stub_flasher.c 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/*
 * Copyright (c) 2014-2016 Cesanta Software Limited
 * All rights reserved
 *
 * Spiffy flasher. Implements strong checksums (MD5) and can use higher
 * baud rates. Actual max baud rate will differe from device to device,
 * but 921K seems to be common.
 *
 * SLIP protocol is used for communication.
 * First packet is a single byte - command number.
 * After that, a packet with a variable number of 32-bit (LE) arguments,
 * depending on command.
 *
 * Then command produces variable number of packets of output, but first
 * packet of length 1 is the response code: 0 for success, non-zero - error.
 *
 * See individual command description below.
 */

#include "stub_flasher.h"

#include <stdint.h>
#include <string.h>

#include "rom_functions.h"

#if defined(ESP8266)
#include "eagle_soc.h"
#include "ets_sys.h"
#include "../../../miniz.c"
#elif defined(ESP32)
#include "rom/efuse.h"
#include "rom/miniz.h"
#include "rom/spi_flash.h"
#include "soc/uart_reg.h"
#include "led.h"
#endif

#include "slip.h"
#include "uart.h"

/* Param: baud rate. */
uint32_t params[1] __attribute__((section(".params")));

#define FLASH_BLOCK_SIZE 65536
#define FLASH_SECTOR_SIZE 4096
#define FLASH_PAGE_SIZE 256

/* These consts should be in sync with flasher_client.go */
#define NUM_BUFS 4
#define BUF_SIZE 4096
#define FLASH_WRITE_SIZE BUF_SIZE

#define UART_RX_INTS (UART_RXFIFO_FULL_INT_ENA | UART_RXFIFO_TOUT_INT_ENA)

extern uint32_t _bss_start, _bss_end;

#ifdef ESP8266
#define REG_SPI_BASE(i) (0x60000200 - i * 0x100)

#define SPI_CMD_REG(i) (REG_SPI_BASE(i) + 0x0)
#define SPI_FLASH_WREN (BIT(30))
#define SPI_FLASH_RDID (BIT(28))
#define SPI_FLASH_SE (BIT(24))
#define SPI_FLASH_BE (BIT(23))

#define SPI_ADDR_REG(i) (REG_SPI_BASE(i) + 0x4)

#define SPI_USER_REG(i) (REG_SPI_BASE(i) + 0x1C)

#define SPI_W0_REG(i) (REG_SPI_BASE(i) + 0x40)
#endif

enum read_state {
  READ_WAIT_START = 0,
  READ_FLAGS,
  READ_DATA,
  READ_UNESCAPE,
  READ_ERROR,
};

struct data_buf {
  uint32_t len;
  uint8_t data[BUF_SIZE];
  uint8_t flags;
};

#define FLAG_COMPRESSED 1

struct uart_buf {
  enum read_state state;
  struct data_buf bufs[NUM_BUFS];
  uint32_t bri, bwi;
  uint32_t ps;
};

static inline uint32_t ccount(void) {
  uint32_t r;
  __asm volatile("rsr.ccount %0" : "=a"(r));
  return r;
}

struct write_progress {
  uint32_t num_written;
  uint32_t buf_level;
  uint8_t digest[16];
};

struct write_result {
  uint32_t wait_time;
  uint32_t decomp_time;
  uint32_t write_time;
  uint32_t erase_time;
  uint32_t total_time;
  uint8_t digest[16];
};

static struct uart_buf ub;
static uint32_t inflate_buf[TINFL_LZ_DICT_SIZE / sizeof(uint32_t)];

static void next_write_buf(void) {
  ub.bwi++;
  if (ub.bwi == NUM_BUFS) ub.bwi = 0;
  ub.bufs[ub.bwi].len = 0;
  ub.bufs[ub.bwi].flags = 0;
}

static void add_byte(uint8_t byte) {
  struct data_buf *buf = &ub.bufs[ub.bwi];
  if (buf->len < BUF_SIZE) {
    buf->data[buf->len++] = byte;
    ub.ps++;
  }
}

void uart_isr(void *arg) {
  uint32_t int_st = READ_PERI_REG(UART_INT_ST_REG(0));
  uint8_t fifo_len, i;
  while ((fifo_len = READ_PERI_REG(UART_STATUS_REG(0))) > 0) {
    for (i = 0; i < fifo_len; i++) {
      uint8_t byte = READ_PERI_REG(UART_FIFO_REG(0));
      switch (ub.state) {
        case READ_WAIT_START: {
          if (byte == 0xc0) {
            ub.state = READ_FLAGS;
            ub.ps = 0;
          }
          break;
        }
        case READ_FLAGS:
        case READ_DATA: {
          struct data_buf *buf = &ub.bufs[ub.bwi];
          if (byte == 0xdb) {
            ub.state = READ_UNESCAPE;
          } else if (byte == 0xc0) {
            next_write_buf();
            if (ub.ps == 0) {
              /* Empty packet, sender aborted. */
              ub.state = READ_ERROR;
              SET_PERI_REG_MASK(UART_INT_ENA_REG(0), 0);
              goto out;
            } else {
              ub.state = READ_WAIT_START;
            }
          } else {
            if (ub.state == READ_FLAGS) {
              buf->flags = byte;
              ub.state = READ_DATA;
            } else {
              add_byte(byte);
            }
          }
          break;
        }
        case READ_UNESCAPE: {
          if (byte == 0xdc) {
            byte = 0xc0;
          } else if (byte == 0xdd) {
            byte = 0xdb;
          } else {
            ub.state = READ_ERROR;
            SET_PERI_REG_MASK(UART_INT_ENA_REG(0), 0);
            goto out;
          }
          add_byte(byte);
          ub.state = READ_DATA;
          break;
        }
        case READ_ERROR: {
          goto out;
        }
      }
    }
  }
out:
  WRITE_PERI_REG(UART_INT_CLR_REG(0), int_st);
  (void) arg;
}

size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
                                   const void *pSrc_buf, size_t src_buf_len,
                                   int flags);
#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
#define TINFL_FLAG_PARSE_ZLIB_HEADER 1

#if defined(ESP8266)
int esp_rom_spiflash_erase_start(uint32_t addr, uint32_t cmd) {
  SPI_write_enable(flashchip);
  WRITE_PERI_REG(SPI_ADDR_REG(0), addr);
  WRITE_PERI_REG(SPI_CMD_REG(0), cmd);
  while (READ_PERI_REG(SPI_CMD_REG(0)) & cmd) {
  }
  return 0;
}
#elif defined(ESP32)
extern esp_rom_spiflash_chip_t g_rom_spiflash_chip;

esp_rom_spiflash_result_t esp_rom_spiflash_erase_start(uint32_t addr,
                                                       uint32_t cmd) {
  esp_rom_spiflash_chip_t *spi = &g_rom_spiflash_chip;
  esp_rom_spiflash_wait_idle(spi);

  REG_CLR_BIT(PERIPHS_SPI_FLASH_USRREG, SPI_USR_DUMMY);
  REG_SET_FIELD(PERIPHS_SPI_FLASH_USRREG1, SPI_USR_ADDR_BITLEN,
                ESP_ROM_SPIFLASH_W_SIO_ADDR_BITSLEN);

  WRITE_PERI_REG(PERIPHS_SPI_FLASH_CMD, SPI_FLASH_WREN);
  while (READ_PERI_REG(PERIPHS_SPI_FLASH_CMD) != 0) {
  }

  WRITE_PERI_REG(PERIPHS_SPI_FLASH_ADDR, addr);
  WRITE_PERI_REG(PERIPHS_SPI_FLASH_CMD, cmd);

  return ESP_ROM_SPIFLASH_RESULT_OK;
}
#endif

int do_flash_write(uint32_t addr, uint32_t len, uint32_t erase) {
  int ret = 0;
  uint32_t num_erased = 0;
  struct MD5Context ctx;
  MD5Init(&ctx);

  if (addr % FLASH_SECTOR_SIZE != 0) return 0x32;
  if (len % FLASH_SECTOR_SIZE != 0) return 0x33;
  if (esp_rom_spiflash_unlock() != 0) return 0x34;

  memset(&ub, 0, sizeof(ub));
  memset(&inflate_buf, 0, sizeof(inflate_buf));
  ets_isr_attach(ETS_UART0_INUM, uart_isr, &ub);
  uint32_t saved_conf1 = READ_PERI_REG(UART_CONF1_REG(0));
  /* Reduce frequency of UART interrupts */
  WRITE_PERI_REG(UART_CONF1_REG(0), UART_RX_TOUT_EN |
                                        (20 << UART_RX_TOUT_THRHD_S) |
                                        (100 << UART_RXFIFO_FULL_THRHD_S));
  SET_PERI_REG_MASK(UART_INT_ENA_REG(0), UART_RX_INTS);
  ets_isr_unmask(1 << ETS_UART0_INUM);

  struct write_result wr;
  memset(&wr, 0, sizeof(wr));

  struct write_progress wp = {.num_written = 0, .buf_level = 0};
  wp.buf_level = (uint32_t) &addr;
  SLIP_send(&wp, sizeof(wp));
  wr.total_time = ccount();
  while (wp.num_written < len) {
    /* Prepare the space ahead. */
    uint32_t start_count = ccount();
    while (erase && num_erased < wp.num_written + FLASH_WRITE_SIZE) {
      const uint32_t num_left = (len - num_erased);
      if (num_left >= FLASH_BLOCK_SIZE && addr % FLASH_BLOCK_SIZE == 0) {
        if (esp_rom_spiflash_erase_start(addr, SPI_FLASH_BE) != 0) {
          ret = 0x35;
          goto out;
        }
        num_erased += FLASH_BLOCK_SIZE;
      } else {
        /* len % FLASH_SECTOR_SIZE == 0 is enforced, no further checks needed */
        if (esp_rom_spiflash_erase_start(addr, SPI_FLASH_SE) != 0) {
          ret = 0x36;
          goto out;
        }
        num_erased += FLASH_SECTOR_SIZE;
      }
    }
    wr.erase_time += ccount() - start_count;
    start_count = ccount();
    /* Wait for data to arrive. */
    wp.buf_level = 0;
    for (int i = 0; i < NUM_BUFS; i++) wp.buf_level += ub.bufs[i].len;
    volatile uint32_t *bwi = &ub.bwi;
    while (*bwi == ub.bri && ub.state != READ_ERROR) {
    }
    struct data_buf *buf = &ub.bufs[ub.bri];
    if (ub.state == READ_ERROR) {
      ret = 0x37;
      goto out;
    }
    wr.wait_time += ccount() - start_count;
    start_count = ccount();
    uint32_t *data = (uint32_t *) buf->data;
    uint32_t write_len = buf->len;
    if (buf->flags & FLAG_COMPRESSED) {
      data = inflate_buf;
      write_len = tinfl_decompress_mem_to_mem(
          &inflate_buf[0], sizeof(inflate_buf), buf->data, write_len,
          TINFL_FLAG_PARSE_ZLIB_HEADER);
      if (write_len == TINFL_DECOMPRESS_MEM_TO_MEM_FAILED) {
        ret = 0x40;
        goto out;
      }
    }
    wr.decomp_time += ccount() - start_count;
    MD5Update(&ctx, (uint8_t *) data, write_len);
    start_count = ccount();
    wr.erase_time += ccount() - start_count;
    start_count = ccount();
    if (esp_rom_spiflash_write(addr, data, write_len) != 0) {
      ret = 0x38;
      goto out;
    }
    wr.write_time += ccount() - start_count;
    buf->len = 0;
    ub.bri++;
    if (ub.bri == NUM_BUFS) ub.bri = 0;
    addr += write_len;
    wp.num_written += write_len;
    struct MD5Context ctx2;
    memcpy(&ctx2, &ctx, sizeof(ctx));
    MD5Final(wp.digest, &ctx2);
    SLIP_send(&wp, sizeof(wp));
  }

  MD5Final(wr.digest, &ctx);

  wr.total_time = ccount() - wr.total_time;
  SLIP_send(&wr, sizeof(wr));

out:
  WRITE_PERI_REG(UART_CONF1_REG(0), saved_conf1);
  ets_isr_mask(1 << ETS_UART0_INUM);
  return ret;
}

int do_flash_read(uint32_t addr, uint32_t len, uint32_t block_size,
                  uint32_t max_in_flight) {
  uint8_t buf[FLASH_SECTOR_SIZE];
  uint8_t digest[16];
  struct MD5Context ctx;
  uint32_t num_sent = 0, num_acked = 0;
  if (block_size > sizeof(buf)) return 0x52;
  MD5Init(&ctx);
  while (num_acked < len) {
    while (num_sent < len && num_sent - num_acked < max_in_flight) {
      uint32_t n = len - num_sent;
      if (n > block_size) n = block_size;
      if (esp_rom_spiflash_read(addr, (uint32_t *) buf, n) != 0) return 0x53;
      send_packet(buf, n);
      MD5Update(&ctx, buf, n);
      addr += n;
      num_sent += n;
    }
    {
      if (SLIP_recv(&num_acked, sizeof(num_acked)) != 4) return 0x54;
      if (num_acked > num_sent) return 0x55;
    }
  }
  MD5Final(digest, &ctx);
  send_packet(digest, sizeof(digest));
  return 0;
}

int do_flash_digest(uint32_t addr, uint32_t len, uint32_t digest_block_size) {
  uint8_t buf[FLASH_SECTOR_SIZE];
  uint8_t digest[16];
  uint32_t read_block_size =
      digest_block_size ? digest_block_size : sizeof(buf);
  struct MD5Context ctx;
  if (digest_block_size > sizeof(buf)) return 0x62;
  MD5Init(&ctx);
  while (len > 0) {
    uint32_t n = len;
    struct MD5Context block_ctx;
    MD5Init(&block_ctx);
    if (n > read_block_size) n = read_block_size;
    if (esp_rom_spiflash_read(addr, (uint32_t *) buf, n) != 0) return 0x63;
    MD5Update(&ctx, buf, n);
    if (digest_block_size > 0) {
      MD5Update(&block_ctx, buf, n);
      MD5Final(digest, &block_ctx);
      send_packet(digest, sizeof(digest));
    }
    addr += n;
    len -= n;
  }
  MD5Final(digest, &ctx);
  send_packet(digest, sizeof(digest));
  return 0;
}

int do_flash_read_chip_id(void) {
  uint32_t chip_id = 0;
  WRITE_PERI_REG(SPI_CMD_REG(0), SPI_FLASH_RDID);
  while (READ_PERI_REG(SPI_CMD_REG(0)) & SPI_FLASH_RDID) {
  }
  chip_id = READ_PERI_REG(SPI_W0_REG(0)) & 0xFFFFFF;
  send_packet((uint8_t *) &chip_id, sizeof(chip_id));
  return 0;
}

uint8_t cmd_loop(void) {
  uint8_t cmd = 0x55;
  do {
    /* Reset FIFO to re-sync */
    SET_PERI_REG_MASK(UART_CONF0_REG(0), UART_RXFIFO_RST);
    CLEAR_PERI_REG_MASK(UART_CONF0_REG(0), UART_RXFIFO_RST);
    uint32_t args[4];
    uint32_t len = SLIP_recv(&cmd, 1);
    if (len != 1) {
      continue;
    }
    uint8_t resp = 0xff;
    switch (cmd) {
      case CMD_FLASH_WRITE: {
        len = SLIP_recv(args, sizeof(args));
        if (len == 12) {
          resp = do_flash_write(args[0] /* addr */, args[1] /* len */,
                                args[2] /* erase */);
        } else {
          resp = 0x41;
        }
        break;
      }
      case CMD_FLASH_READ: {
        len = SLIP_recv(args, sizeof(args));
        if (len == 16) {
          resp = do_flash_read(args[0] /* addr */, args[1], /* len */
                               args[2] /* block_size */,
                               args[3] /* max_in_flight */);
        } else {
          resp = 0x51;
        }
        break;
      }
      case CMD_FLASH_DIGEST: {
        len = SLIP_recv(args, sizeof(args));
        if (len == 12) {
          resp = do_flash_digest(args[0] /* addr */, args[1], /* len */
                                 args[2] /* digest_block_size */);
        } else {
          resp = 0x61;
        }
        break;
      }
      case CMD_FLASH_READ_CHIP_ID: {
        resp = do_flash_read_chip_id();
        break;
      }
      case CMD_FLASH_ERASE_CHIP: {
        resp = esp_rom_spiflash_erase_chip();
        break;
      }
      case CMD_BOOT_FW:
      case CMD_REBOOT: {
        resp = 0;
        SLIP_send(&resp, 1);
        return cmd;
      }
      case CMD_ECHO: {
        len = SLIP_recv(args, sizeof(args));
        SLIP_send(args, len);
        resp = 0;
        break;
      }
    }
    SLIP_send(&resp, 1);
  } while (cmd != CMD_BOOT_FW && cmd != CMD_REBOOT);
  return cmd;
}

void stub_main1(void) {
  uint32_t baud_rate = params[0];
  uint32_t greeting = 0x4941484f; /* OHAI */
  uint8_t last_cmd;

  /* This points at us right now, reset for next boot. */
  ets_set_user_start(0);

/* Selects SPI functions for flash pins. */
#if defined(ESP8266)
  SelectSpiFunction();
  SET_PERI_REG_MASK(0x3FF00014, 1); /* Switch to 160 MHz */
#elif defined(ESP32)
  esp_rom_spiflash_attach(ets_efuse_get_spiconfig(), 0 /* legacy */);
#endif

  esp_rom_spiflash_config_param(
      0 /* deviceId */, 16 * 1024 * 1024 /* chip_size */, FLASH_BLOCK_SIZE,
      FLASH_SECTOR_SIZE, FLASH_PAGE_SIZE, 0xffff /* status_mask */);

  if (baud_rate > 0) {
    ets_delay_us(10000);
    set_baud_rate(0, baud_rate);
  }

  /* Give host time to get ready too. */
  ets_delay_us(50000);

#ifdef BAUD_TEST
  while (1) {
    WRITE_PERI_REG(UART_FIFO_REG(0), 0x55);
  }
#else
  SLIP_send(&greeting, 4);
#endif

  last_cmd = cmd_loop();

  ets_delay_us(10000);

  if (last_cmd == CMD_BOOT_FW) {
#if defined(ESP8266)
    /*
     * Find the return address in our own stack and change it.
     * "flash_finish" it gets to the same point, except it doesn't need to
     * patch up its RA: it returns from UartDwnLdProc, then from f_400011ac,
     * then jumps to 0x4000108a, then checks strapping bits again (which will
     * not have changed), and then proceeds to 0x400010a8.
     */
    volatile uint32_t *sp = &baud_rate;
    while (*sp != (uint32_t) 0x40001100) sp++;
    *sp = 0x400010a8;
    /*
     * The following dummy asm fragment acts as a barrier, to make sure function
     * epilogue, including return address loading, is added after our stack
     * patching.
     */
    __asm volatile("nop.n");
    return; /* To 0x400010a8 */
#elif defined(ESP32)
/* TODO(rojer) */
#endif
  } else {
    software_reset();
  }
  /* Not reached */
}

/* miniz requires at least 12K of stack */
uint32_t stack[3071];
uint32_t stack_end;

void stub_main(void) {
  memset(&_bss_start, 0, (&_bss_end - &_bss_start));
  __asm volatile("movi a1, stack_end\n");
  stub_main1();
  // Keep the stack vars alive.
  stack[0] = stack_end = 0xff;
}