/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/scale.h" #include <assert.h> #include <string.h> #include "libyuv/cpu_id.h" #include "libyuv/planar_functions.h" // For CopyARGB #include "libyuv/row.h" #include "libyuv/scale_row.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif static __inline int Abs(int v) { return v >= 0 ? v : -v; } // ScaleARGB ARGB, 1/2 // This is an optimized version for scaling down a ARGB to 1/2 of // its original size. static void ScaleARGBDown2(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_argb, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering) { int j; int row_stride = src_stride * (dy >> 16); void (*ScaleARGBRowDown2)(const uint8* src_argb, ptrdiff_t src_stride, uint8* dst_argb, int dst_width) = filtering == kFilterNone ? ScaleARGBRowDown2_C : (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_C : ScaleARGBRowDown2Box_C); assert(dx == 65536 * 2); // Test scale factor of 2. assert((dy & 0x1ffff) == 0); // Test vertical scale is multiple of 2. // Advance to odd row, even column. if (filtering == kFilterBilinear) { src_argb += (y >> 16) * src_stride + (x >> 16) * 4; } else { src_argb += (y >> 16) * src_stride + ((x >> 16) - 1) * 4; } #if defined(HAS_SCALEARGBROWDOWN2_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(row_stride, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_SSE2 : (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_SSE2 : ScaleARGBRowDown2Box_SSE2); } #elif defined(HAS_SCALEARGBROWDOWN2_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8) && IS_ALIGNED(src_argb, 4) && IS_ALIGNED(row_stride, 4)) { ScaleARGBRowDown2 = filtering ? ScaleARGBRowDown2Box_NEON : ScaleARGBRowDown2_NEON; } #endif if (filtering == kFilterLinear) { src_stride = 0; } for (j = 0; j < dst_height; ++j) { ScaleARGBRowDown2(src_argb, src_stride, dst_argb, dst_width); src_argb += row_stride; dst_argb += dst_stride; } } // ScaleARGB ARGB, 1/4 // This is an optimized version for scaling down a ARGB to 1/4 of // its original size. static void ScaleARGBDown4Box(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_argb, uint8* dst_argb, int x, int dx, int y, int dy) { int j; // Allocate 2 rows of ARGB. const int kRowSize = (dst_width * 2 * 4 + 15) & ~15; align_buffer_64(row, kRowSize * 2); int row_stride = src_stride * (dy >> 16); void (*ScaleARGBRowDown2)(const uint8* src_argb, ptrdiff_t src_stride, uint8* dst_argb, int dst_width) = ScaleARGBRowDown2Box_C; // Advance to odd row, even column. src_argb += (y >> 16) * src_stride + (x >> 16) * 4; assert(dx == 65536 * 4); // Test scale factor of 4. assert((dy & 0x3ffff) == 0); // Test vertical scale is multiple of 4. #if defined(HAS_SCALEARGBROWDOWN2_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 4) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(row_stride, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { ScaleARGBRowDown2 = ScaleARGBRowDown2Box_SSE2; } #elif defined(HAS_SCALEARGBROWDOWN2_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8) && IS_ALIGNED(src_argb, 4) && IS_ALIGNED(row_stride, 4)) { ScaleARGBRowDown2 = ScaleARGBRowDown2Box_NEON; } #endif for (j = 0; j < dst_height; ++j) { ScaleARGBRowDown2(src_argb, src_stride, row, dst_width * 2); ScaleARGBRowDown2(src_argb + src_stride * 2, src_stride, row + kRowSize, dst_width * 2); ScaleARGBRowDown2(row, kRowSize, dst_argb, dst_width); src_argb += row_stride; dst_argb += dst_stride; } free_aligned_buffer_64(row); } // ScaleARGB ARGB Even // This is an optimized version for scaling down a ARGB to even // multiple of its original size. static void ScaleARGBDownEven(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_argb, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering) { int j; int col_step = dx >> 16; int row_stride = (dy >> 16) * src_stride; void (*ScaleARGBRowDownEven)(const uint8* src_argb, ptrdiff_t src_stride, int src_step, uint8* dst_argb, int dst_width) = filtering ? ScaleARGBRowDownEvenBox_C : ScaleARGBRowDownEven_C; assert(IS_ALIGNED(src_width, 2)); assert(IS_ALIGNED(src_height, 2)); src_argb += (y >> 16) * src_stride + (x >> 16) * 4; #if defined(HAS_SCALEARGBROWDOWNEVEN_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 4) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_SSE2 : ScaleARGBRowDownEven_SSE2; } #elif defined(HAS_SCALEARGBROWDOWNEVEN_NEON) if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 4) && IS_ALIGNED(src_argb, 4)) { ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_NEON : ScaleARGBRowDownEven_NEON; } #endif if (filtering == kFilterLinear) { src_stride = 0; } for (j = 0; j < dst_height; ++j) { ScaleARGBRowDownEven(src_argb, src_stride, col_step, dst_argb, dst_width); src_argb += row_stride; dst_argb += dst_stride; } } // Scale ARGB down with bilinear interpolation. static void ScaleARGBBilinearDown(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_argb, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering) { int j; void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb, int dst_width, int x, int dx) = (src_width >= 32768) ? ScaleARGBFilterCols64_C : ScaleARGBFilterCols_C; int64 xlast = x + (int64)(dst_width - 1) * dx; int64 xl = (dx >= 0) ? x : xlast; int64 xr = (dx >= 0) ? xlast : x; int clip_src_width; xl = (xl >> 16) & ~3; // Left edge aligned. xr = (xr >> 16) + 1; // Right most pixel used. Bilinear uses 2 pixels. xr = (xr + 1 + 3) & ~3; // 1 beyond 4 pixel aligned right most pixel. if (xr > src_width) { xr = src_width; } clip_src_width = (xr - xl) * 4; // Width aligned to 4. src_argb += xl * 4; x -= (int)(xl << 16); #if defined(HAS_INTERPOLATEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && clip_src_width >= 16) { InterpolateRow = InterpolateRow_Any_SSE2; if (IS_ALIGNED(clip_src_width, 16)) { InterpolateRow = InterpolateRow_Unaligned_SSE2; if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16)) { InterpolateRow = InterpolateRow_SSE2; } } } #endif #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && clip_src_width >= 16) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(clip_src_width, 16)) { InterpolateRow = InterpolateRow_Unaligned_SSSE3; if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2) && clip_src_width >= 32) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(clip_src_width, 32)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON) && clip_src_width >= 16) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(clip_src_width, 16)) { InterpolateRow = InterpolateRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROWS_MIPS_DSPR2) if (TestCpuFlag(kCpuHasMIPS_DSPR2) && clip_src_width >= 4 && IS_ALIGNED(src_argb, 4) && IS_ALIGNED(src_stride, 4)) { InterpolateRow = InterpolateRow_Any_MIPS_DSPR2; if (IS_ALIGNED(clip_src_width, 4)) { InterpolateRow = InterpolateRow_MIPS_DSPR2; } } #endif #if defined(HAS_SCALEARGBFILTERCOLS_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3; } #endif // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. // Allocate a row of ARGB. { align_buffer_64(row, clip_src_width * 4); const int max_y = (src_height - 1) << 16; if (y > max_y) { y = max_y; } for (j = 0; j < dst_height; ++j) { int yi = y >> 16; const uint8* src = src_argb + yi * src_stride; if (filtering == kFilterLinear) { ScaleARGBFilterCols(dst_argb, src, dst_width, x, dx); } else { int yf = (y >> 8) & 255; InterpolateRow(row, src, src_stride, clip_src_width, yf); ScaleARGBFilterCols(dst_argb, row, dst_width, x, dx); } dst_argb += dst_stride; y += dy; if (y > max_y) { y = max_y; } } free_aligned_buffer_64(row); } } // Scale ARGB up with bilinear interpolation. static void ScaleARGBBilinearUp(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_argb, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering) { int j; void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb, int dst_width, int x, int dx) = filtering ? ScaleARGBFilterCols_C : ScaleARGBCols_C; const int max_y = (src_height - 1) << 16; #if defined(HAS_INTERPOLATEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && dst_width >= 4) { InterpolateRow = InterpolateRow_Any_SSE2; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_Unaligned_SSE2; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { InterpolateRow = InterpolateRow_SSE2; } } } #endif #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && dst_width >= 4) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2) && dst_width >= 8) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(dst_width, 8)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON) && dst_width >= 4) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROWS_MIPS_DSPR2) if (TestCpuFlag(kCpuHasMIPS_DSPR2) && dst_width >= 1 && IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride, 4)) { InterpolateRow = InterpolateRow_MIPS_DSPR2; } #endif if (src_width >= 32768) { ScaleARGBFilterCols = filtering ? ScaleARGBFilterCols64_C : ScaleARGBCols64_C; } #if defined(HAS_SCALEARGBFILTERCOLS_SSSE3) if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3; } #endif #if defined(HAS_SCALEARGBCOLS_SSE2) if (!filtering && TestCpuFlag(kCpuHasSSE2) && src_width < 32768) { ScaleARGBFilterCols = ScaleARGBCols_SSE2; } #endif if (!filtering && src_width * 2 == dst_width && x < 0x8000) { ScaleARGBFilterCols = ScaleARGBColsUp2_C; #if defined(HAS_SCALEARGBCOLSUP2_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { ScaleARGBFilterCols = ScaleARGBColsUp2_SSE2; } #endif } if (y > max_y) { y = max_y; } { int yi = y >> 16; const uint8* src = src_argb + yi * src_stride; // Allocate 2 rows of ARGB. const int kRowSize = (dst_width * 4 + 15) & ~15; align_buffer_64(row, kRowSize * 2); uint8* rowptr = row; int rowstride = kRowSize; int lasty = yi; ScaleARGBFilterCols(rowptr, src, dst_width, x, dx); if (src_height > 1) { src += src_stride; } ScaleARGBFilterCols(rowptr + rowstride, src, dst_width, x, dx); src += src_stride; for (j = 0; j < dst_height; ++j) { yi = y >> 16; if (yi != lasty) { if (y > max_y) { y = max_y; yi = y >> 16; src = src_argb + yi * src_stride; } if (yi != lasty) { ScaleARGBFilterCols(rowptr, src, dst_width, x, dx); rowptr += rowstride; rowstride = -rowstride; lasty = yi; src += src_stride; } } if (filtering == kFilterLinear) { InterpolateRow(dst_argb, rowptr, 0, dst_width * 4, 0); } else { int yf = (y >> 8) & 255; InterpolateRow(dst_argb, rowptr, rowstride, dst_width * 4, yf); } dst_argb += dst_stride; y += dy; } free_aligned_buffer_64(row); } } #ifdef YUVSCALEUP // Scale YUV to ARGB up with bilinear interpolation. static void ScaleYUVToARGBBilinearUp(int src_width, int src_height, int dst_width, int dst_height, int src_stride_y, int src_stride_u, int src_stride_v, int dst_stride_argb, const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering) { int j; void (*I422ToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int width) = I422ToARGBRow_C; #if defined(HAS_I422TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && src_width >= 8) { I422ToARGBRow = I422ToARGBRow_Any_SSSE3; if (IS_ALIGNED(src_width, 8)) { I422ToARGBRow = I422ToARGBRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { I422ToARGBRow = I422ToARGBRow_SSSE3; } } } #endif #if defined(HAS_I422TOARGBROW_AVX2) if (TestCpuFlag(kCpuHasAVX2) && src_width >= 16) { I422ToARGBRow = I422ToARGBRow_Any_AVX2; if (IS_ALIGNED(src_width, 16)) { I422ToARGBRow = I422ToARGBRow_AVX2; } } #endif #if defined(HAS_I422TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON) && src_width >= 8) { I422ToARGBRow = I422ToARGBRow_Any_NEON; if (IS_ALIGNED(src_width, 8)) { I422ToARGBRow = I422ToARGBRow_NEON; } } #endif #if defined(HAS_I422TOARGBROW_MIPS_DSPR2) if (TestCpuFlag(kCpuHasMIPS_DSPR2) && IS_ALIGNED(src_width, 4) && IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) && IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) && IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) && IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) { I422ToARGBRow = I422ToARGBRow_MIPS_DSPR2; } #endif void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; #if defined(HAS_INTERPOLATEROW_SSE2) if (TestCpuFlag(kCpuHasSSE2) && dst_width >= 4) { InterpolateRow = InterpolateRow_Any_SSE2; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_Unaligned_SSE2; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { InterpolateRow = InterpolateRow_SSE2; } } } #endif #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && dst_width >= 4) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_Unaligned_SSSE3; if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2) && dst_width >= 8) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(dst_width, 8)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON) && dst_width >= 4) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROWS_MIPS_DSPR2) if (TestCpuFlag(kCpuHasMIPS_DSPR2) && dst_width >= 1 && IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) { InterpolateRow = InterpolateRow_MIPS_DSPR2; } #endif void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb, int dst_width, int x, int dx) = filtering ? ScaleARGBFilterCols_C : ScaleARGBCols_C; if (src_width >= 32768) { ScaleARGBFilterCols = filtering ? ScaleARGBFilterCols64_C : ScaleARGBCols64_C; } #if defined(HAS_SCALEARGBFILTERCOLS_SSSE3) if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3; } #endif #if defined(HAS_SCALEARGBCOLS_SSE2) if (!filtering && TestCpuFlag(kCpuHasSSE2) && src_width < 32768) { ScaleARGBFilterCols = ScaleARGBCols_SSE2; } #endif if (!filtering && src_width * 2 == dst_width && x < 0x8000) { ScaleARGBFilterCols = ScaleARGBColsUp2_C; #if defined(HAS_SCALEARGBCOLSUP2_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { ScaleARGBFilterCols = ScaleARGBColsUp2_SSE2; } #endif } const int max_y = (src_height - 1) << 16; if (y > max_y) { y = max_y; } const int kYShift = 1; // Shift Y by 1 to convert Y plane to UV coordinate. int yi = y >> 16; int uv_yi = yi >> kYShift; const uint8* src_row_y = src_y + yi * src_stride_y; const uint8* src_row_u = src_u + uv_yi * src_stride_u; const uint8* src_row_v = src_v + uv_yi * src_stride_v; // Allocate 2 rows of ARGB. const int kRowSize = (dst_width * 4 + 15) & ~15; align_buffer_64(row, kRowSize * 2); // Allocate 1 row of ARGB for source conversion. align_buffer_64(argb_row, src_width * 4); uint8* rowptr = row; int rowstride = kRowSize; int lasty = yi; // TODO(fbarchard): Convert first 2 rows of YUV to ARGB. ScaleARGBFilterCols(rowptr, src_row_y, dst_width, x, dx); if (src_height > 1) { src_row_y += src_stride_y; if (yi & 1) { src_row_u += src_stride_u; src_row_v += src_stride_v; } } ScaleARGBFilterCols(rowptr + rowstride, src_row_y, dst_width, x, dx); if (src_height > 2) { src_row_y += src_stride_y; if (!(yi & 1)) { src_row_u += src_stride_u; src_row_v += src_stride_v; } } for (j = 0; j < dst_height; ++j) { yi = y >> 16; if (yi != lasty) { if (y > max_y) { y = max_y; yi = y >> 16; uv_yi = yi >> kYShift; src_row_y = src_y + yi * src_stride_y; src_row_u = src_u + uv_yi * src_stride_u; src_row_v = src_v + uv_yi * src_stride_v; } if (yi != lasty) { // TODO(fbarchard): Convert the clipped region of row. I422ToARGBRow(src_row_y, src_row_u, src_row_v, argb_row, src_width); ScaleARGBFilterCols(rowptr, argb_row, dst_width, x, dx); rowptr += rowstride; rowstride = -rowstride; lasty = yi; src_row_y += src_stride_y; if (yi & 1) { src_row_u += src_stride_u; src_row_v += src_stride_v; } } } if (filtering == kFilterLinear) { InterpolateRow(dst_argb, rowptr, 0, dst_width * 4, 0); } else { int yf = (y >> 8) & 255; InterpolateRow(dst_argb, rowptr, rowstride, dst_width * 4, yf); } dst_argb += dst_stride_argb; y += dy; } free_aligned_buffer_64(row); free_aligned_buffer_64(row_argb); } #endif // Scale ARGB to/from any dimensions, without interpolation. // Fixed point math is used for performance: The upper 16 bits // of x and dx is the integer part of the source position and // the lower 16 bits are the fixed decimal part. static void ScaleARGBSimple(int src_width, int src_height, int dst_width, int dst_height, int src_stride, int dst_stride, const uint8* src_argb, uint8* dst_argb, int x, int dx, int y, int dy) { int j; void (*ScaleARGBCols)(uint8* dst_argb, const uint8* src_argb, int dst_width, int x, int dx) = (src_width >= 32768) ? ScaleARGBCols64_C : ScaleARGBCols_C; #if defined(HAS_SCALEARGBCOLS_SSE2) if (TestCpuFlag(kCpuHasSSE2) && src_width < 32768) { ScaleARGBCols = ScaleARGBCols_SSE2; } #endif if (src_width * 2 == dst_width && x < 0x8000) { ScaleARGBCols = ScaleARGBColsUp2_C; #if defined(HAS_SCALEARGBCOLSUP2_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8) && IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16) && IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) { ScaleARGBCols = ScaleARGBColsUp2_SSE2; } #endif } for (j = 0; j < dst_height; ++j) { ScaleARGBCols(dst_argb, src_argb + (y >> 16) * src_stride, dst_width, x, dx); dst_argb += dst_stride; y += dy; } } // ScaleARGB a ARGB. // This function in turn calls a scaling function // suitable for handling the desired resolutions. static void ScaleARGB(const uint8* src, int src_stride, int src_width, int src_height, uint8* dst, int dst_stride, int dst_width, int dst_height, int clip_x, int clip_y, int clip_width, int clip_height, enum FilterMode filtering) { // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; // ARGB does not support box filter yet, but allow the user to pass it. // Simplify filtering when possible. filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, filtering); // Negative src_height means invert the image. if (src_height < 0) { src_height = -src_height; src = src + (src_height - 1) * src_stride; src_stride = -src_stride; } ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, &dx, &dy); src_width = Abs(src_width); if (clip_x) { int64 clipf = (int64)(clip_x) * dx; x += (clipf & 0xffff); src += (clipf >> 16) * 4; dst += clip_x * 4; } if (clip_y) { int64 clipf = (int64)(clip_y) * dy; y += (clipf & 0xffff); src += (clipf >> 16) * src_stride; dst += clip_y * dst_stride; } // Special case for integer step values. if (((dx | dy) & 0xffff) == 0) { if (!dx || !dy) { // 1 pixel wide and/or tall. filtering = kFilterNone; } else { // Optimized even scale down. ie 2, 4, 6, 8, 10x. if (!(dx & 0x10000) && !(dy & 0x10000)) { if (dx == 0x20000) { // Optimized 1/2 downsample. ScaleARGBDown2(src_width, src_height, clip_width, clip_height, src_stride, dst_stride, src, dst, x, dx, y, dy, filtering); return; } if (dx == 0x40000 && filtering == kFilterBox) { // Optimized 1/4 box downsample. ScaleARGBDown4Box(src_width, src_height, clip_width, clip_height, src_stride, dst_stride, src, dst, x, dx, y, dy); return; } ScaleARGBDownEven(src_width, src_height, clip_width, clip_height, src_stride, dst_stride, src, dst, x, dx, y, dy, filtering); return; } // Optimized odd scale down. ie 3, 5, 7, 9x. if ((dx & 0x10000) && (dy & 0x10000)) { filtering = kFilterNone; if (dx == 0x10000 && dy == 0x10000) { // Straight copy. ARGBCopy(src + (y >> 16) * src_stride + (x >> 16) * 4, src_stride, dst, dst_stride, clip_width, clip_height); return; } } } } if (dx == 0x10000 && (x & 0xffff) == 0) { // Arbitrary scale vertically, but unscaled vertically. ScalePlaneVertical(src_height, clip_width, clip_height, src_stride, dst_stride, src, dst, x, y, dy, 4, filtering); return; } if (filtering && dy < 65536) { ScaleARGBBilinearUp(src_width, src_height, clip_width, clip_height, src_stride, dst_stride, src, dst, x, dx, y, dy, filtering); return; } if (filtering) { ScaleARGBBilinearDown(src_width, src_height, clip_width, clip_height, src_stride, dst_stride, src, dst, x, dx, y, dy, filtering); return; } ScaleARGBSimple(src_width, src_height, clip_width, clip_height, src_stride, dst_stride, src, dst, x, dx, y, dy); } LIBYUV_API int ARGBScaleClip(const uint8* src_argb, int src_stride_argb, int src_width, int src_height, uint8* dst_argb, int dst_stride_argb, int dst_width, int dst_height, int clip_x, int clip_y, int clip_width, int clip_height, enum FilterMode filtering) { if (!src_argb || src_width == 0 || src_height == 0 || !dst_argb || dst_width <= 0 || dst_height <= 0 || clip_x < 0 || clip_y < 0 || (clip_x + clip_width) > dst_width || (clip_y + clip_height) > dst_height) { return -1; } ScaleARGB(src_argb, src_stride_argb, src_width, src_height, dst_argb, dst_stride_argb, dst_width, dst_height, clip_x, clip_y, clip_width, clip_height, filtering); return 0; } // Scale an ARGB image. LIBYUV_API int ARGBScale(const uint8* src_argb, int src_stride_argb, int src_width, int src_height, uint8* dst_argb, int dst_stride_argb, int dst_width, int dst_height, enum FilterMode filtering) { if (!src_argb || src_width == 0 || src_height == 0 || !dst_argb || dst_width <= 0 || dst_height <= 0) { return -1; } ScaleARGB(src_argb, src_stride_argb, src_width, src_height, dst_argb, dst_stride_argb, dst_width, dst_height, 0, 0, dst_width, dst_height, filtering); return 0; } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif