Commit 91ab1395 authored by fbarchard@google.com's avatar fbarchard@google.com

inline version of alpha blend

BUG=none
TEST=none
Review URL: https://webrtc-codereview.appspot.com/446006

git-svn-id: http://libyuv.googlecode.com/svn/trunk@216 16f28f9a-4ce2-e073-06de-1de4eb20be90
parent f620d2ae
Name: libyuv Name: libyuv
URL: http://code.google.com/p/libyuv/ URL: http://code.google.com/p/libyuv/
Version: 214 Version: 216
License: BSD License: BSD
License File: LICENSE License File: LICENSE
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
#ifndef INCLUDE_LIBYUV_VERSION_H_ #ifndef INCLUDE_LIBYUV_VERSION_H_
#define INCLUDE_LIBYUV_VERSION_H_ #define INCLUDE_LIBYUV_VERSION_H_
#define LIBYUV_VERSION 214 #define LIBYUV_VERSION 216
#endif // INCLUDE_LIBYUV_VERSION_H_ #endif // INCLUDE_LIBYUV_VERSION_H_
...@@ -170,6 +170,10 @@ int ARGBBlend(const uint8* src_argb, int src_stride_argb, ...@@ -170,6 +170,10 @@ int ARGBBlend(const uint8* src_argb, int src_stride_argb,
#if defined(HAS_ARGBBLENDROW_SSE2) #if defined(HAS_ARGBBLENDROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) { if (TestCpuFlag(kCpuHasSSE2)) {
ARGBBlendRow = ARGBBlendRow_SSE2; ARGBBlendRow = ARGBBlendRow_SSE2;
if (IS_ALIGNED(width, 4) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
ARGBBlendRow = ARGBBlendRow_Aligned_SSE2;
}
} }
#endif #endif
......
...@@ -240,10 +240,13 @@ void YToARGBRow_SSE2(const uint8* y_buf, ...@@ -240,10 +240,13 @@ void YToARGBRow_SSE2(const uint8* y_buf,
uint8* rgb_buf, uint8* rgb_buf,
int width); int width);
// ARGB preattenuated alpha blend.
void ARGBBlendRow_Aligned_SSE2(const uint8* src_argb, uint8* dst_argb,
int width);
void ARGBBlendRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width); void ARGBBlendRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width);
void ARGBBlendRow_C(const uint8* src_argb, uint8* dst_argb, int width); void ARGBBlendRow_C(const uint8* src_argb, uint8* dst_argb, int width);
// 'Any' wrappers use memcpy() // 'Any' functions handle any size and alignment.
void I420ToARGBRow_Any_SSSE3(const uint8* y_buf, void I420ToARGBRow_Any_SSSE3(const uint8* y_buf,
const uint8* u_buf, const uint8* u_buf,
const uint8* v_buf, const uint8* v_buf,
......
...@@ -452,7 +452,7 @@ void UYVYToYRow_C(const uint8* src_yuy2, uint8* dst_y, int width) { ...@@ -452,7 +452,7 @@ void UYVYToYRow_C(const uint8* src_yuy2, uint8* dst_y, int width) {
} }
} }
#define BLENDER(f, b, a) (f * a + b * (a ^ 0xff) + 0x80) >> 8 #define BLENDER(f, b, a) (((256 - a) * b) >> 8) + f
void ARGBBlendRow_C(const uint8* src_argb, uint8* dst_argb, int width) { void ARGBBlendRow_C(const uint8* src_argb, uint8* dst_argb, int width) {
for (int x = 0; x < width - 1; x += 2) { for (int x = 0; x < width - 1; x += 2) {
uint32 a = src_argb[3]; uint32 a = src_argb[3];
......
...@@ -1925,106 +1925,151 @@ void UYVYToUVRow_Unaligned_SSE2(const uint8* src_uyvy, int stride_uyvy, ...@@ -1925,106 +1925,151 @@ void UYVYToUVRow_Unaligned_SSE2(const uint8* src_uyvy, int stride_uyvy,
#endif // HAS_YUY2TOYROW_SSE2 #endif // HAS_YUY2TOYROW_SSE2
#ifdef HAS_ARGBBLENDROW_SSE2 #ifdef HAS_ARGBBLENDROW_SSE2
void ARGBBlendRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width) { // Blend 8 pixels at a time
uint32 pixel = 0; // Destination aligned to 16 bytes, multiple of 4 pixels
void ARGBBlendRow_Aligned_SSE2(const uint8* src_argb, uint8* dst_argb,
int width) {
asm volatile ( asm volatile (
"pcmpeqb %%xmm4,%%xmm4 \n" "pcmpeqb %%xmm7,%%xmm7 \n"
"psrlw $0xf,%%xmm7 \n"
"pcmpeqb %%xmm6,%%xmm6 \n"
"psrlw $0x8,%%xmm6 \n"
"pcmpeqb %%xmm5,%%xmm5 \n" "pcmpeqb %%xmm5,%%xmm5 \n"
"pslld $24,%%xmm5 \n" "psllw $0x8,%%xmm5 \n"
"sub %0,%1 \n" "pcmpeqb %%xmm4,%%xmm4 \n"
"mov (%0),%3 \n" "pslld $0x18,%%xmm4 \n"
"sub $0x1,%2 \n"
"jle 8f \n" // last1
"cmp $0xff000000,%3 \n"
"jae 2f \n" // opaqueloop
"cmp $0xffffff,%3 \n"
"ja 3f \n" // translucentloop
// transparentloop // 8 pixel loop
"1: \n" "1: \n"
"sub $0x1,%2 \n" "movdqu (%0),%%xmm3 \n" // first 4 pixels
"lea 0x4(%0),%0 \n" "movdqa %%xmm3,%%xmm0 \n"
"jle 8f \n" // last1
"mov (%0),%3 \n"
"cmp $0xffffff,%3 \n"
"jbe 1b \n" // transparentloop
"cmp $0xff000000,%3 \n"
"jb 3f \n" // translucentloop
// opaqueloop
"2: \n"
"mov %3,(%0,%1,1) \n"
"lea 0x4(%0),%0 \n"
"sub $0x1,%2 \n"
"jle 8f \n" // last1
"mov (%0),%3 \n"
"cmp $0xff000000,%3 \n"
"jae 2b \n" // opaqueloop
"cmp $0xffffff,%3 \n"
"jbe 1b \n" // transparentloop
// translucentloop
"3: \n"
"movq (%0),%%xmm0 \n"
"movq (%0,%1,1),%%xmm1 \n"
"punpcklbw %%xmm0,%%xmm0 \n"
"punpcklbw %%xmm1,%%xmm1 \n"
"pshuflw $0xff,%%xmm0,%%xmm2 \n"
"pshufhw $0xff,%%xmm2,%%xmm2 \n"
"movdqa %%xmm2,%%xmm3 \n"
"pxor %%xmm4,%%xmm3 \n" "pxor %%xmm4,%%xmm3 \n"
"pmulhuw %%xmm2,%%xmm0 \n" "movdqa (%1),%%xmm2 \n"
"pmulhuw %%xmm3,%%xmm1 \n" "psrlw $0x8,%%xmm3 \n"
"paddusw %%xmm1,%%xmm0 \n" "pshufhw $0xf5,%%xmm3,%%xmm3 \n"
