/* * Copyright 2015 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdlib.h> #include "../unit_test/unit_test.h" #include "libyuv/basic_types.h" #include "libyuv/convert.h" #include "libyuv/convert_argb.h" #include "libyuv/convert_from.h" #include "libyuv/convert_from_argb.h" #include "libyuv/cpu_id.h" namespace libyuv { // TODO(fbarchard): Port high accuracy YUV to RGB to Neon. #if !defined(LIBYUV_DISABLE_NEON) && \ (defined(__aarch64__) || defined(__ARM_NEON__) || defined(LIBYUV_NEON)) #define ERROR_R 1 #define ERROR_G 1 #define ERROR_B 3 #define ERROR_FULL 6 #define ERROR_J420 5 #else #define ERROR_R 1 #define ERROR_G 1 #define ERROR_B 3 #define ERROR_FULL 5 #define ERROR_J420 3 #endif #define TESTCS(TESTNAME, YUVTOARGB, ARGBTOYUV, HS1, HS, HN, DIFF) \ TEST_F(LibYUVColorTest, TESTNAME) { \ const int kPixels = benchmark_width_ * benchmark_height_; \ const int kHalfPixels = \ ((benchmark_width_ + 1) / 2) * ((benchmark_height_ + HS1) / HS); \ align_buffer_page_end(orig_y, kPixels); \ align_buffer_page_end(orig_u, kHalfPixels); \ align_buffer_page_end(orig_v, kHalfPixels); \ align_buffer_page_end(orig_pixels, kPixels * 4); \ align_buffer_page_end(temp_y, kPixels); \ align_buffer_page_end(temp_u, kHalfPixels); \ align_buffer_page_end(temp_v, kHalfPixels); \ align_buffer_page_end(dst_pixels_opt, kPixels * 4); \ align_buffer_page_end(dst_pixels_c, kPixels * 4); \ \ MemRandomize(orig_pixels, kPixels * 4); \ MemRandomize(orig_y, kPixels); \ MemRandomize(orig_u, kHalfPixels); \ MemRandomize(orig_v, kHalfPixels); \ MemRandomize(temp_y, kPixels); \ MemRandomize(temp_u, kHalfPixels); \ MemRandomize(temp_v, kHalfPixels); \ MemRandomize(dst_pixels_opt, kPixels * 4); \ MemRandomize(dst_pixels_c, kPixels * 4); \ \ /* The test is overall for color conversion matrix being reversible, so */ \ /* this initializes the pixel with 2x2 blocks to eliminate subsampling. */ \ uint8_t* p = orig_y; \ for (int y = 0; y < benchmark_height_ - HS1; y += HS) { \ for (int x = 0; x < benchmark_width_ - 1; x += 2) { \ uint8_t r = static_cast<uint8_t>(fastrand()); \ p[0] = r; \ p[1] = r; \ p[HN] = r; \ p[HN + 1] = r; \ p += 2; \ } \ if (benchmark_width_ & 1) { \ uint8_t r = static_cast<uint8_t>(fastrand()); \ p[0] = r; \ p[HN] = r; \ p += 1; \ } \ p += HN; \ } \ if ((benchmark_height_ & 1) && HS == 2) { \ for (int x = 0; x < benchmark_width_ - 1; x += 2) { \ uint8_t r = static_cast<uint8_t>(fastrand()); \ p[0] = r; \ p[1] = r; \ p += 2; \ } \ if (benchmark_width_ & 1) { \ uint8_t r = static_cast<uint8_t>(fastrand()); \ p[0] = r; \ p += 1; \ } \ } \ /* Start with YUV converted to ARGB. */ \ YUVTOARGB(orig_y, benchmark_width_, orig_u, (benchmark_width_ + 1) / 2, \ orig_v, (benchmark_width_ + 1) / 2, orig_pixels, \ benchmark_width_ * 4, benchmark_width_, benchmark_height_); \ \ ARGBTOYUV(orig_pixels, benchmark_width_ * 4, temp_y, benchmark_width_, \ temp_u, (benchmark_width_ + 1) / 2, temp_v, \ (benchmark_width_ + 1) / 2, benchmark_width_, \ benchmark_height_); \ \ MaskCpuFlags(disable_cpu_flags_); \ YUVTOARGB(temp_y, benchmark_width_, temp_u, (benchmark_width_ + 1) / 2, \ temp_v, (benchmark_width_ + 1) / 2, dst_pixels_c, \ benchmark_width_ * 4, benchmark_width_, benchmark_height_); \ MaskCpuFlags(benchmark_cpu_info_); \ \ for (int i = 0; i < benchmark_iterations_; ++i) { \ YUVTOARGB(temp_y, benchmark_width_, temp_u, (benchmark_width_ + 1) / 2, \ temp_v, (benchmark_width_ + 1) / 2, dst_pixels_opt, \ benchmark_width_ * 4, benchmark_width_, benchmark_height_); \ } \ /* Test C and SIMD match. */ \ for (int i = 0; i < kPixels * 4; ++i) { \ EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]); \ } \ /* Test SIMD is close to original. */ \ for (int i = 0; i < kPixels * 4; ++i) { \ EXPECT_NEAR(static_cast<int>(orig_pixels[i]), \ static_cast<int>(dst_pixels_opt[i]), DIFF); \ } \ \ free_aligned_buffer_page_end(orig_pixels); \ free_aligned_buffer_page_end(orig_y); \ free_aligned_buffer_page_end(orig_u); \ free_aligned_buffer_page_end(orig_v); \ free_aligned_buffer_page_end(temp_y); \ free_aligned_buffer_page_end(temp_u); \ free_aligned_buffer_page_end(temp_v); \ free_aligned_buffer_page_end(dst_pixels_opt); \ free_aligned_buffer_page_end(dst_pixels_c); \ } TESTCS(TestI420, I420ToARGB, ARGBToI420, 1, 2, benchmark_width_, ERROR_FULL) TESTCS(TestI422, I422ToARGB, ARGBToI422, 0, 1, 0, ERROR_FULL) TESTCS(TestJ420, J420ToARGB, ARGBToJ420, 1, 2, benchmark_width_, ERROR_J420) TESTCS(TestJ422, J422ToARGB, ARGBToJ422, 0, 1, 0, ERROR_J420) static void YUVToRGB(int y, int u, int v, int* r, int* g, int* b) { const int kWidth = 16; const int kHeight = 1; const int kPixels = kWidth * kHeight; const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); SIMD_ALIGNED(uint8_t orig_y[16]); SIMD_ALIGNED(uint8_t orig_u[8]); SIMD_ALIGNED(uint8_t orig_v[8]); SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); memset(orig_y, y, kPixels); memset(orig_u, u, kHalfPixels); memset(orig_v, v, kHalfPixels); /* YUV converted to ARGB. */ I422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, orig_pixels, kWidth * 4, kWidth, kHeight); *b = orig_pixels[0]; *g = orig_pixels[1]; *r = orig_pixels[2]; } static void YUVJToRGB(int y, int u, int v, int* r, int* g, int* b) { const int kWidth = 16; const int kHeight = 1; const int kPixels = kWidth * kHeight; const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2); SIMD_ALIGNED(uint8_t orig_y[16]); SIMD_ALIGNED(uint8_t orig_u[8]); SIMD_ALIGNED(uint8_t orig_v[8]); SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); memset(orig_y, y, kPixels); memset(orig_u, u, kHalfPixels); memset(orig_v, v, kHalfPixels); /* YUV converted to ARGB. */ J422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2, orig_pixels, kWidth * 4, kWidth, kHeight); *b = orig_pixels[0]; *g = orig_pixels[1]; *r = orig_pixels[2]; } static void YToRGB(int y, int* r, int* g, int* b) { const int kWidth = 16; const int kHeight = 1; const int kPixels = kWidth * kHeight; SIMD_ALIGNED(uint8_t orig_y[16]); SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); memset(orig_y, y, kPixels); /* YUV converted to ARGB. */ I400ToARGB(orig_y, kWidth, orig_pixels, kWidth * 4, kWidth, kHeight); *b = orig_pixels[0]; *g = orig_pixels[1]; *r = orig_pixels[2]; } static void YJToRGB(int y, int* r, int* g, int* b) { const int kWidth = 16; const int kHeight = 1; const int kPixels = kWidth * kHeight; SIMD_ALIGNED(uint8_t orig_y[16]); SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]); memset(orig_y, y, kPixels); /* YUV converted to ARGB. */ J400ToARGB(orig_y, kWidth, orig_pixels, kWidth * 4, kWidth, kHeight); *b = orig_pixels[0]; *g = orig_pixels[1]; *r = orig_pixels[2]; } // Pick a method for clamping. // #define CLAMPMETHOD_IF 1 // #define CLAMPMETHOD_TABLE 1 #define CLAMPMETHOD_TERNARY 1 // #define CLAMPMETHOD_MASK 1 // Pick a method for rounding. #define ROUND(f) static_cast<int>(f + 0.5f) // #define ROUND(f) lrintf(f) // #define ROUND(f) static_cast<int>(round(f)) // #define ROUND(f) _mm_cvt_ss2si(_mm_load_ss(&f)) #if defined(CLAMPMETHOD_IF) static int RoundToByte(float f) { int i = ROUND(f); if (i < 0) { i = 0; } if (i > 255) { i = 255; } return i; } #elif defined(CLAMPMETHOD_TABLE) static const unsigned char clamptable[811] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}; static int RoundToByte(float f) { return clamptable[ROUND(f) + 276]; } #elif defined(CLAMPMETHOD_TERNARY) static int RoundToByte(float f) { int i = ROUND(f); return (i < 0) ? 0 : ((i > 255) ? 255 : i); } #elif defined(CLAMPMETHOD_MASK) static int RoundToByte(float f) { int i = ROUND(f); i = ((-(i) >> 31) & (i)); // clamp to 0. return (((255 - (i)) >> 31) | (i)) & 255; // clamp to 255. } #endif #define RANDOM256(s) ((s & 1) ? ((s >> 1) ^ 0xb8) : (s >> 1)) TEST_F(LibYUVColorTest, TestRoundToByte) { int allb = 0; int count = benchmark_width_ * benchmark_height_; for (int i = 0; i < benchmark_iterations_; ++i) { float f = (fastrand() & 255) * 3.14f - 260.f; for (int j = 0; j < count; ++j) { int b = RoundToByte(f); f += 0.91f; allb |= b; } } EXPECT_GE(allb, 0); EXPECT_LE(allb, 255); } static void YUVToRGBReference(int y, int u, int v, int* r, int* g, int* b) { *r = RoundToByte((y - 16) * 1.164 - (v - 128) * -1.596); *g = RoundToByte((y - 16) * 1.164 - (u - 128) * 0.391 - (v - 128) * 0.813); *b = RoundToByte((y - 16) * 1.164 - (u - 128) * -2.018); } static void YUVJToRGBReference(int y, int u, int v, int* r, int* g, int* b) { *r = RoundToByte(y - (v - 128) * -1.40200); *g = RoundToByte(y - (u - 128) * 0.34414 - (v - 128) * 0.71414); *b = RoundToByte(y - (u - 128) * -1.77200); } TEST_F(LibYUVColorTest, TestYUV) { int r0, g0, b0, r1, g1, b1; // cyan (less red) YUVToRGBReference(240, 255, 0, &r0, &g0, &b0); EXPECT_EQ(56, r0); EXPECT_EQ(255, g0); EXPECT_EQ(255, b0); YUVToRGB(240, 255, 0, &r1, &g1, &b1); EXPECT_EQ(57, r1); EXPECT_EQ(255, g1); EXPECT_EQ(255, b1); // green (less red and blue) YUVToRGBReference(240, 0, 0, &r0, &g0, &b0); EXPECT_EQ(56, r0); EXPECT_EQ(255, g0); EXPECT_EQ(2, b0); YUVToRGB(240, 0, 0, &r1, &g1, &b1); EXPECT_EQ(57, r1); EXPECT_EQ(255, g1); EXPECT_EQ(5, b1); for (int i = 0; i < 256; ++i) { YUVToRGBReference(i, 128, 128, &r0, &g0, &b0); YUVToRGB(i, 128, 128, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, ERROR_R); EXPECT_NEAR(g0, g1, ERROR_G); EXPECT_NEAR(b0, b1, ERROR_B); YUVToRGBReference(i, 0, 0, &r0, &g0, &b0); YUVToRGB(i, 0, 0, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, ERROR_R); EXPECT_NEAR(g0, g1, ERROR_G); EXPECT_NEAR(b0, b1, ERROR_B); YUVToRGBReference(i, 0, 255, &r0, &g0, &b0); YUVToRGB(i, 0, 255, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, ERROR_R); EXPECT_NEAR(g0, g1, ERROR_G); EXPECT_NEAR(b0, b1, ERROR_B); } } TEST_F(LibYUVColorTest, TestGreyYUV) { int r0, g0, b0, r1, g1, b1, r2, g2, b2; // black YUVToRGBReference(16, 128, 128, &r0, &g0, &b0); EXPECT_EQ(0, r0); EXPECT_EQ(0, g0); EXPECT_EQ(0, b0); YUVToRGB(16, 128, 128, &r1, &g1, &b1); EXPECT_EQ(0, r1); EXPECT_EQ(0, g1); EXPECT_EQ(0, b1); // white YUVToRGBReference(240, 128, 128, &r0, &g0, &b0); EXPECT_EQ(255, r0); EXPECT_EQ(255, g0); EXPECT_EQ(255, b0); YUVToRGB(240, 128, 128, &r1, &g1, &b1); EXPECT_EQ(255, r1); EXPECT_EQ(255, g1); EXPECT_EQ(255, b1); // grey YUVToRGBReference(128, 128, 128, &r0, &g0, &b0); EXPECT_EQ(130, r0); EXPECT_EQ(130, g0); EXPECT_EQ(130, b0); YUVToRGB(128, 128, 128, &r1, &g1, &b1); EXPECT_EQ(130, r1); EXPECT_EQ(130, g1); EXPECT_EQ(130, b1); for (int y = 0; y < 256; ++y) { YUVToRGBReference(y, 128, 128, &r0, &g0, &b0); YUVToRGB(y, 128, 128, &r1, &g1, &b1); YToRGB(y, &r2, &g2, &b2); EXPECT_EQ(r0, r1); EXPECT_EQ(g0, g1); EXPECT_EQ(b0, b1); EXPECT_EQ(r0, r2); EXPECT_EQ(g0, g2); EXPECT_EQ(b0, b2); } } static void PrintHistogram(int rh[256], int gh[256], int bh[256]) { int i; printf("hist"); for (i = 0; i < 256; ++i) { if (rh[i] || gh[i] || bh[i]) { printf("\t%8d", i - 128); } } printf("\nred"); for (i = 0; i < 256; ++i) { if (rh[i] || gh[i] || bh[i]) { printf("\t%8d", rh[i]); } } printf("\ngreen"); for (i = 0; i < 256; ++i) { if (rh[i] || gh[i] || bh[i]) { printf("\t%8d", gh[i]); } } printf("\nblue"); for (i = 0; i < 256; ++i) { if (rh[i] || gh[i] || bh[i]) { printf("\t%8d", bh[i]); } } printf("\n"); } // Step by 5 on inner loop goes from 0 to 255 inclusive. // Set to 1 for better converage. 3, 5 or 17 for faster testing. #define FASTSTEP 5 TEST_F(LibYUVColorTest, TestFullYUV) { int rh[256] = { 0, }; int gh[256] = { 0, }; int bh[256] = { 0, }; for (int u = 0; u < 256; ++u) { for (int v = 0; v < 256; ++v) { for (int y2 = 0; y2 < 256; y2 += FASTSTEP) { int r0, g0, b0, r1, g1, b1; int y = RANDOM256(y2); YUVToRGBReference(y, u, v, &r0, &g0, &b0); YUVToRGB(y, u, v, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, ERROR_R); EXPECT_NEAR(g0, g1, ERROR_G); EXPECT_NEAR(b0, b1, ERROR_B); ++rh[r1 - r0 + 128]; ++gh[g1 - g0 + 128]; ++bh[b1 - b0 + 128]; } } } PrintHistogram(rh, gh, bh); } TEST_F(LibYUVColorTest, TestFullYUVJ) { int rh[256] = { 0, }; int gh[256] = { 0, }; int bh[256] = { 0, }; for (int u = 0; u < 256; ++u) { for (int v = 0; v < 256; ++v) { for (int y2 = 0; y2 < 256; y2 += FASTSTEP) { int r0, g0, b0, r1, g1, b1; int y = RANDOM256(y2); YUVJToRGBReference(y, u, v, &r0, &g0, &b0); YUVJToRGB(y, u, v, &r1, &g1, &b1); EXPECT_NEAR(r0, r1, 1); EXPECT_NEAR(g0, g1, 1); EXPECT_NEAR(b0, b1, 1); ++rh[r1 - r0 + 128]; ++gh[g1 - g0 + 128]; ++bh[b1 - b0 + 128]; } } } PrintHistogram(rh, gh, bh); } #undef FASTSTEP TEST_F(LibYUVColorTest, TestGreyYUVJ) { int r0, g0, b0, r1, g1, b1, r2, g2, b2; // black YUVJToRGBReference(0, 128, 128, &r0, &g0, &b0); EXPECT_EQ(0, r0); EXPECT_EQ(0, g0); EXPECT_EQ(0, b0); YUVJToRGB(0, 128, 128, &r1, &g1, &b1); EXPECT_EQ(0, r1); EXPECT_EQ(0, g1); EXPECT_EQ(0, b1); // white YUVJToRGBReference(255, 128, 128, &r0, &g0, &b0); EXPECT_EQ(255, r0); EXPECT_EQ(255, g0); EXPECT_EQ(255, b0); YUVJToRGB(255, 128, 128, &r1, &g1, &b1); EXPECT_EQ(255, r1); EXPECT_EQ(255, g1); EXPECT_EQ(255, b1); // grey YUVJToRGBReference(128, 128, 128, &r0, &g0, &b0); EXPECT_EQ(128, r0); EXPECT_EQ(128, g0); EXPECT_EQ(128, b0); YUVJToRGB(128, 128, 128, &r1, &g1, &b1); EXPECT_EQ(128, r1); EXPECT_EQ(128, g1); EXPECT_EQ(128, b1); for (int y = 0; y < 256; ++y) { YUVJToRGBReference(y, 128, 128, &r0, &g0, &b0); YUVJToRGB(y, 128, 128, &r1, &g1, &b1); YJToRGB(y, &r2, &g2, &b2); EXPECT_EQ(r0, r1); EXPECT_EQ(g0, g1); EXPECT_EQ(b0, b1); EXPECT_EQ(r0, r2); EXPECT_EQ(g0, g2); EXPECT_EQ(b0, b2); } } } // namespace libyuv