pgm_socket.cpp 22.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/*
    Copyright (c) 2007-2016 Contributors as noted in the AUTHORS file

    This file is part of libzmq, the ZeroMQ core engine in C++.

    libzmq is free software; you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    As a special exception, the Contributors give you permission to link
    this library with independent modules to produce an executable,
    regardless of the license terms of these independent modules, and to
    copy and distribute the resulting executable under terms of your choice,
    provided that you also meet, for each linked independent module, the
    terms and conditions of the license of that module. An independent
    module is a module which is not derived from or based on this library.
    If you modify this library, you must extend this exception to your
    version of the library.

    libzmq is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
    License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "precompiled.hpp"

#ifdef ZMQ_HAVE_OPENPGM

#ifdef ZMQ_HAVE_LINUX
#include <poll.h>
#endif

#include <stdlib.h>
#include <string.h>
#include <string>

#include "options.hpp"
#include "pgm_socket.hpp"
#include "config.hpp"
#include "err.hpp"
#include "random.hpp"
#include "stdint.hpp"

#ifndef MSG_ERRQUEUE
#define MSG_ERRQUEUE 0x2000
#endif

zmq::pgm_socket_t::pgm_socket_t (bool receiver_, const options_t &options_) :
    sock (NULL),
    options (options_),
    receiver (receiver_),
    pgm_msgv (NULL),
    pgm_msgv_len (0),
    nbytes_rec (0),
    nbytes_processed (0),
    pgm_msgv_processed (0)
{
}

//  Resolve PGM socket address.
//  network_ of the form <interface & multicast group decls>:<IP port>
//  e.g. eth0;239.192.0.1:7500
//       link-local;224.250.0.1,224.250.0.2;224.250.0.3:8000
//       ;[fe80::1%en0]:7500
int zmq::pgm_socket_t::init_address (const char *network_,
    struct pgm_addrinfo_t **res, uint16_t *port_number)
{
    //  Parse port number, start from end for IPv6
    const char *port_delim = strrchr (network_, ':');
    if (!port_delim) {
        errno = EINVAL;
        return -1;
    }

    *port_number = atoi (port_delim + 1);

    char network [256];
    if (port_delim - network_ >= (int) sizeof (network) - 1) {
        errno = EINVAL;
        return -1;
    }
    memset (network, '\0', sizeof (network));
    memcpy (network, network_, port_delim - network_);

    pgm_error_t *pgm_error = NULL;
    struct pgm_addrinfo_t hints;

    memset (&hints, 0, sizeof (hints));
    hints.ai_family = AF_UNSPEC;
    if (!pgm_getaddrinfo (network, NULL, res, &pgm_error)) {

        //  Invalid parameters don't set pgm_error_t.
        zmq_assert (pgm_error != NULL);
        if (pgm_error->domain == PGM_ERROR_DOMAIN_IF &&

              //  NB: cannot catch EAI_BADFLAGS.
            ( pgm_error->code != PGM_ERROR_SERVICE &&
              pgm_error->code != PGM_ERROR_SOCKTNOSUPPORT)) {

            //  User, host, or network configuration or transient error.
            pgm_error_free (pgm_error);
            errno = EINVAL;
            return -1;
        }

        //  Fatal OpenPGM internal error.
        zmq_assert (false);
    }
    return 0;
}

//  Create, bind and connect PGM socket.
int zmq::pgm_socket_t::init (bool udp_encapsulation_, const char *network_)
{
    //  Can not open transport before destroying old one.
    zmq_assert (sock == NULL);
    zmq_assert (options.rate > 0);

    //  Zero counter used in msgrecv.
    nbytes_rec = 0;
    nbytes_processed = 0;
    pgm_msgv_processed = 0;

    uint16_t port_number;
    struct pgm_addrinfo_t *res = NULL;
    sa_family_t sa_family;

    pgm_error_t *pgm_error = NULL;

    if (init_address(network_, &res, &port_number) < 0) {
        goto err_abort;
    }

    zmq_assert (res != NULL);

    //  Pick up detected IP family.
    sa_family = res->ai_send_addrs[0].gsr_group.ss_family;

    //  Create IP/PGM or UDP/PGM socket.
    if (udp_encapsulation_) {
        if (!pgm_socket (&sock, sa_family, SOCK_SEQPACKET, IPPROTO_UDP,
              &pgm_error)) {

            //  Invalid parameters don't set pgm_error_t.
            zmq_assert (pgm_error != NULL);
            if (pgm_error->domain == PGM_ERROR_DOMAIN_SOCKET && (
                  pgm_error->code != PGM_ERROR_BADF &&
                  pgm_error->code != PGM_ERROR_FAULT &&
                  pgm_error->code != PGM_ERROR_NOPROTOOPT &&
                  pgm_error->code != PGM_ERROR_FAILED))

                //  User, host, or network configuration or transient error.
                goto err_abort;

            //  Fatal OpenPGM internal error.
            zmq_assert (false);
        }

        //  All options are of data type int
        const int encapsulation_port = port_number;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_UDP_ENCAP_UCAST_PORT,
                &encapsulation_port, sizeof (encapsulation_port)))
            goto err_abort;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_UDP_ENCAP_MCAST_PORT,
                &encapsulation_port, sizeof (encapsulation_port)))
            goto err_abort;
    }
    else {
        if (!pgm_socket (&sock, sa_family, SOCK_SEQPACKET, IPPROTO_PGM,
              &pgm_error)) {

            //  Invalid parameters don't set pgm_error_t.
            zmq_assert (pgm_error != NULL);
            if (pgm_error->domain == PGM_ERROR_DOMAIN_SOCKET && (
                  pgm_error->code != PGM_ERROR_BADF &&
                  pgm_error->code != PGM_ERROR_FAULT &&
                  pgm_error->code != PGM_ERROR_NOPROTOOPT &&
                  pgm_error->code != PGM_ERROR_FAILED))

                //  User, host, or network configuration or transient error.
                goto err_abort;

            //  Fatal OpenPGM internal error.
            zmq_assert (false);
        }
    }

    {
        const int rcvbuf = (int) options.rcvbuf;
        if (rcvbuf >= 0) {
            if (!pgm_setsockopt (sock, SOL_SOCKET, SO_RCVBUF, &rcvbuf,
                  sizeof (rcvbuf)))
                goto err_abort;
        }

        const int sndbuf = (int) options.sndbuf;
        if (sndbuf >= 0) {
            if (!pgm_setsockopt (sock, SOL_SOCKET, SO_SNDBUF, &sndbuf,
                  sizeof (sndbuf)))
                goto err_abort;
        }

        const int max_tpdu = (int) options.multicast_maxtpdu;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_MTU, &max_tpdu,
              sizeof (max_tpdu)))
            goto err_abort;
    }

    if (receiver) {
        const int recv_only        = 1,
                  rxw_max_tpdu     = (int) options.multicast_maxtpdu,
                  rxw_sqns         = compute_sqns (rxw_max_tpdu),
                  peer_expiry      = pgm_secs (300),
                  spmr_expiry      = pgm_msecs (25),
                  nak_bo_ivl       = pgm_msecs (50),
                  nak_rpt_ivl      = pgm_msecs (200),
                  nak_rdata_ivl    = pgm_msecs (200),
                  nak_data_retries = 50,
                  nak_ncf_retries  = 50;

        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_RECV_ONLY, &recv_only,
                sizeof (recv_only)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_RXW_SQNS, &rxw_sqns,
                sizeof (rxw_sqns)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_PEER_EXPIRY, &peer_expiry,
                sizeof (peer_expiry)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_SPMR_EXPIRY, &spmr_expiry,
                sizeof (spmr_expiry)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_BO_IVL, &nak_bo_ivl,
                sizeof (nak_bo_ivl)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_RPT_IVL, &nak_rpt_ivl,
                sizeof (nak_rpt_ivl)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_RDATA_IVL,
                &nak_rdata_ivl, sizeof (nak_rdata_ivl)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_DATA_RETRIES,
                &nak_data_retries, sizeof (nak_data_retries)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_NAK_NCF_RETRIES,
                &nak_ncf_retries, sizeof (nak_ncf_retries)))
            goto err_abort;
    }
    else {
        const int send_only        = 1,
                  max_rte      = (int) ((options.rate * 1000) / 8),
                  txw_max_tpdu     = (int) options.multicast_maxtpdu,
                  txw_sqns         = compute_sqns (txw_max_tpdu),
                  ambient_spm      = pgm_secs (30),
                  heartbeat_spm[]  = { pgm_msecs (100),
                                       pgm_msecs (100),
                                       pgm_msecs (100),
                                       pgm_msecs (100),
                                       pgm_msecs (1300),
                                       pgm_secs  (7),
                                       pgm_secs  (16),
                                       pgm_secs  (25),
                                       pgm_secs  (30) };

        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_SEND_ONLY,
                &send_only, sizeof (send_only)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_ODATA_MAX_RTE,
                &max_rte, sizeof (max_rte)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_TXW_SQNS,
                &txw_sqns, sizeof (txw_sqns)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_AMBIENT_SPM,
                &ambient_spm, sizeof (ambient_spm)) ||
            !pgm_setsockopt (sock, IPPROTO_PGM, PGM_HEARTBEAT_SPM,
                &heartbeat_spm, sizeof (heartbeat_spm)))
            goto err_abort;
    }

    //  PGM transport GSI.
    struct pgm_sockaddr_t addr;

    memset (&addr, 0, sizeof(addr));
    addr.sa_port = port_number;
    addr.sa_addr.sport = DEFAULT_DATA_SOURCE_PORT;

    //  Create random GSI.
    uint32_t buf [2];
    buf [0] = generate_random ();
    buf [1] = generate_random ();
    if (!pgm_gsi_create_from_data (&addr.sa_addr.gsi, (uint8_t*) buf, 8))
        goto err_abort;


    //  Bind a transport to the specified network devices.
    struct pgm_interface_req_t if_req;
    memset (&if_req, 0, sizeof(if_req));
    if_req.ir_interface = res->ai_recv_addrs[0].gsr_interface;
    if_req.ir_scope_id  = 0;
    if (AF_INET6 == sa_family) {
        struct sockaddr_in6 sa6;
        memcpy (&sa6, &res->ai_recv_addrs[0].gsr_group, sizeof (sa6));
        if_req.ir_scope_id = sa6.sin6_scope_id;
    }
    if (!pgm_bind3 (sock, &addr, sizeof (addr), &if_req, sizeof (if_req),
          &if_req, sizeof (if_req), &pgm_error)) {

        //  Invalid parameters don't set pgm_error_t.
        zmq_assert (pgm_error != NULL);
        if ((pgm_error->domain == PGM_ERROR_DOMAIN_SOCKET ||
             pgm_error->domain == PGM_ERROR_DOMAIN_IF) && (
             pgm_error->code != PGM_ERROR_INVAL &&
             pgm_error->code != PGM_ERROR_BADF &&
             pgm_error->code != PGM_ERROR_FAULT))

            //  User, host, or network configuration or transient error.
            goto err_abort;

        //  Fatal OpenPGM internal error.
        zmq_assert (false);
    }

    //  Join IP multicast groups.
    for (unsigned i = 0; i < res->ai_recv_addrs_len; i++) {
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_JOIN_GROUP,
              &res->ai_recv_addrs [i], sizeof (struct group_req)))
            goto err_abort;
    }
    if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_SEND_GROUP,
          &res->ai_send_addrs [0], sizeof (struct group_req)))
        goto err_abort;

    pgm_freeaddrinfo (res);
    res = NULL;

    //  Set IP level parameters.
    {
        // Multicast loopback disabled by default
        const int multicast_loop = 0;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_MULTICAST_LOOP,
              &multicast_loop, sizeof (multicast_loop)))
            goto err_abort;

        const int multicast_hops = options.multicast_hops;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_MULTICAST_HOPS,
                &multicast_hops, sizeof (multicast_hops)))
            goto err_abort;

        //  Expedited Forwarding PHB for network elements, no ECN.
        //  Ignore return value due to varied runtime support.
        const int dscp = 0x2e << 2;
        if (AF_INET6 != sa_family)
            pgm_setsockopt (sock, IPPROTO_PGM, PGM_TOS,
               &dscp, sizeof (dscp));

        const int nonblocking = 1;
        if (!pgm_setsockopt (sock, IPPROTO_PGM, PGM_NOBLOCK,
              &nonblocking, sizeof (nonblocking)))
            goto err_abort;
    }

    //  Connect PGM transport to start state machine.
    if (!pgm_connect (sock, &pgm_error)) {

        //  Invalid parameters don't set pgm_error_t.
        zmq_assert (pgm_error != NULL);
        goto err_abort;
    }

    //  For receiver transport preallocate pgm_msgv array.
    if (receiver) {
        zmq_assert (in_batch_size > 0);
        size_t max_tsdu_size = get_max_tsdu_size ();
        pgm_msgv_len = (int) in_batch_size / max_tsdu_size;
        if ((int) in_batch_size % max_tsdu_size)
            pgm_msgv_len++;
        zmq_assert (pgm_msgv_len);

        pgm_msgv = (pgm_msgv_t*) malloc (sizeof (pgm_msgv_t) * pgm_msgv_len);
        alloc_assert (pgm_msgv);
    }

    return 0;

err_abort:
    if (sock != NULL) {
        pgm_close (sock, FALSE);
        sock = NULL;
    }
    if (res != NULL) {
        pgm_freeaddrinfo (res);
        res = NULL;
    }
    if (pgm_error != NULL) {
        pgm_error_free (pgm_error);
        pgm_error = NULL;
    }
    errno = EINVAL;
    return -1;
}

zmq::pgm_socket_t::~pgm_socket_t ()
{
    if (pgm_msgv)
        free (pgm_msgv);
    if (sock)
        pgm_close (sock, TRUE);
}

//  Get receiver fds. receive_fd_ is signaled for incoming packets,
//  waiting_pipe_fd_ is signaled for state driven events and data.
void zmq::pgm_socket_t::get_receiver_fds (fd_t *receive_fd_,
    fd_t *waiting_pipe_fd_)
{
    socklen_t socklen;
    bool rc;

    zmq_assert (receive_fd_);
    zmq_assert (waiting_pipe_fd_);

    socklen = sizeof (*receive_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_RECV_SOCK, receive_fd_,
        &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*receive_fd_));

    socklen = sizeof (*waiting_pipe_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_PENDING_SOCK, waiting_pipe_fd_,
        &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*waiting_pipe_fd_));
}

//  Get fds and store them into user allocated memory.
//  send_fd is for non-blocking send wire notifications.
//  receive_fd_ is for incoming back-channel protocol packets.
//  rdata_notify_fd_ is raised for waiting repair transmissions.
//  pending_notify_fd_ is for state driven events.
void zmq::pgm_socket_t::get_sender_fds (fd_t *send_fd_, fd_t *receive_fd_,
    fd_t *rdata_notify_fd_, fd_t *pending_notify_fd_)
{
    socklen_t socklen;
    bool rc;

    zmq_assert (send_fd_);
    zmq_assert (receive_fd_);
    zmq_assert (rdata_notify_fd_);
    zmq_assert (pending_notify_fd_);

    socklen = sizeof (*send_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_SEND_SOCK, send_fd_, &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*receive_fd_));

    socklen = sizeof (*receive_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_RECV_SOCK, receive_fd_,
        &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*receive_fd_));

    socklen = sizeof (*rdata_notify_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_REPAIR_SOCK, rdata_notify_fd_,
        &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*rdata_notify_fd_));

    socklen = sizeof (*pending_notify_fd_);
    rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_PENDING_SOCK,
        pending_notify_fd_, &socklen);
    zmq_assert (rc);
    zmq_assert (socklen == sizeof (*pending_notify_fd_));
}

//  Send one APDU, transmit window owned memory.
//  data_len_ must be less than one TPDU.
size_t zmq::pgm_socket_t::send (unsigned char *data_, size_t data_len_)
{
    size_t nbytes = 0;

    const int status = pgm_send (sock, data_, data_len_, &nbytes);

    //  We have to write all data as one packet.
    if (nbytes > 0) {
        zmq_assert (status == PGM_IO_STATUS_NORMAL);
        zmq_assert (nbytes == data_len_);
    }
    else {
        zmq_assert (status == PGM_IO_STATUS_RATE_LIMITED ||
            status == PGM_IO_STATUS_WOULD_BLOCK);

        if (status == PGM_IO_STATUS_RATE_LIMITED)
            errno = ENOMEM;
        else
            errno = EBUSY;
    }

    //  Save return value.
    last_tx_status = status;

    return nbytes;
}

long zmq::pgm_socket_t::get_rx_timeout ()
{
    if (last_rx_status != PGM_IO_STATUS_RATE_LIMITED &&
          last_rx_status != PGM_IO_STATUS_TIMER_PENDING)
        return -1;

    struct timeval tv;
    socklen_t optlen = sizeof (tv);
    const bool rc = pgm_getsockopt (sock, IPPROTO_PGM,
        last_rx_status == PGM_IO_STATUS_RATE_LIMITED ? PGM_RATE_REMAIN :
        PGM_TIME_REMAIN, &tv, &optlen);
    zmq_assert (rc);

    const long timeout = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);

    return timeout;
}

long zmq::pgm_socket_t::get_tx_timeout ()
{
    if (last_tx_status != PGM_IO_STATUS_RATE_LIMITED)
        return -1;

    struct timeval tv;
    socklen_t optlen = sizeof (tv);
    const bool rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_RATE_REMAIN, &tv,
        &optlen);
    zmq_assert (rc);

    const long timeout = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);

    return timeout;
}

//  Return max TSDU size without fragmentation from current PGM transport.
size_t zmq::pgm_socket_t::get_max_tsdu_size ()
{
    int max_tsdu = 0;
    socklen_t optlen = sizeof (max_tsdu);

    bool rc = pgm_getsockopt (sock, IPPROTO_PGM, PGM_MSS, &max_tsdu, &optlen);
    zmq_assert (rc);
    zmq_assert (optlen == sizeof (max_tsdu));
    return (size_t) max_tsdu;
}

//  pgm_recvmsgv is called to fill the pgm_msgv array up to  pgm_msgv_len.
//  In subsequent calls data from pgm_msgv structure are returned.
ssize_t zmq::pgm_socket_t::receive (void **raw_data_, const pgm_tsi_t **tsi_)
{
    size_t raw_data_len = 0;

    //  We just sent all data from pgm_transport_recvmsgv up
    //  and have to return 0 that another engine in this thread is scheduled.
    if (nbytes_rec == nbytes_processed && nbytes_rec > 0) {

        //  Reset all the counters.
        nbytes_rec = 0;
        nbytes_processed = 0;
        pgm_msgv_processed = 0;
        errno = EAGAIN;
        return 0;
    }

    //  If we have are going first time or if we have processed all pgm_msgv_t
    //  structure previously read from the pgm socket.
    if (nbytes_rec == nbytes_processed) {

        //  Check program flow.
        zmq_assert (pgm_msgv_processed == 0);
        zmq_assert (nbytes_processed == 0);
        zmq_assert (nbytes_rec == 0);

        //  Receive a vector of Application Protocol Domain Unit's (APDUs)
        //  from the transport.
        pgm_error_t *pgm_error = NULL;

        const int status = pgm_recvmsgv (sock, pgm_msgv,
            pgm_msgv_len, MSG_ERRQUEUE, &nbytes_rec, &pgm_error);

        //  Invalid parameters.
        zmq_assert (status != PGM_IO_STATUS_ERROR);

        last_rx_status = status;

        //  In a case when no ODATA/RDATA fired POLLIN event (SPM...)
        //  pgm_recvmsg returns PGM_IO_STATUS_TIMER_PENDING.
        if (status == PGM_IO_STATUS_TIMER_PENDING) {

            zmq_assert (nbytes_rec == 0);

            //  In case if no RDATA/ODATA caused POLLIN 0 is
            //  returned.
            nbytes_rec = 0;
            errno = EBUSY;
            return 0;
        }

        //  Send SPMR, NAK, ACK is rate limited.
        if (status == PGM_IO_STATUS_RATE_LIMITED) {

            zmq_assert (nbytes_rec == 0);

            //  In case if no RDATA/ODATA caused POLLIN 0 is returned.
            nbytes_rec = 0;
            errno = ENOMEM;
            return 0;
        }

        //  No peers and hence no incoming packets.
        if (status == PGM_IO_STATUS_WOULD_BLOCK) {

            zmq_assert (nbytes_rec == 0);

            //  In case if no RDATA/ODATA caused POLLIN 0 is returned.
            nbytes_rec = 0;
            errno = EAGAIN;
            return 0;
        }

        //  Data loss.
        if (status == PGM_IO_STATUS_RESET) {

            struct pgm_sk_buff_t* skb = pgm_msgv [0].msgv_skb [0];

            //  Save lost data TSI.
            *tsi_ = &skb->tsi;
            nbytes_rec = 0;

            //  In case of dala loss -1 is returned.
            errno = EINVAL;
            pgm_free_skb (skb);
            return -1;
        }

        zmq_assert (status == PGM_IO_STATUS_NORMAL);
    }
    else
    {
        zmq_assert (pgm_msgv_processed <= pgm_msgv_len);
    }

    // Zero byte payloads are valid in PGM, but not 0MQ protocol.
    zmq_assert (nbytes_rec > 0);

    // Only one APDU per pgm_msgv_t structure is allowed.
    zmq_assert (pgm_msgv [pgm_msgv_processed].msgv_len == 1);

    struct pgm_sk_buff_t* skb =
        pgm_msgv [pgm_msgv_processed].msgv_skb [0];

    //  Take pointers from pgm_msgv_t structure.
    *raw_data_ = skb->data;
    raw_data_len = skb->len;

    //  Save current TSI.
    *tsi_ = &skb->tsi;

    //  Move the the next pgm_msgv_t structure.
    pgm_msgv_processed++;
    zmq_assert (pgm_msgv_processed <= pgm_msgv_len);
    nbytes_processed +=raw_data_len;

    return raw_data_len;
}

void zmq::pgm_socket_t::process_upstream ()
{
    pgm_msgv_t dummy_msg;

    size_t dummy_bytes = 0;
    pgm_error_t *pgm_error = NULL;

    const int status = pgm_recvmsgv (sock, &dummy_msg,
        1, MSG_ERRQUEUE, &dummy_bytes, &pgm_error);

    //  Invalid parameters.
    zmq_assert (status != PGM_IO_STATUS_ERROR);

    //  No data should be returned.
    zmq_assert (dummy_bytes == 0 && (status == PGM_IO_STATUS_TIMER_PENDING ||
        status == PGM_IO_STATUS_RATE_LIMITED ||
        status == PGM_IO_STATUS_WOULD_BLOCK));

    last_rx_status = status;

    if (status == PGM_IO_STATUS_TIMER_PENDING)
        errno = EBUSY;
    else
    if (status == PGM_IO_STATUS_RATE_LIMITED)
        errno = ENOMEM;
    else
        errno = EAGAIN;
}

int zmq::pgm_socket_t::compute_sqns (int tpdu_)
{
    //  Convert rate into B/ms.
    uint64_t rate = uint64_t (options.rate) / 8;

    //  Compute the size of the buffer in bytes.
    uint64_t size = uint64_t (options.recovery_ivl) * rate;

    //  Translate the size into number of packets.
    uint64_t sqns = size / tpdu_;

    //  Buffer should be able to hold at least one packet.
    if (sqns == 0)
        sqns = 1;

    return (int) sqns;
}

#endif