"psrlw $0x8,%%xmm0 \n" "pshuflw $0xf5,%%xmm3,%%xmm3 \n"
"packuswb %%xmm0,%%xmm0 \n" "pand %%xmm6,%%xmm2 \n"
"por %%xmm5,%%xmm0 \n" "paddw %%xmm7,%%xmm3 \n"
"movq %%xmm0,(%0,%1,1) \n" "pmullw %%xmm3,%%xmm2 \n"
"lea 0x8(%0),%0 \n" "movdqa (%1),%%xmm1 \n"
"sub $0x2,%2 \n" "psrlw $0x8,%%xmm1 \n"
"jle 8f \n" // last1 "por %%xmm4,%%xmm0 \n"
"mov (%0),%3 \n" "pmullw %%xmm3,%%xmm1 \n"
"cmp $0xffffff,%3 \n" "movdqu 0x10(%0),%%xmm3 \n"
"jbe 1b \n" // transparentloop "lea 0x20(%0),%0 \n"
"cmp $0xff000000,%3 \n" "psrlw $0x8,%%xmm2 \n"
"jb 3b \n" // translucentloop "paddusb %%xmm2,%%xmm0 \n"
"jmp 2b \n" // opaqueloop "pand %%xmm5,%%xmm1 \n"
"paddusb %%xmm1,%%xmm0 \n"
// last1 "sub $0x4,%2 \n"
"8: \n" "movdqa %%xmm0,(%1) \n"
"add $0x1,%2 \n" // 1 pixel left? "jle 9f \n"
"cmp $0x1,%2 \n" "movdqa %%xmm3,%%xmm0 \n" // next 4 pixels
"jl 9f \n" // done
"mov (%0),%3 \n"
"movd %3,%%xmm0 \n"
"mov (%0,%1,1),%3 \n"
"movd %3,%%xmm1 \n"
"punpcklbw %%xmm0,%%xmm0 \n"
"punpcklbw %%xmm1,%%xmm1 \n"
"pshuflw $0xff,%%xmm0,%%xmm2 \n"
"movdqa %%xmm2,%%xmm3 \n"
"pxor %%xmm4,%%xmm3 \n" "pxor %%xmm4,%%xmm3 \n"
"pmulhuw %%xmm2,%%xmm0 \n" "movdqa 0x10(%1),%%xmm2 \n"
"pmulhuw %%xmm3,%%xmm1 \n" "psrlw $0x8,%%xmm3 \n"
"paddusw %%xmm1,%%xmm0 \n" "pshufhw $0xf5,%%xmm3,%%xmm3 \n"
"psrlw $0x8,%%xmm0 \n" "pshuflw $0xf5,%%xmm3,%%xmm3 \n"
"packuswb %%xmm0,%%xmm0 \n" "pand %%xmm6,%%xmm2 \n"
"movd %%xmm0,%3 \n" "paddw %%xmm7,%%xmm3 \n"
"mov %3,(%0,%1,1) \n" "pmullw %%xmm3,%%xmm2 \n"
"movdqa 0x10(%1),%%xmm1 \n"
// done "psrlw $0x8,%%xmm1 \n"
"por %%xmm4,%%xmm0 \n"
"pmullw %%xmm3,%%xmm1 \n"
"psrlw $0x8,%%xmm2 \n"
"paddusb %%xmm2,%%xmm0 \n"
"pand %%xmm5,%%xmm1 \n"
"paddusb %%xmm1,%%xmm0 \n"
"sub $0x4,%2 \n"
"movdqa %%xmm0,0x10(%1) \n"
"lea 0x20(%1),%1 \n"
"jg 1b \n"
"9: \n" "9: \n"
: "+r"(src_argb), // %0 : "+r"(src_argb), // %0
"+r"(dst_argb), // %1 "+r"(dst_argb), // %1
"+r"(width), // %2 "+r"(width) // %2
"+r"(pixel) // %3
: :
: "memory", "cc" : "memory", "cc"
#if defined(__SSE2__) #if defined(__SSE2__)
, "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" , "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7"
#endif
);
}
// Blend 1 pixel at a time, unaligned
void ARGBBlendRow1_SSE2(const uint8* src_argb, uint8* dst_argb, int width) {
asm volatile (
"pcmpeqb %%xmm7,%%xmm7 \n"
"psrlw $0xf,%%xmm7 \n"
"pcmpeqb %%xmm6,%%xmm6 \n"
"psrlw $0x8,%%xmm6 \n"
"pcmpeqb %%xmm5,%%xmm5 \n"
"psllw $0x8,%%xmm5 \n"
"pcmpeqb %%xmm4,%%xmm4 \n"
"pslld $0x18,%%xmm4 \n"
// 1 pixel loop
"1: \n"
"movd (%0),%%xmm3 \n"
"lea 0x4(%0),%0 \n"
"movdqa %%xmm3,%%xmm0 \n"
"pxor %%xmm4,%%xmm3 \n"
"movd (%1),%%xmm2 \n"
"psrlw $0x8,%%xmm3 \n"
"pshufhw $0xf5,%%xmm3,%%xmm3 \n"
"pshuflw $0xf5,%%xmm3,%%xmm3 \n"
"pand %%xmm6,%%xmm2 \n"
"paddw %%xmm7,%%xmm3 \n"
"pmullw %%xmm3,%%xmm2 \n"
"movd (%1),%%xmm1 \n"
"psrlw $0x8,%%xmm1 \n"
"por %%xmm4,%%xmm0 \n"
"pmullw %%xmm3,%%xmm1 \n"
"psrlw $0x8,%%xmm2 \n"
"paddusb %%xmm2,%%xmm0 \n"
"pand %%xmm5,%%xmm1 \n"
"paddusb %%xmm1,%%xmm0 \n"
"sub $0x1,%2 \n"
"movd %%xmm0,(%1) \n"
"lea 0x4(%1),%1 \n"
"jg 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "memory", "cc"
#if defined(__SSE2__)
, "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7"
#endif #endif
); );
} }
void ARGBBlendRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width) {
// Do 1 to 3 pixels to get destination aligned.
if ((uintptr_t)(dst_argb) & 15) {
int count = width;
if (((intptr_t)(dst_argb) & 3) == 0) {
count = (-(intptr_t)(dst_argb) >> 2) & 3;
}
ARGBBlendRow1_SSE2(src_argb, dst_argb, count);
src_argb += count * 4;
dst_argb += count * 4;
width -= count;
}
// Do multiple of 4 pixels
if (width & ~3) {
ARGBBlendRow_Aligned_SSE2(src_argb, dst_argb, width & ~3);
}
// Do remaining 1 to 3 pixels
if (width & 3) {
src_argb += (width & ~3) * 4;
dst_argb += (width & ~3) * 4;
width &= 3;
ARGBBlendRow1_SSE2(src_argb, dst_argb, width);
}
}
#endif // HAS_ARGBBLENDROW_SSE2 #endif // HAS_ARGBBLENDROW_SSE2
#endif // defined(__x86_64__) || defined(__i386__) #endif // defined(__x86_64__) || defined(__i386__)
......
...@@ -1959,279 +1959,146 @@ void UYVYToUVRow_Unaligned_SSE2(const uint8* src_uyvy, int stride_uyvy, ...@@ -1959,279 +1959,146 @@ void UYVYToUVRow_Unaligned_SSE2(const uint8* src_uyvy, int stride_uyvy,
#endif // HAS_YUY2TOYROW_SSE2 #endif // HAS_YUY2TOYROW_SSE2
#ifdef HAS_ARGBBLENDROW_SSE2 #ifdef HAS_ARGBBLENDROW_SSE2
// TODO(fbarchard): Single multiply method b+a(f-b) // Blend 8 pixels at a time
// TODO(fbarchard): Unroll and pair // Destination aligned to 16 bytes, multiple of 4 pixels
// TODO(fbarchard): branch hints __emit 0x3E taken, 0x2E not taken // TODO(fbarchard): SSSE3 version with pshufb for alpha and maybe pmaddubsw
__declspec(naked) __declspec(naked) __declspec(align(16))
void OrigARGBBlendRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width) { void ARGBBlendRow_Aligned_SSE2(const uint8* src_argb, uint8* dst_argb,
int width) {
__asm { __asm {
push esi mov eax, [esp + 4] // src_argb
mov esi, [esp + 4 + 4] // src_argb mov edx, [esp + 8] // dst_argb
mov edx, [esp + 4 + 8] // dst_argb mov ecx, [esp + 12] // width
mov ecx, [esp + 4 + 12] // width pcmpeqb xmm7, xmm7 // generate constant 1
pcmpeqb xmm4, xmm4 // generate 0xffffffff do negative alpha psrlw xmm7, 15
pcmpeqb xmm5, xmm5 // generate 0xff000000 for alpha pcmpeqb xmm6, xmm6 // generate mask 0x00ff00ff
pslld xmm5, 24 psrlw xmm6, 8
sub edx, esi pcmpeqb xmm5, xmm5 // generate mask 0xff00ff00
mov eax, [esi] // get first pixel psllw xmm5, 8
sub ecx, 1 // ensure there are at least 2 pixels pcmpeqb xmm4, xmm4 // generate mask 0xff000000
jle last1 // last pixel? pslld xmm4, 24
cmp eax, 0xFF000000 // opaque?
jae opaqueloop
cmp eax, 0x00FFFFFF // translucent?
ja translucentloop
align 16
transparentloop:
sub ecx, 1
lea esi, [esi + 4]
jle last1
mov eax, [esi] // get next pixel
cmp eax, 0x00FFFFFF // transparent?
jbe transparentloop
cmp eax, 0xFF000000 // translucent?
jb translucentloop
align 16
opaqueloop:
mov dword ptr [esi + edx], eax
lea esi, [esi + 4]
sub ecx, 1
jle last1
mov eax, [esi] // get next pixel
cmp eax, 0xFF000000 // opaque?
jae opaqueloop
cmp eax, 0x00FFFFFF // transparent?
jbe transparentloop
align 16
translucentloop:
movq xmm0, qword ptr [esi] // fetch 2 pixels
movq xmm1, qword ptr [esi + edx]
punpcklbw xmm0, xmm0 // src 16 bits
punpcklbw xmm1, xmm1 // dst 16 bits
pshuflw xmm2, xmm0, 0xff // src alpha
pshufhw xmm2, xmm2, 0xff
movdqa xmm3, xmm2 // dst alpha
pxor xmm3, xmm4
pmulhuw xmm0, xmm2 // src * a
pmulhuw xmm1, xmm3 // dst * (a ^ 0xffff)
paddusw xmm0, xmm1
psrlw xmm0, 8
packuswb xmm0, xmm0 // pack 2 pixels
por xmm0, xmm5 // set alpha
movq qword ptr [esi + edx], xmm0
lea esi, [esi + 8]
sub ecx, 2
jle last1
mov eax, [esi]
cmp eax, 0x00FFFFFF // transparent?
jbe transparentloop
cmp eax, 0xFF000000 // translucent?
