(sl);
}
if (stlink_current_mode(sl) != STLINK_DEV_DEBUG_MODE) {
stlink_enter_swd_mode(sl);
}
sl->version.stlink_v = 2;
if (reset) {
if (sl->version.stlink_v > 1) stlink_jtag_reset(sl, 2);
stlink_reset(sl);
usleep(10000);
}
ret = stlink_load_device_params(sl);
// Set the stlink clock speed (default is 1800kHz)
stlink_set_swdclk(sl, STLINK_SWDCLK_1P8MHZ_DIVISOR);
on_libusb_error:
if (ret == -1) {
stlink_close(sl);
return NULL;
}
return sl;
on_error:
if (slu->libusb_ctx) libusb_exit(slu->libusb_ctx);
on_malloc_error:
if (sl != NULL) free(sl);
if (slu != NULL) free(slu);
return NULL;
}
/*
* File: stlink/usb.h
* Author: karl
*
* Created on October 1, 2011, 11:29 PM
*/
#ifndef STLINK_USB_H
#define STLINK_USB_H
#include <stdbool.h>
#include <libusb.h>
#include "stlink.h"
#ifdef __cplusplus
extern "C" {
#endif
#define STLINK_USB_VID_ST 0x0483
#define STLINK_USB_PID_STLINK 0x3744
#define STLINK_USB_PID_STLINK_32L 0x3748
#define STLINK_USB_PID_STLINK_NUCLEO 0x374b
#define STLINK_SG_SIZE 31
#define STLINK_CMD_SIZE 16
struct stlink_libusb {
libusb_context *libusb_ctx;
libusb_device_handle *usb_handle;
unsigned int ep_req;
unsigned int ep_rep;
int protocoll;
unsigned int sg_transfer_idx;
unsigned int cmd_len;
};
/**
* Open a stlink
* @param verbose Verbosity loglevel
* @param reset Reset stlink programmer
* @param serial Serial number to search for, when NULL the first stlink found
* is opened (binary format)
* @retval NULL Error while opening the stlink
* @retval !NULL Stlink found and ready to use
*/
stlink_t *stlink_open_usb(bool reset, char serial[16]);
void _stlink_usb_close(stlink_t *sl);
int _stlink_usb_version(stlink_t *sl);
int32_t _stlink_usb_target_voltage(stlink_t *sl);
int _stlink_usb_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data);
int _stlink_usb_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data);
int _stlink_usb_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len);
int _stlink_usb_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len);
int _stlink_usb_current_mode(stlink_t *sl);
int _stlink_usb_core_id(stlink_t *sl);
int _stlink_usb_status(stlink_t *sl);
int _stlink_usb_force_debug(stlink_t *sl);
int _stlink_usb_enter_swd_mode(stlink_t *sl);
int _stlink_usb_exit_dfu_mode(stlink_t *sl);
int _stlink_usb_reset(stlink_t *sl);
int _stlink_usb_jtag_reset(stlink_t *sl, int value);
int _stlink_usb_step(stlink_t *sl);
int _stlink_usb_run(stlink_t *sl);
int _stlink_usb_set_swdclk(stlink_t *sl, uint16_t clk_divisor);
int _stlink_usb_exit_debug_mode(stlink_t *sl);
int _stlink_usb_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len);
int _stlink_usb_read_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp);
int _stlink_usb_write_reg(stlink_t *sl, uint32_t reg, int idx);
#ifdef __cplusplus
}
#endif
#endif /* STLINK_USB_H */
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment