radix_tree.cpp 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*
    Copyright (c) 2018 Contributors as noted in the AUTHORS file

    This file is part of libzmq, the ZeroMQ core engine in C++.

    libzmq is free software; you can redistribute it and/or modify it under
    the terms of the GNU Lesser General Public License (LGPL) as published
    by the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    As a special exception, the Contributors give you permission to link
    this library with independent modules to produce an executable,
    regardless of the license terms of these independent modules, and to
    copy and distribute the resulting executable under terms of your choice,
    provided that you also meet, for each linked independent module, the
    terms and conditions of the license of that module. An independent
    module is a module which is not derived from or based on this library.
    If you modify this library, you must extend this exception to your
    version of the library.

    libzmq is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
    License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "precompiled.hpp"
#include "macros.hpp"
#include "err.hpp"
#include "radix_tree.hpp"

#include <stdlib.h>
#include <string.h>

node::node (unsigned char *data) : data_ (data)
{
}

uint32_t node::refcount ()
{
    uint32_t u32;
    memcpy (&u32, data_, sizeof (u32));
    return u32;
}

void node::set_refcount (uint32_t value)
{
    memcpy (data_, &value, sizeof (value));
}

uint32_t node::prefix_length ()
{
    uint32_t u32;
    memcpy (&u32, data_ + sizeof (uint32_t), sizeof (u32));
    return u32;
}

void node::set_prefix_length (uint32_t value)
{
    memcpy (data_ + sizeof (value), &value, sizeof (value));
}

uint32_t node::edgecount ()
{
    uint32_t u32;
    memcpy (&u32, data_ + 2 * sizeof (uint32_t), sizeof (u32));
    return u32;
}

void node::set_edgecount (uint32_t value)
{
    memcpy (data_ + 2 * sizeof (value), &value, sizeof (value));
}

unsigned char *node::prefix ()
{
    return data_ + 3 * sizeof (uint32_t);
}

83
void node::set_prefix (const unsigned char *bytes)
84 85 86 87 88 89 90 91 92
{
    memcpy (prefix (), bytes, prefix_length ());
}

unsigned char *node::first_bytes ()
{
    return prefix () + prefix_length ();
}

93
void node::set_first_bytes (const unsigned char *bytes)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
{
    memcpy (first_bytes (), bytes, edgecount ());
}

unsigned char node::first_byte_at (size_t i)
{
    zmq_assert (i < edgecount ());
    return first_bytes ()[i];
}

void node::set_first_byte_at (size_t i, unsigned char byte)
{
    zmq_assert (i < edgecount ());
    first_bytes ()[i] = byte;
}

unsigned char *node::node_ptrs ()
{
    return prefix () + prefix_length () + edgecount ();
}

115
void node::set_node_ptrs (const unsigned char *ptrs)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
{
    memcpy (node_ptrs (), ptrs, edgecount () * sizeof (void *));
}

node node::node_at (size_t i)
{
    zmq_assert (i < edgecount ());

    unsigned char *data;
    memcpy (&data, node_ptrs () + i * sizeof (void *), sizeof (data));
    return node (data);
}

void node::set_node_at (size_t i, node n)
{
    zmq_assert (i < edgecount ());
    memcpy (node_ptrs () + i * sizeof (void *), &n.data_, sizeof (n.data_));
}

void node::set_edge_at (size_t i, unsigned char byte, node n)
{
    set_first_byte_at (i, byte);
    set_node_at (i, n);
}

bool node::operator== (node other) const
{
    return data_ == other.data_;
}

bool node::operator!= (node other) const
{
    return !(*this == other);
}

void node::resize (size_t prefix_length, size_t edgecount)
{
    size_t sz =
      3 * sizeof (uint32_t) + prefix_length + edgecount * (1 + sizeof (void *));
    unsigned char *new_data =
      static_cast<unsigned char *> (realloc (data_, sz));
    zmq_assert (new_data);
    data_ = new_data;
    set_prefix_length (static_cast<uint32_t> (prefix_length));
    set_edgecount (static_cast<uint32_t> (edgecount));
}

node make_node (size_t refs, size_t bytes, size_t edges)
{
    size_t size = 3 * sizeof (uint32_t) + bytes + edges * (1 + sizeof (void *));

    unsigned char *data = static_cast<unsigned char *> (malloc (size));
    zmq_assert (data);

    node n (data);
    n.set_refcount (static_cast<uint32_t> (refs));
    n.set_prefix_length (static_cast<uint32_t> (bytes));
    n.set_edgecount (static_cast<uint32_t> (edges));
    return n;
}

