pipe.cpp 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
/*
    Copyright (c) 2007-2016 Contributors as noted in the AUTHORS file

    This file is part of libzmq, the ZeroMQ core engine in C++.

    libzmq is free software; you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    As a special exception, the Contributors give you permission to link
    this library with independent modules to produce an executable,
    regardless of the license terms of these independent modules, and to
    copy and distribute the resulting executable under terms of your choice,
    provided that you also meet, for each linked independent module, the
    terms and conditions of the license of that module. An independent
    module is a module which is not derived from or based on this library.
    If you modify this library, you must extend this exception to your
    version of the library.

    libzmq is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
    License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "precompiled.hpp"
#include <new>
#include <stddef.h>

#include "macros.hpp"
#include "pipe.hpp"
#include "err.hpp"

#include "ypipe.hpp"
#include "ypipe_conflate.hpp"

int zmq::pipepair (class object_t *parents_[2],
                   class pipe_t *pipes_[2],
                   int hwms_[2],
                   bool conflate_[2])
{
    //   Creates two pipe objects. These objects are connected by two ypipes,
    //   each to pass messages in one direction.

    typedef ypipe_t<msg_t, message_pipe_granularity> upipe_normal_t;
    typedef ypipe_conflate_t<msg_t> upipe_conflate_t;

    pipe_t::upipe_t *upipe1;
    if (conflate_[0])
        upipe1 = new (std::nothrow) upipe_conflate_t ();
    else
        upipe1 = new (std::nothrow) upipe_normal_t ();
    alloc_assert (upipe1);

    pipe_t::upipe_t *upipe2;
    if (conflate_[1])
        upipe2 = new (std::nothrow) upipe_conflate_t ();
    else
        upipe2 = new (std::nothrow) upipe_normal_t ();
    alloc_assert (upipe2);

    pipes_[0] = new (std::nothrow)
      pipe_t (parents_[0], upipe1, upipe2, hwms_[1], hwms_[0], conflate_[0]);
    alloc_assert (pipes_[0]);
    pipes_[1] = new (std::nothrow)
      pipe_t (parents_[1], upipe2, upipe1, hwms_[0], hwms_[1], conflate_[1]);
    alloc_assert (pipes_[1]);

    pipes_[0]->set_peer (pipes_[1]);
    pipes_[1]->set_peer (pipes_[0]);

    return 0;
}

void zmq::send_routing_id (pipe_t *pipe_, const options_t &options_)
{
    zmq::msg_t id;
    const int rc = id.init_size (options_.routing_id_size);
    errno_assert (rc == 0);
    memcpy (id.data (), options_.routing_id, options_.routing_id_size);
    id.set_flags (zmq::msg_t::routing_id);
    const bool written = pipe_->write (&id);
    zmq_assert (written);
    pipe_->flush ();
}

zmq::pipe_t::pipe_t (object_t *parent_,
                     upipe_t *inpipe_,
                     upipe_t *outpipe_,
                     int inhwm_,
                     int outhwm_,
                     bool conflate_) :
    object_t (parent_),
    _in_pipe (inpipe_),
    _out_pipe (outpipe_),
    _in_active (true),
    _out_active (true),
    _hwm (outhwm_),
    _lwm (compute_lwm (inhwm_)),
    _in_hwm_boost (-1),
    _out_hwm_boost (-1),
    _msgs_read (0),
    _msgs_written (0),
    _peers_msgs_read (0),
    _peer (NULL),
    _sink (NULL),
    _state (active),
    _delay (true),
    _server_socket_routing_id (0),
    _conflate (conflate_)
{
}

zmq::pipe_t::~pipe_t ()
{
}

void zmq::pipe_t::set_peer (pipe_t *peer_)
{
    //  Peer can be set once only.
    zmq_assert (!_peer);
    _peer = peer_;
}

void zmq::pipe_t::set_event_sink (i_pipe_events *sink_)
{
    // Sink can be set once only.
    zmq_assert (!_sink);
    _sink = sink_;
}

void zmq::pipe_t::set_server_socket_routing_id (
  uint32_t server_socket_routing_id_)
{
    _server_socket_routing_id = server_socket_routing_id_;
}

uint32_t zmq::pipe_t::get_server_socket_routing_id () const
{
    return _server_socket_routing_id;
}

void zmq::pipe_t::set_router_socket_routing_id (
  const blob_t &router_socket_routing_id_)
{
    _router_socket_routing_id.set_deep_copy (router_socket_routing_id_);
}

const zmq::blob_t &zmq::pipe_t::get_routing_id () const
{
    return _router_socket_routing_id;
}

bool zmq::pipe_t::check_read ()
{
    if (unlikely (!_in_active))
        return false;
    if (unlikely (_state != active && _state != waiting_for_delimiter))
        return false;

    //  Check if there's an item in the pipe.
    if (!_in_pipe->check_read ()) {
        _in_active = false;
        return false;
    }

    //  If the next item in the pipe is message delimiter,
    //  initiate termination process.
    if (_in_pipe->probe (is_delimiter)) {
        msg_t msg;
        const bool ok = _in_pipe->read (&msg);
        zmq_assert (ok);
        process_delimiter ();
        return false;
    }

    return true;
}

bool zmq::pipe_t::read (msg_t *msg_)
{
    if (unlikely (!_in_active))
        return false;
    if (unlikely (_state != active && _state != waiting_for_delimiter))
        return false;

    for (bool payload_read = false; !payload_read;) {
        if (!_in_pipe->read (msg_)) {
            _in_active = false;
            return false;
        }

        //  If this is a credential, ignore it and receive next message.
        if (unlikely (msg_->is_credential ())) {
            const int rc = msg_->close ();
            zmq_assert (rc == 0);
        } else
            payload_read = true;
    }

    //  If delimiter was read, start termination process of the pipe.
    if (msg_->is_delimiter ()) {
        process_delimiter ();
        return false;
    }

    if (!(msg_->flags () & msg_t::more) && !msg_->is_routing_id ())
        _msgs_read++;

    if (_lwm > 0 && _msgs_read % _lwm == 0)
        send_activate_write (_peer, _msgs_read);

    return true;
}

bool zmq::pipe_t::check_write ()
{
    if (unlikely (!_out_active || _state != active))
        return false;

    const bool full = !check_hwm ();

    if (unlikely (full)) {
        _out_active = false;
        return false;
    }

    return true;
}

bool zmq::pipe_t::write (msg_t *msg_)
{
    if (unlikely (!check_write ()))
        return false;

    const bool more = (msg_->flags () & msg_t::more) != 0;
    const bool is_routing_id = msg_->is_routing_id ();
    _out_pipe->write (*msg_, more);
    if (!more && !is_routing_id)
        _msgs_written++;

    return true;
}

void zmq::pipe_t::rollback () const
{
    //  Remove incomplete message from the outbound pipe.
    msg_t msg;
    if (_out_pipe) {
        while (_out_pipe->unwrite (&msg)) {
            zmq_assert (msg.flags () & msg_t::more);
            const int rc = msg.close ();
            errno_assert (rc == 0);
        }
    }
}

void zmq::pipe_t::flush ()
{
    //  The peer does not exist anymore at this point.
    if (_state == term_ack_sent)
        return;

    if (_out_pipe && !_out_pipe->flush ())
        send_activate_read (_peer);
}

void zmq::pipe_t::process_activate_read ()
{
    if (!_in_active && (_state == active || _state == waiting_for_delimiter)) {
        _in_active = true;
        _sink->read_activated (this);
    }
}

void zmq::pipe_t::process_activate_write (uint64_t msgs_read_)
{
    //  Remember the peer's message sequence number.
    _peers_msgs_read = msgs_read_;

    if (!_out_active && _state == active) {
        _out_active = true;
        _sink->write_activated (this);
    }
}

void zmq::pipe_t::process_hiccup (void *pipe_)
{
    //  Destroy old outpipe. Note that the read end of the pipe was already
    //  migrated to this thread.
    zmq_assert (_out_pipe);
    _out_pipe->flush ();
    msg_t msg;
    while (_out_pipe->read (&msg)) {
        if (!(msg.flags () & msg_t::more))
            _msgs_written--;
        const int rc = msg.close ();
        errno_assert (rc == 0);
    }
    LIBZMQ_DELETE (_out_pipe);

    //  Plug in the new outpipe.
    zmq_assert (pipe_);
    _out_pipe = static_cast<upipe_t *> (pipe_);
    _out_active = true;

    //  If appropriate, notify the user about the hiccup.
    if (_state == active)
        _sink->hiccuped (this);
}

void zmq::pipe_t::process_pipe_term ()
{
    zmq_assert (_state == active || _state == delimiter_received
                || _state == term_req_sent1);

    //  This is the simple case of peer-induced termination. If there are no
    //  more pending messages to read, or if the pipe was configured to drop
    //  pending messages, we can move directly to the term_ack_sent state.
    //  Otherwise we'll hang up in waiting_for_delimiter state till all
    //  pending messages are read.
    if (_state == active) {
        if (_delay)
            _state = waiting_for_delimiter;
        else {
            _state = term_ack_sent;
            _out_pipe = NULL;
            send_pipe_term_ack (_peer);
        }
    }

    //  Delimiter happened to arrive before the term command. Now we have the
    //  term command as well, so we can move straight to term_ack_sent state.
    else if (_state == delimiter_received) {
        _state = term_ack_sent;
        _out_pipe = NULL;
        send_pipe_term_ack (_peer);
    }

    //  This is the case where both ends of the pipe are closed in parallel.
    //  We simply reply to the request by ack and continue waiting for our
    //  own ack.
    else if (_state == term_req_sent1) {
        _state = term_req_sent2;
        _out_pipe = NULL;
        send_pipe_term_ack (_peer);
    }
}

void zmq::pipe_t::process_pipe_term_ack ()
{
    //  Notify the user that all the references to the pipe should be dropped.
    zmq_assert (_sink);
    _sink->pipe_terminated (this);

    //  In term_ack_sent and term_req_sent2 states there's nothing to do.
    //  Simply deallocate the pipe. In term_req_sent1 state we have to ack
    //  the peer before deallocating this side of the pipe.
    //  All the other states are invalid.
    if (_state == term_req_sent1) {
        _out_pipe = NULL;
        send_pipe_term_ack (_peer);
    } else
        zmq_assert (_state == term_ack_sent || _state == term_req_sent2);

    //  We'll deallocate the inbound pipe, the peer will deallocate the outbound
    //  pipe (which is an inbound pipe from its point of view).
    //  First, delete all the unread messages in the pipe. We have to do it by
    //  hand because msg_t doesn't have automatic destructor. Then deallocate
    //  the ypipe itself.

    if (!_conflate) {
        msg_t msg;
        while (_in_pipe->read (&msg)) {
            const int rc = msg.close ();
            errno_assert (rc == 0);
        }
    }

    LIBZMQ_DELETE (_in_pipe);

    //  Deallocate the pipe object
    delete this;
}

void zmq::pipe_t::process_pipe_hwm (int inhwm_, int outhwm_)
{
    set_hwms (inhwm_, outhwm_);
}

void zmq::pipe_t::set_nodelay ()
{
    this->_delay = false;
}

void zmq::pipe_t::terminate (bool delay_)
{
    //  Overload the value specified at pipe creation.
    _delay = delay_;

    //  If terminate was already called, we can ignore the duplicate invocation.
    if (_state == term_req_sent1 || _state == term_req_sent2) {
        return;
    }
    //  If the pipe is in the final phase of async termination, it's going to
    //  closed anyway. No need to do anything special here.
    if (_state == term_ack_sent) {
        return;
    }
    //  The simple sync termination case. Ask the peer to terminate and wait
    //  for the ack.
    if (_state == active) {
        send_pipe_term (_peer);
        _state = term_req_sent1;
    }
    //  There are still pending messages available, but the user calls
    //  'terminate'. We can act as if all the pending messages were read.
    else if (_state == waiting_for_delimiter && !_delay) {
        //  Drop any unfinished outbound messages.
        rollback ();
        _out_pipe = NULL;
        send_pipe_term_ack (_peer);
        _state = term_ack_sent;
    }
    //  If there are pending messages still available, do nothing.
    else if (_state == waiting_for_delimiter) {
    }
    //  We've already got delimiter, but not term command yet. We can ignore
    //  the delimiter and ack synchronously terminate as if we were in
    //  active state.
    else if (_state == delimiter_received) {
        send_pipe_term (_peer);
        _state = term_req_sent1;
    }
    //  There are no other states.
    else {
        zmq_assert (false);
    }

    //  Stop outbound flow of messages.
    _out_active = false;

    if (_out_pipe) {
        //  Drop any unfinished outbound messages.
        rollback ();

        //  Write the delimiter into the pipe. Note that watermarks are not
        //  checked; thus the delimiter can be written even when the pipe is full.
        msg_t msg;
        msg.init_delimiter ();
        _out_pipe->write (msg, false);
        flush ();
    }
}

bool zmq::pipe_t::is_delimiter (const msg_t &msg_)
{
    return msg_.is_delimiter ();
}

int zmq::pipe_t::compute_lwm (int hwm_)
{
    //  Compute the low water mark. Following point should be taken
    //  into consideration:
    //
    //  1. LWM has to be less than HWM.
    //  2. LWM cannot be set to very low value (such as zero) as after filling
    //     the queue it would start to refill only after all the messages are
    //     read from it and thus unnecessarily hold the progress back.
    //  3. LWM cannot be set to very high value (such as HWM-1) as it would
    //     result in lock-step filling of the queue - if a single message is
    //     read from a full queue, writer thread is resumed to write exactly one
    //     message to the queue and go back to sleep immediately. This would
    //     result in low performance.
    //
    //  Given the 3. it would be good to keep HWM and LWM as far apart as
    //  possible to reduce the thread switching overhead to almost zero.
    //  Let's make LWM 1/2 of HWM.
    const int result = (hwm_ + 1) / 2;

    return result;
}

void zmq::pipe_t::process_delimiter ()
{
    zmq_assert (_state == active || _state == waiting_for_delimiter);

    if (_state == active)
        _state = delimiter_received;
    else {
        _out_pipe = NULL;
        send_pipe_term_ack (_peer);
        _state = term_ack_sent;
    }
}

void zmq::pipe_t::hiccup ()
{
    //  If termination is already under way do nothing.
    if (_state != active)
        return;

    //  We'll drop the pointer to the inpipe. From now on, the peer is
    //  responsible for deallocating it.

    //  Create new inpipe.
    _in_pipe =
      _conflate
        ? static_cast<upipe_t *> (new (std::nothrow) ypipe_conflate_t<msg_t> ())
        : new (std::nothrow) ypipe_t<msg_t, message_pipe_granularity> ();

    alloc_assert (_in_pipe);
    _in_active = true;

    //  Notify the peer about the hiccup.
    send_hiccup (_peer, _in_pipe);
}

void zmq::pipe_t::set_hwms (int inhwm_, int outhwm_)
{
    int in = inhwm_ + std::max (_in_hwm_boost, 0);
    int out = outhwm_ + std::max (_out_hwm_boost, 0);

    // if either send or recv side has hwm <= 0 it means infinite so we should set hwms infinite
    if (inhwm_ <= 0 || _in_hwm_boost == 0)
        in = 0;

    if (outhwm_ <= 0 || _out_hwm_boost == 0)
        out = 0;

    _lwm = compute_lwm (in);
    _hwm = out;
}

void zmq::pipe_t::set_hwms_boost (int inhwmboost_, int outhwmboost_)
{
    _in_hwm_boost = inhwmboost_;
    _out_hwm_boost = outhwmboost_;
}

bool zmq::pipe_t::check_hwm () const
{
    const bool full =
      _hwm > 0 && _msgs_written - _peers_msgs_read >= uint64_t (_hwm);
    return !full;
}

void zmq::pipe_t::send_hwms_to_peer (int inhwm_, int outhwm_)
{
    send_pipe_hwm (_peer, inhwm_, outhwm_);
}

void zmq::pipe_t::set_endpoint_pair (zmq::endpoint_uri_pair_t endpoint_pair_)
{
    _endpoint_pair = ZMQ_MOVE (endpoint_pair_);
}

const zmq::endpoint_uri_pair_t &zmq::pipe_t::get_endpoint_pair () const
{
    return _endpoint_pair;
}

void zmq::pipe_t::send_stats_to_peer (own_t *socket_base_)
{
    endpoint_uri_pair_t *ep =
      new (std::nothrow) endpoint_uri_pair_t (_endpoint_pair);
    send_pipe_peer_stats (_peer, _msgs_written - _peers_msgs_read, socket_base_,
                          ep);
}

void zmq::pipe_t::process_pipe_peer_stats (uint64_t queue_count_,
                                           own_t *socket_base_,
                                           endpoint_uri_pair_t *endpoint_pair_)
{
    send_pipe_stats_publish (socket_base_, queue_count_,
                             _msgs_written - _peers_msgs_read, endpoint_pair_);
}