stream_engine.cpp 10 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
    Copyright (c) 2007-2011 iMatix Corporation
    Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file

    This file is part of 0MQ.

    0MQ is free software; you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    0MQ is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "platform.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#else
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#endif

#include <string.h>
#include <new>

37
#include "stream_engine.hpp"
38
#include "io_thread.hpp"
39
#include "session_base.hpp"
40 41
#include "config.hpp"
#include "err.hpp"
42
#include "ip.hpp"
43

44
zmq::stream_engine_t::stream_engine_t (fd_t fd_, const options_t &options_) :
45
    s (fd_),
46 47 48 49 50 51 52 53 54 55 56
    inpos (NULL),
    insize (0),
    decoder (in_batch_size, options_.maxmsgsize),
    outpos (NULL),
    outsize (0),
    encoder (out_batch_size),
    session (NULL),
    leftover_session (NULL),
    options (options_),
    plugged (false)
{
57 58
    //  Get the socket into non-blocking mode.
    unblock_socket (s);
59 60 61

    //  Set the socket buffer limits for the underlying socket.
    if (options.sndbuf) {
62
        int rc = setsockopt (s, SOL_SOCKET, SO_SNDBUF,
63 64 65 66 67 68 69 70
            (char*) &options.sndbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
		wsa_assert (rc != SOCKET_ERROR);
#else
        errno_assert (rc == 0);
#endif
    }
    if (options.rcvbuf) {
71
        int rc = setsockopt (s, SOL_SOCKET, SO_RCVBUF,
72 73 74 75 76 77 78 79 80 81 82 83
            (char*) &options.rcvbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
		wsa_assert (rc != SOCKET_ERROR);
#else
        errno_assert (rc == 0);
#endif
    }

#if defined ZMQ_HAVE_OSX || defined ZMQ_HAVE_FREEBSD
    //  Make sure that SIGPIPE signal is not generated when writing to a
    //  connection that was already closed by the peer.
    int set = 1;
84
    int rc = setsockopt (s, SOL_SOCKET, SO_NOSIGPIPE, &set, sizeof (int));
85 86
    errno_assert (rc == 0);
#endif
87 88
}

89
zmq::stream_engine_t::~stream_engine_t ()
90 91 92
{
    zmq_assert (!plugged);

93 94 95 96 97 98 99 100 101 102
    if (s != retired_fd) {
#ifdef ZMQ_HAVE_WINDOWS
		int rc = closesocket (s);
		wsa_assert (rc != SOCKET_ERROR);
#else
		int rc = close (s);
        errno_assert (rc == 0);
#endif
		s = retired_fd;
    }
103 104
}

105 106
void zmq::stream_engine_t::plug (io_thread_t *io_thread_,
    session_base_t *session_)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
{
    zmq_assert (!plugged);
    plugged = true;
    leftover_session = NULL;

    //  Connect to session object.
    zmq_assert (!session);
    zmq_assert (session_);
    encoder.set_session (session_);
    decoder.set_session (session_);
    session = session_;

    //  Connect to I/O threads poller object.
    io_object_t::plug (io_thread_);
    handle = add_fd (s);
    set_pollin (handle);
    set_pollout (handle);

    //  Flush all the data that may have been already received downstream.
    in_event ();
}

129
void zmq::stream_engine_t::unplug ()
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
{
    zmq_assert (plugged);
    plugged = false;

    //  Cancel all fd subscriptions.
    rm_fd (handle);

    //  Disconnect from I/O threads poller object.
    io_object_t::unplug ();

    //  Disconnect from session object.
    encoder.set_session (NULL);
    decoder.set_session (NULL);
    leftover_session = session;
    session = NULL;
}

147
void zmq::stream_engine_t::terminate ()
148 149 150 151 152
{
    unplug ();
    delete this;
}

153
void zmq::stream_engine_t::in_event ()
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
    bool disconnection = false;

    //  If there's no data to process in the buffer...
    if (!insize) {

        //  Retrieve the buffer and read as much data as possible.
        //  Note that buffer can be arbitrarily large. However, we assume
        //  the underlying TCP layer has fixed buffer size and thus the
        //  number of bytes read will be always limited.
        decoder.get_buffer (&inpos, &insize);
        insize = read (inpos, insize);

        //  Check whether the peer has closed the connection.
        if (insize == (size_t) -1) {
            insize = 0;
            disconnection = true;
        }
    }

    //  Push the data to the decoder.
    size_t processed = decoder.process_buffer (inpos, insize);

    if (unlikely (processed == (size_t) -1)) {
        disconnection = true;
    }
    else {

        //  Stop polling for input if we got stuck.
        if (processed < insize) {

            //  This may happen if queue limits are in effect.
            if (plugged)
                reset_pollin (handle);
        }

        //  Adjust the buffer.
        inpos += processed;
        insize -= processed;
    }

    //  Flush all messages the decoder may have produced.
    //  If IO handler has unplugged engine, flush transient IO handler.
    if (unlikely (!plugged)) {
        zmq_assert (leftover_session);
        leftover_session->flush ();
    } else {
        session->flush ();
    }

    if (session && disconnection)
        error ();
}

208
void zmq::stream_engine_t::out_event ()
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
{
    //  If write buffer is empty, try to read new data from the encoder.
    if (!outsize) {

        outpos = NULL;
        encoder.get_data (&outpos, &outsize);

        //  If IO handler has unplugged engine, flush transient IO handler.
        if (unlikely (!plugged)) {
            zmq_assert (leftover_session);
            leftover_session->flush ();
            return;
        }

        //  If there is no data to send, stop polling for output.
        if (outsize == 0) {
            reset_pollout (handle);
            return;
        }
    }

    //  If there are any data to write in write buffer, write as much as
    //  possible to the socket. Note that amount of data to write can be
    //  arbitratily large. However, we assume that underlying TCP layer has
    //  limited transmission buffer and thus the actual number of bytes
    //  written should be reasonably modest.
    int nbytes = write (outpos, outsize);

    //  Handle problems with the connection.
    if (nbytes == -1) {
        error ();
        return;
    }

    outpos += nbytes;
    outsize -= nbytes;
}

247
void zmq::stream_engine_t::activate_out ()
248 249 250 251 252 253 254 255 256 257
{
    set_pollout (handle);

    //  Speculative write: The assumption is that at the moment new message
    //  was sent by the user the socket is probably available for writing.
    //  Thus we try to write the data to socket avoiding polling for POLLOUT.
    //  Consequently, the latency should be better in request/reply scenarios.
    out_event ();
}

258
void zmq::stream_engine_t::activate_in ()
259 260 261 262 263 264 265
{
    set_pollin (handle);

    //  Speculative read.
    in_event ();
}

266
void zmq::stream_engine_t::error ()
267 268 269 270 271 272 273
{
    zmq_assert (session);
    session->detach ();
    unplug ();
    delete this;
}

274
int zmq::stream_engine_t::write (const void *data_, size_t size_)
275
{
276 277
#ifdef ZMQ_HAVE_WINDOWS

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    int nbytes = send (s, (char*) data_, (int) size_, 0);

    //  If not a single byte can be written to the socket in non-blocking mode
    //  we'll get an error (this may happen during the speculative write).
    if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
        return 0;
		
    //  Signalise peer failure.
    if (nbytes == -1 && (
          WSAGetLastError () == WSAENETDOWN ||
          WSAGetLastError () == WSAENETRESET ||
          WSAGetLastError () == WSAEHOSTUNREACH ||
          WSAGetLastError () == WSAECONNABORTED ||
          WSAGetLastError () == WSAETIMEDOUT ||
          WSAGetLastError () == WSAECONNRESET))
        return -1;

    wsa_assert (nbytes != SOCKET_ERROR);
296 297 298
    return (size_t) nbytes;

#else
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313
    ssize_t nbytes = send (s, data_, size_, 0);

    //  Several errors are OK. When speculative write is being done we may not
    //  be able to write a single byte from the socket. Also, SIGSTOP issued
    //  by a debugging tool can result in EINTR error.
    if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
          errno == EINTR))
        return 0;

    //  Signalise peer failure.
    if (nbytes == -1 && (errno == ECONNRESET || errno == EPIPE))
        return -1;

    errno_assert (nbytes != -1);
314
    return (size_t) nbytes;
315 316

#endif
317 318
}

319
int zmq::stream_engine_t::read (void *data_, size_t size_)
320
{
321 322
#ifdef ZMQ_HAVE_WINDOWS

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    int nbytes = recv (s, (char*) data_, (int) size_, 0);

    //  If not a single byte can be read from the socket in non-blocking mode
    //  we'll get an error (this may happen during the speculative read).
    if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
        return 0;

    //  Connection failure.
    if (nbytes == -1 && (
          WSAGetLastError () == WSAENETDOWN ||
          WSAGetLastError () == WSAENETRESET ||
          WSAGetLastError () == WSAECONNABORTED ||
          WSAGetLastError () == WSAETIMEDOUT ||
          WSAGetLastError () == WSAECONNRESET ||
          WSAGetLastError () == WSAECONNREFUSED ||
          WSAGetLastError () == WSAENOTCONN))
        return -1;

    wsa_assert (nbytes != SOCKET_ERROR);

    //  Orderly shutdown by the other peer.
    if (nbytes == 0)
        return -1; 

    return (size_t) nbytes;

#else

    ssize_t nbytes = recv (s, data_, size_, 0);

    //  Several errors are OK. When speculative read is being done we may not
354
    //  be able to read a single byte from the socket. Also, SIGSTOP issued
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    //  by a debugging tool can result in EINTR error.
    if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
          errno == EINTR))
        return 0;

    //  Signalise peer failure.
    if (nbytes == -1 && (errno == ECONNRESET || errno == ECONNREFUSED ||
          errno == ETIMEDOUT || errno == EHOSTUNREACH))
        return -1;

    errno_assert (nbytes != -1);

    //  Orderly shutdown by the peer.
    if (nbytes == 0)
        return -1;

    return (size_t) nbytes;

#endif
374 375
}