// ----------------------------------------------------------------------

zmq::radix_tree::radix_tree () : root_ (make_node (0, 0, 0)), size_ (0)
{
}

static void free_nodes (node n)
{
    for (size_t i = 0; i < n.edgecount (); ++i)
        free_nodes (n.node_at (i));
    free (n.data_);
}

zmq::radix_tree::~radix_tree ()
{
    free_nodes (root_);
}

match_result::match_result (size_t i,
                            size_t j,
                            size_t edge_index,
                            size_t gp_edge_index,
                            node current,
                            node parent,
                            node grandparent) :
    nkey (i),
    nprefix (j),
    edge_index (edge_index),
    gp_edge_index (gp_edge_index),
    current_node (current),
    parent_node (parent),
    grandparent_node (grandparent)
{
}

212 213 214
match_result zmq::radix_tree::match (const unsigned char *key,
                                     size_t size,
                                     bool check = false) const
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
{
    zmq_assert (key);

    size_t i = 0;           // Number of characters matched in key.
    size_t j = 0;           // Number of characters matched in current node.
    size_t edge_idx = 0;    // Index of outgoing edge from the parent node.
    size_t gp_edge_idx = 0; // Index of outgoing edge from grandparent.
    node current_node = root_;
    node parent_node = current_node;
    node grandparent_node = current_node;

    while (current_node.prefix_length () > 0 || current_node.edgecount () > 0) {
        for (j = 0; j < current_node.prefix_length () && i < size; ++j, ++i) {
            if (current_node.prefix ()[j] != key[i])
                break;
        }

        // Even if a prefix of the key matches and we're doing a
        // lookup, this means we've found a matching subscription.
        if (check && j == current_node.prefix_length ()
            && current_node.refcount () > 0) {
            i = size;
            break;
        }

        // There was a mismatch or we've matched the whole key, so
        // there's nothing more to do.
        if (j != current_node.prefix_length () || i == size)
            break;

        // We need to match the rest of the key. Check if there's an
        // outgoing edge from this node.
        node next_node = current_node;
        for (size_t k = 0; k < current_node.edgecount (); ++k) {
            if (current_node.first_byte_at (k) == key[i]) {
                gp_edge_idx = edge_idx;
                edge_idx = k;
                next_node = current_node.node_at (k);
                break;
            }
        }

        if (next_node == current_node)
            break; // No outgoing edge.
        grandparent_node = parent_node;
        parent_node = current_node;
        current_node = next_node;
    }

    return match_result (i, j, edge_idx, gp_edge_idx, current_node, parent_node,
                         grandparent_node);
}

bool zmq::radix_tree::add (const unsigned char *key, size_t size)
{
    match_result result = match (key, size);
    size_t i = result.nkey;
    size_t j = result.nprefix;
    size_t edge_idx = result.edge_index;
    node current_node = result.current_node;
    node parent_node = result.parent_node;

    if (i != size) {
        // Not all characters match, we might have to split the node.
        if (i == 0 || j == current_node.prefix_length ()) {
            // The mismatch is at one of the outgoing edges, so we
            // create an edge from the current node to a new leaf node
            // that has the rest of the key as the prefix.
            node key_node = make_node (1, size - i, 0);
            key_node.set_prefix (key + i);

            // Reallocate for one more edge.
            current_node.resize (current_node.prefix_length (),
                                 current_node.edgecount () + 1);

            // Make room for the new edge. We need to shift the chunk
            // of node pointers one byte to the right. Since resize()
            // increments the edgecount by 1, node_ptrs() tells us the
            // destination address. The chunk of node pointers starts
            // at one byte to the left of this destination.
            //
            // Since the regions can overlap, we use memmove.
            memmove (current_node.node_ptrs (), current_node.node_ptrs () - 1,
                     (current_node.edgecount () - 1) * sizeof (void *));

            // Add an edge to the new node.
            current_node.set_edge_at (current_node.edgecount () - 1, key[i],
                                      key_node);

            // We need to update all pointers to the current node
            // after the call to resize().
            if (current_node.prefix_length () == 0)
                root_.data_ = current_node.data_;
            else
                parent_node.set_node_at (edge_idx, current_node);
            ++size_;
            return true;
        }

        // There was a mismatch, so we need to split this node.
        //
        // Create two nodes that will be reachable from the parent.
        // One node will have the rest of the characters from the key,
        // and the other node will have the rest of the characters
        // from the current node's prefix.
        node key_node = make_node (1, size - i, 0);
        node split_node = make_node (current_node.refcount (),
                                     current_node.prefix_length () - j,
                                     current_node.edgecount ());

        // Copy the prefix chunks to the new nodes.
        key_node.set_prefix (key + i);
        split_node.set_prefix (current_node.prefix () + j);

        // Copy the current node's edges to the new node.
        split_node.set_first_bytes (current_node.first_bytes ());
        split_node.set_node_ptrs (current_node.node_ptrs ());

        // Resize the current node to accommodate a prefix comprising
        // the matched characters and 2 outgoing edges to the above
        // nodes. Set the refcount to 0 since this node doesn't hold a
        // key.
        current_node.resize (j, 2);
        current_node.set_refcount (0);

        // Add links to the new nodes. We don't need to copy the
        // prefix since resize() retains it in the current node.
        current_node.set_edge_at (0, key_node.prefix ()[0], key_node);
        current_node.set_edge_at (1, split_node.prefix ()[0], split_node);

        ++size_;
        parent_node.set_node_at (edge_idx, current_node);
        return true;
    }

    // All characters in the key match, but we still might need to split.
    if (j != current_node.prefix_length ()) {
        // All characters in the key match, but not all characters
        // from the current node's prefix match.

        // Create a node that contains the rest of the characters from
        // the current node's prefix and the outgoing edges from the
        // current node.
        node split_node = make_node (current_node.refcount (),
                                     current_node.prefix_length () - j,
                                     current_node.edgecount ());
        split_node.set_prefix (current_node.prefix () + j);
        split_node.set_first_bytes (current_node.first_bytes ());
        split_node.set_node_ptrs (current_node.node_ptrs ());

        // Resize the current node to hold only the matched characters
        // from its prefix and one edge to the new node.
        current_node.resize (j, 1);

        // Add an edge to the split node and set the refcount to 1
        // since this key wasn't inserted earlier. We don't need to
        // set the prefix because the first j bytes in the prefix are
        // preserved by resize().
        current_node.set_edge_at (0, split_node.prefix ()[0], split_node);
        current_node.set_refcount (1);

        ++size_;
        parent_node.set_node_at (edge_idx, current_node);
        return true;
    }

    zmq_assert (i == size);
    zmq_assert (j == current_node.prefix_length ());

    ++size_;
    current_node.set_refcount (current_node.refcount () + 1);
    return current_node.refcount () == 1;
}

bool zmq::radix_tree::rm (const unsigned char *key, size_t size)
{
    match_result result = match (key, size);
    size_t i = result.nkey;
    size_t j = result.nprefix;
    size_t edge_idx = result.edge_index;
    size_t gp_edge_idx = result.gp_edge_index;
    node current_node = result.current_node;
    node parent_node = result.parent_node;
    node grandparent_node = result.grandparent_node;

    if (i != size || j != current_node.prefix_length ()
        || current_node.refcount () == 0)
        return false;

    current_node.set_refcount (current_node.refcount () - 1);
    --size_;
    if (current_node.refcount () > 0)
        return false;

    // Don't delete the root node.
    if (current_node == root_)
        return true;

    size_t outgoing_edges = current_node.edgecount ();
    if (outgoing_edges > 1)
        // This node can't be merged with any other node, so there's
        // nothing more to do.
        return true;

    if (outgoing_edges == 1) {
        // Merge this node with the single child node.
        node child = current_node.node_at (0);

        // Make room for the child node's prefix and edges. We need to
        // keep the old prefix length since resize() will overwrite
        // it.
        uint32_t old_prefix_length = current_node.prefix_length ();
        current_node.resize (old_prefix_length + child.prefix_length (),
                             child.edgecount ());

        // Append the child node's prefix to the current node.
        memcpy (current_node.prefix () + old_prefix_length, child.prefix (),
                child.prefix_length ());

        // Copy the rest of child node's data to the current node.
        current_node.set_first_bytes (child.first_bytes ());
        current_node.set_node_ptrs (child.node_ptrs ());
        current_node.set_refcount (child.refcount ());

        free (child.data_);
        parent_node.set_node_at (edge_idx, current_node);
        return true;
    }

    if (parent_node.edgecount () == 2 && parent_node.refcount () == 0
        && parent_node != root_) {
        // Removing this node leaves the parent with one child.
        // If the parent doesn't hold a key or if it isn't the root,
        // we can merge it with its single child node.
        zmq_assert (edge_idx < 2);
        node other_child = parent_node.node_at (!edge_idx);

        // Make room for the child node's prefix and edges. We need to
        // keep the old prefix length since resize() will overwrite
        // it.
        uint32_t old_prefix_length = parent_node.prefix_length ();
        parent_node.resize (old_prefix_length + other_child.prefix_length (),
                            other_child.edgecount ());

        // Append the child node's prefix to the current node.
        memcpy (parent_node.prefix () + old_prefix_length,
                other_child.prefix (), other_child.prefix_length ());

        // Copy the rest of child node's data to the current node.
        parent_node.set_first_bytes (other_child.first_bytes ());
        parent_node.set_node_ptrs (other_child.node_ptrs ());
        parent_node.set_refcount (other_child.refcount ());

        free (current_node.data_);
        free (other_child.data_);
        grandparent_node.set_node_at (gp_edge_idx, parent_node);
        return true;
    }

    // This is a leaf node that doesn't leave its parent with one
    // outgoing edge. Remove the outgoing edge to this node from the
    // parent.
    zmq_assert (outgoing_edges == 0);

    // Move the first byte and node pointer to the back of the byte
    // and pointer chunks respectively.
    size_t last_idx = parent_node.edgecount () - 1;
    unsigned char last_byte = parent_node.first_byte_at (last_idx);
    node last_ptr = parent_node.node_at (last_idx);
    parent_node.set_edge_at (edge_idx, last_byte, last_ptr);

    // Move the chunk of pointers one byte to the left, effectively
    // deleting the last byte in the region of first bytes by
    // overwriting it.
    memmove (parent_node.node_ptrs () - 1, parent_node.node_ptrs (),
             parent_node.edgecount () * sizeof (void *));

    // Shrink the parent node to the new size, which "deletes" the
    // last pointer in the chunk of node pointers.
    parent_node.resize (parent_node.prefix_length (),
                        parent_node.edgecount () - 1);

    // Nothing points to this node now, so we can reclaim it.
    free (current_node.data_);

    if (parent_node.prefix_length () == 0)
        root_.data_ = parent_node.data_;
    else
        grandparent_node.set_node_at (gp_edge_idx, parent_node);
    return true;
}

bool zmq::radix_tree::check (const unsigned char *key, size_t size)
{
    if (root_.refcount () > 0)
        return true;

    match_result result = match (key, size, true);
    return result.nkey == size
           && result.nprefix == result.current_node.prefix_length ()
           && result.current_node.refcount () > 0;
}

static void
visit_keys (node n,
            unsigned char **buffer,
            size_t buffer_size,
            size_t maxbuffer_size,
            void (*func) (unsigned char *data, size_t size, void *arg),
            void *arg)
{
    if (buffer_size >= maxbuffer_size) {
        maxbuffer_size += 256;
        *buffer =
          static_cast<unsigned char *> (realloc (*buffer, maxbuffer_size));
        zmq_assert (*buffer);
    }

    for (size_t i = 0; i < n.prefix_length (); ++i)
        (*buffer)[buffer_size++] = n.prefix ()[i];
    if (n.refcount () > 0)
        func (*buffer, buffer_size, arg);
    for (size_t i = 0; i < n.edgecount (); ++i)
        visit_keys (n.node_at (i), buffer, buffer_size, maxbuffer_size, func,
                    arg);
    buffer_size -= n.prefix_length ();
}

void zmq::radix_tree::apply (
  void (*func) (unsigned char *data, size_t size, void *arg), void *arg)
{
    unsigned char *buffer = NULL;
    visit_keys (root_, &buffer, 0, 0, func, arg);
    free (buffer);
}

size_t zmq::radix_tree::size () const
{
    return size_;
}