jb translucentloop
jmp opaqueloop
align 16 align 16
last1: convertloop:
add ecx, 1 movdqu xmm3, [eax]
cmp ecx, 1 // 1 left? movdqa xmm0, xmm3 // src argb
jl done pxor xmm3, xmm4 // ~alpha
movdqa xmm2, [edx] // _r_b
mov eax, [esi] // get next pixel psrlw xmm3, 8 // alpha
movd xmm0, eax pshufhw xmm3, xmm3,0F5h // 8 alpha words
mov eax, [esi + edx] pshuflw xmm3, xmm3,0F5h
movd xmm1, eax pand xmm2, xmm6 // _r_b
punpcklbw xmm0, xmm0 // src 16 bits paddw xmm3, xmm7 // 256-alpha
punpcklbw xmm1, xmm1 // dst 16 bits pmullw xmm2, xmm3 // _r_b * alpha
pshuflw xmm2, xmm0, 0xff // src alpha movdqa xmm1, [edx] // _a_g
movdqa xmm3, xmm2 // dst alpha psrlw xmm1, 8 // _a_g
pxor xmm3, xmm4 por xmm0, xmm4 // set alpha to 255
pmulhuw xmm0, xmm2 // src * a pmullw xmm1, xmm3 // _a_g * alpha
pmulhuw xmm1, xmm3 // dst * (a ^ 0xffff) movdqu xmm3, [eax + 16]
paddusw xmm0, xmm1 lea eax, [eax + 32]
psrlw xmm0, 8 psrlw xmm2, 8 // _r_b convert to 8 bits again
packuswb xmm0, xmm0 // pack to bytes paddusb xmm0, xmm2 // + src argb
por xmm0, xmm5 // set alpha pand xmm1, xmm5 // a_g_ convert to 8 bits again
movd eax, xmm0 paddusb xmm0, xmm1 // + src argb
mov dword ptr [esi + edx], eax sub ecx, 4
movdqa [edx], xmm0
jle done
movdqa xmm0, xmm3 // src argb
pxor xmm3, xmm4 // ~alpha
movdqa xmm2, [edx + 16] // _r_b
psrlw xmm3, 8 // alpha
pshufhw xmm3, xmm3,0F5h // 8 alpha words
pshuflw xmm3, xmm3,0F5h
pand xmm2, xmm6 // _r_b
paddw xmm3, xmm7 // 256-alpha
pmullw xmm2, xmm3 // _r_b * alpha
movdqa xmm1, [edx + 16] // _a_g
psrlw xmm1, 8 // _a_g
por xmm0, xmm4 // set alpha to 255
pmullw xmm1, xmm3 // _a_g * alpha
psrlw xmm2, 8 // _r_b convert to 8 bits again
paddusb xmm0, xmm2 // + src argb
pand xmm1, xmm5 // a_g_ convert to 8 bits again
paddusb xmm0, xmm1 // + src argb
sub ecx, 4
movdqa [edx + 16], xmm0
lea edx, [edx + 32]
jg convertloop
done: done:
pop esi
ret ret
} }
} }
#define UNATTENUATED 1 // Blend 1 pixel at a time, unaligned
#define ALIGNED 1 __declspec(naked) __declspec(align(16))
#define SETALPHA 1 void ARGBBlendRow1_SSE2(const uint8* src_argb, uint8* dst_argb, int width) {
__asm {
void ARGBBlendPixel_SSE2(const uint8* src_argb, uint8* dst_argb) { mov eax, [esp + 4] // src_argb
const uint32* s = reinterpret_cast<const uint32*>(src_argb); mov edx, [esp + 8] // dst_argb
uint32* d = reinterpret_cast<uint32*>(dst_argb); mov ecx, [esp + 12] // width
__m128i rb_mask = _mm_set1_epi32(0x00FF00FF); pcmpeqb xmm7, xmm7 // generate constant 1
#if SETALPHA psrlw xmm7, 15
__m128i alpha_255 = _mm_set1_epi32(0xFF000000); pcmpeqb xmm6, xmm6 // generate mask 0x00ff00ff
#endif psrlw xmm6, 8
__m128i c_256 = _mm_set1_epi16(0x0100); // 8 copies of 256 (16-bit) pcmpeqb xmm5, xmm5 // generate mask 0xff00ff00
psllw xmm5, 8
{ pcmpeqb xmm4, xmm4 // generate mask 0xff000000
// Load 4 pixels pslld xmm4, 24
__m128i src_pixel = _mm_cvtsi32_si128(*s);
__m128i dst_pixel = _mm_cvtsi32_si128(*d);
// (a0, g0, a1, g1, a2, g2, a3, g3) (low byte of each word)
__m128i src_alpha = _mm_srli_epi16(src_pixel, 8);
// (a0, a0, a1, a1, a2, g2, a3, g3)
src_alpha = _mm_shufflehi_epi16(src_alpha, 0xF5);
// (a0, a0, a1, a1, a2, a2, a3, a3)
src_alpha = _mm_shufflelo_epi16(src_alpha, 0xF5);
#if UNATTENUATED
__m128i src_rb = _mm_and_si128(rb_mask, src_pixel);
__m128i src_ag = _mm_srli_epi16(src_pixel, 8);
// Multiply by red and blue by src alpha.
src_rb = _mm_mullo_epi16(src_rb, src_alpha);
// Multiply by alpha and green by src alpha.
src_ag = _mm_mullo_epi16(src_ag, src_alpha);
// Divide by 256.
src_rb = _mm_srli_epi16(src_rb, 8);
// Mask out high bits (already in the right place)
src_ag = _mm_andnot_si128(rb_mask, src_ag);
// Combine back into RGBA.
src_pixel = _mm_or_si128(src_rb, src_ag);
#endif
// Subtract alphas from 256, to get 1..256
__m128i dst_alpha = _mm_sub_epi16(c_256, src_alpha);
//__m128i dst_alpha = _mm_xor_si128(src_alpha, rb_mask);
__m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
__m128i dst_ag = _mm_srli_epi16(dst_pixel, 8);
// Multiply by red and blue by src alpha.
dst_rb = _mm_mullo_epi16(dst_rb, dst_alpha);
// Multiply by alpha and green by src alpha.
dst_ag = _mm_mullo_epi16(dst_ag, dst_alpha);
// Divide by 256.
dst_rb = _mm_srli_epi16(dst_rb, 8);
// Mask out high bits (already in the right place)
dst_ag = _mm_andnot_si128(rb_mask, dst_ag);
// Combine back into RGBA.
dst_pixel = _mm_or_si128(dst_rb, dst_ag);
// Add result align 16
dst_pixel = _mm_adds_epu8(src_pixel, dst_pixel); convertloop:
#if SETALPHA movd xmm3, [eax]
dst_pixel = _mm_adds_epu8(alpha_255, dst_pixel); lea eax, [eax + 4]
#endif movdqa xmm0, xmm3 // src argb
*d = _mm_cvtsi128_si32(dst_pixel); pxor xmm3, xmm4 // ~alpha
movd xmm2, [edx] // _r_b
psrlw xmm3, 8 // alpha
pshufhw xmm3, xmm3,0F5h // 8 alpha words
pshuflw xmm3, xmm3,0F5h
pand xmm2, xmm6 // _r_b
paddw xmm3, xmm7 // 256-alpha
pmullw xmm2, xmm3 // _r_b * alpha
movd xmm1, [edx] // _a_g
psrlw xmm1, 8 // _a_g
por xmm0, xmm4 // set alpha to 255
pmullw xmm1, xmm3 // _a_g * alpha
psrlw xmm2, 8 // _r_b convert to 8 bits again
paddusb xmm0, xmm2 // + src argb
pand xmm1, xmm5 // a_g_ convert to 8 bits again
paddusb xmm0, xmm1 // + src argb
sub ecx, 1
movd [edx], xmm0
lea edx, [edx + 4]
jg convertloop
ret
} }
} }
void ARGBBlendRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width) { void ARGBBlendRow_SSE2(const uint8* src_argb, uint8* dst_argb, int width) {
#if ALIGNED // Do 1 to 3 pixels to get destination aligned.
while (width >= 1 && ((uintptr_t)(dst_argb) & 15)) { if ((uintptr_t)(dst_argb) & 15) {
ARGBBlendPixel_SSE2(src_argb, dst_argb); int count = width;
src_argb += 4; if (((intptr_t)(dst_argb) & 3) == 0) {
dst_argb += 4; count = (-(intptr_t)(dst_argb) >> 2) & 3;
--width; }
ARGBBlendRow1_SSE2(src_argb, dst_argb, count);
src_argb += count * 4;
dst_argb += count * 4;
width -= count;
} }
#endif // Do multiple of 4 pixels
const __m128i *s = reinterpret_cast<const __m128i*>(src_argb); if (width & ~3) {
__m128i *d = reinterpret_cast<__m128i*>(dst_argb); ARGBBlendRow_Aligned_SSE2(src_argb, dst_argb, width & ~3);
__m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
#if SETALPHA
__m128i alpha_255 = _mm_set1_epi32(0xFF000000);
#endif
__m128i c_256 = _mm_set1_epi16(0x0100); // 8 copies of 256 (16-bit)
while (width >= 4) {
// Load 4 pixels
__m128i src_pixel = _mm_loadu_si128(s);
#if ALIGNED
__m128i dst_pixel = _mm_load_si128(d);
#else
__m128i dst_pixel = _mm_loadu_si128(d);
#endif
// (a0, g0, a1, g1, a2, g2, a3, g3) (low byte of each word)
__m128i src_alpha = _mm_srli_epi16(src_pixel, 8);
// (a0, a0, a1, a1, a2, g2, a3, g3)
src_alpha = _mm_shufflehi_epi16(src_alpha, 0xF5);
// (a0, a0, a1, a1, a2, a2, a3, a3)
src_alpha = _mm_shufflelo_epi16(src_alpha, 0xF5);
#if UNATTENUATED
__m128i src_rb = _mm_and_si128(rb_mask, src_pixel);
__m128i src_ag = _mm_srli_epi16(src_pixel, 8);
// Multiply by red and blue by src alpha.
src_rb = _mm_mullo_epi16(src_rb, src_alpha);
// Multiply by alpha and green by src alpha.
src_ag = _mm_mullo_epi16(src_ag, src_alpha);
// Divide by 256.
src_rb = _mm_srli_epi16(src_rb, 8);
// Mask out high bits (already in the right place)
src_ag = _mm_andnot_si128(rb_mask, src_ag);
// Combine back into RGBA.
src_pixel = _mm_or_si128(src_rb, src_ag);
#endif
// Subtract alphas from 256, to get 1..256
__m128i dst_alpha = _mm_sub_epi16(c_256, src_alpha);
//__m128i dst_alpha = _mm_xor_si128(src_alpha, rb_mask);
__m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
__m128i dst_ag = _mm_srli_epi16(dst_pixel, 8);
// Multiply by red and blue by src alpha.
dst_rb = _mm_mullo_epi16(dst_rb, dst_alpha);
// Multiply by alpha and green by src alpha.
dst_ag = _mm_mullo_epi16(dst_ag, dst_alpha);
// Divide by 256.
dst_rb = _mm_srli_epi16(dst_rb, 8);
// Mask out high bits (already in the right place)
dst_ag = _mm_andnot_si128(rb_mask, dst_ag);
// Combine back into RGBA.
dst_pixel = _mm_or_si128(dst_rb, dst_ag);
// Add result
dst_pixel = _mm_adds_epu8(src_pixel, dst_pixel);
#if SETALPHA
dst_pixel = _mm_adds_epu8(alpha_255, dst_pixel);
#endif
#if ALIGNED
_mm_store_si128(d, dst_pixel);
#else
_mm_storeu_si128(d, dst_pixel);
#endif
s++;
d++;
width -= 4;
} }
src_argb = reinterpret_cast<const uint8*>(s); // Do remaining 1 to 3 pixels
dst_argb = reinterpret_cast<uint8*>(d); if (width & 3) {
while (width >= 1) { src_argb += (width & ~3) * 4;
ARGBBlendPixel_SSE2(src_argb, dst_argb); dst_argb += (width & ~3) * 4;
src_argb += 4; width &= 3;
dst_argb += 4; ARGBBlendRow1_SSE2(src_argb, dst_argb, width);
--width;
} }
} }
#endif // HAS_ARGBBLENDROW_SSE2 #endif // HAS_ARGBBLENDROW_SSE2
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment