Commit 41686e84 authored by fbarchard@google.com's avatar fbarchard@google.com

remove linux.cc and simplify cpuid

TEST=pulse build of talk against libyuv
BUG=none
Review URL: http://webrtc-codereview.appspot.com/224002

git-svn-id: http://libyuv.googlecode.com/svn/trunk@25 16f28f9a-4ce2-e073-06de-1de4eb20be90
parent c27f2fb3
...@@ -632,91 +632,6 @@ NV12ToRGB565(const uint8* src_yplane, int src_ystride, ...@@ -632,91 +632,6 @@ NV12ToRGB565(const uint8* src_yplane, int src_ystride,
return 0; return 0;
} }
int
I420ToABGR(const uint8* src_yplane, int src_ystride,
const uint8* src_uplane, int src_ustride,
const uint8* src_vplane, int src_vstride,
uint8* dst_frame, int dst_stride,
int src_width, int src_height)
{
if (src_yplane == NULL || src_uplane == NULL || src_vplane == NULL ||
dst_frame == NULL){
return -1;
}
// RGB orientation - bottom up
uint8* out = dst_frame + 4 * dst_stride * (src_height - 1);
uint8* out2 = out - dst_stride * 4;
int32 tmpR, tmpG, tmpB;
const uint8 *y1,*y2, *u, *v;
int h, w;
y1 = src_yplane;
y2 = y1 + src_ystride;
u = src_uplane;
v = src_vplane;
for (h = ((src_height + 1) >> 1); h > 0; h--){
// 2 rows at a time, 2 y's at a time
for (w = 0; w < ((src_width + 1) >> 1); w++){
// Vertical and horizontal sub-sampling
tmpR = (int32)((298 * (y1[0] - 16) + 409 * (v[0] - 128) + 128) >> 8);
tmpG = (int32)((298 * (y1[0] - 16) - 100 * (u[0] - 128)
- 208 * (v[0] - 128) + 128 ) >> 8);
tmpB = (int32)((298 * (y1[0] - 16) + 516 * (u[0] - 128) + 128 ) >> 8);
out[0] = Clip(tmpR);
out[1] = Clip(tmpG);
out[2] = Clip(tmpB);
out[3] = 0xff;
tmpR = (int32)((298 * (y1[1] - 16) + 409 * (v[0] - 128) + 128 ) >> 8);
tmpG = (int32)((298 * (y1[1] - 16) - 100 * (u[0] - 128)
- 208 * (v[0] - 128) + 128 ) >> 8);
tmpB = (int32)((298 * (y1[1] - 16) + 516 * (u[0] - 128) + 128) >> 8);
out[4] = Clip(tmpR);
out[5] = Clip(tmpG);
out[6] = Clip(tmpB);
out[7] = 0xff;
tmpR = (int32)((298 * (y2[0] - 16) + 409 * (v[0] - 128) + 128) >> 8);
tmpG = (int32)((298 * (y2[0] - 16) - 100 * (u[0] - 128)
- 208 * (v[0] - 128) + 128) >> 8);
tmpB = (int32)((298 * (y2[0] - 16) + 516 * (u[0] - 128) + 128) >> 8);
out2[0] = Clip(tmpR);
out2[1] = Clip(tmpG);
out2[2] = Clip(tmpB);
out2[3] = 0xff;
tmpR = (int32)((298 * (y2[1] - 16) + 409 * (v[0] - 128) + 128) >> 8);
tmpG = (int32)((298 * (y2[1] - 16) - 100 * (u[0] - 128)
- 208 * (v[0] - 128) + 128) >> 8);
tmpB = (int32)((298 * (y2[1] - 16) + 516 * (u[0] - 128) + 128 ) >> 8);
out2[4] = Clip(tmpR);
out2[5] = Clip(tmpG);
out2[6] = Clip(tmpB);
out2[7] = 0xff;
out += 8;
out2 += 8;
y1 += 2;
y2 += 2;
u++;
v++;
}
y1 += src_ystride + src_ystride - src_width;
y2 += src_ystride + src_ystride - src_width;
u += src_ustride - ((src_width + 1) >> 1);
v += src_vstride - ((src_width + 1) >> 1);
out -= (2 * dst_stride + src_width) * 4;
out2 -= (2 * dst_stride + src_width) * 4;
} // end height for
return 0;
}
int int
RGB24ToARGB(const uint8* src_frame, int src_stride, RGB24ToARGB(const uint8* src_frame, int src_stride,
uint8* dst_frame, int dst_stride, uint8* dst_frame, int dst_stride,
......
...@@ -8,13 +8,11 @@ ...@@ -8,13 +8,11 @@
* be found in the AUTHORS file in the root of the source tree. * be found in the AUTHORS file in the root of the source tree.
*/ */
#include "cpu_id.h" #include "cpu_id.h"
#include "basic_types.h" // for CPU_X86
#ifdef _MSC_VER #ifdef _MSC_VER
#include <intrin.h> #include <intrin.h>
#elif LINUX
#include "linux.h"
#endif #endif
// TODO(fbarchard): Use cpuid.h when gcc 4.4 is used on OSX and Linux. // TODO(fbarchard): Use cpuid.h when gcc 4.4 is used on OSX and Linux.
...@@ -41,76 +39,36 @@ static inline void __cpuid(int cpu_info[4], int info_type) { ...@@ -41,76 +39,36 @@ static inline void __cpuid(int cpu_info[4], int info_type) {
namespace libyuv { namespace libyuv {
// CPU detect function for SIMD instruction sets. // CPU detect function for SIMD instruction sets.
bool CpuInfo::cpu_info_initialized_ = false; static bool cpu_info_initialized_ = false;
int CpuInfo::cpu_info_ = 0; static int cpu_info_ = 0;
// Global lock for cpu initialization.
#ifdef CPU_X86
void cpuid(int cpu_info[4], int info_type) {
__cpuid(cpu_info, info_type);
}
#endif
void CpuInfo::InitCpuFlags() { // Global lock for cpu initialization.
static void InitCpuFlags() {
#ifdef CPU_X86 #ifdef CPU_X86
int cpu_info[4]; int cpu_info[4];
__cpuid(cpu_info, 1); __cpuid(cpu_info, 1);
cpu_info_ = (cpu_info[2] & 0x00000200 ? kCpuHasSSSE3 : 0) | cpu_info_ = (cpu_info[2] & 0x00000200 ? kCpuHasSSSE3 : 0) |
(cpu_info[3] & 0x04000000 ? kCpuHasSSE2 : 0); (cpu_info[3] & 0x04000000 ? kCpuHasSSE2 : 0);
#elif defined(__ARM_NEON__) #elif defined(__ARM_NEON__)
// gcc -mfpu=neon defines __ARM_NEON__ // gcc -mfpu=neon defines __ARM_NEON__
// if code is specifically built for Neon-only, enable the flag. // if code is specifically built for Neon-only, enable the flag.
cpu_info_ |= kCpuHasNEON; cpu_info_ |= kCpuHasNEON;
#elif LINUX && defined(__arm__)
cpu_info_ = 0;
// Look for NEON support in /proc/cpuinfo
ProcCpuInfo proc_info;
size_t section_count;
if (proc_info.LoadFromSystem() &&
proc_info.GetSectionCount(&section_count)) {
for (size_t i = 0; i < section_count; ++i) {
std::string out_features;
if (proc_info.GetSectionStringValue(i, "Features", &out_features)) {
if (out_features.find("neon") != std::string::npos) {
cpu_info_ |= kCpuHasNEON;
}
break;
}
}
}
#else #else
cpu_info_ = 0; cpu_info_ = 0;
#endif #endif
cpu_info_initialized_ = true; cpu_info_initialized_ = true;
} }
void CpuInfo::MaskCpuFlagsForTest(int enable_flags) { void MaskCpuFlagsForTest(int enable_flags) {
InitCpuFlags(); InitCpuFlags();
cpu_info_ &= enable_flags; cpu_info_ &= enable_flags;
} }
bool CpuInfo::TestCpuFlag(int flag) { bool TestCpuFlag(int flag) {
if (!cpu_info_initialized_) { if (!cpu_info_initialized_) {
InitCpuFlags(); InitCpuFlags();
} }
return cpu_info_ & flag ? true : false; return cpu_info_ & flag ? true : false;
} }
// Returns the vendor string from the cpu, e.g. "GenuineIntel", "AuthenticAMD".
// See "Intel Processor Identification and the CPUID Instruction"
// (Intel document number: 241618)
std::string CpuInfo::GetCpuVendor() {
#ifdef CPU_X86
int cpu_info[4];
cpuid(cpu_info, 0);
cpu_info[0] = cpu_info[1]; // Reorder output
cpu_info[1] = cpu_info[3];
cpu_info[2] = cpu_info[2];
cpu_info[3] = 0;
return std::string(reinterpret_cast<char *>(&cpu_info[0]));
#else
return std::string("Undefined");
#endif
}
} // namespace libyuv } // namespace libyuv
...@@ -11,42 +11,20 @@ ...@@ -11,42 +11,20 @@
#ifndef LIBYUV_SOURCE_CPU_ID_H_ #ifndef LIBYUV_SOURCE_CPU_ID_H_
#define LIBYUV_SOURCE_CPU_ID_H_ #define LIBYUV_SOURCE_CPU_ID_H_
#include <string>
#include "basic_types.h"
namespace libyuv { namespace libyuv {
#ifdef CPU_X86
void cpuid(int cpu_info[4], int info_type);
#endif
class CpuInfo {
public:
// These flags are only valid on x86 processors
static const int kCpuHasSSE2 = 1;
static const int kCpuHasSSSE3 = 2;
// SIMD support on ARM processors
static const int kCpuHasNEON = 4;
// Detect CPU has SSE2 etc.
static bool TestCpuFlag(int flag);
// Detect CPU vendor: "GenuineIntel" or "AuthenticAMD"
static std::string GetCpuVendor();
// For testing, allow CPU flags to be disabled. // These flags are only valid on x86 processors
static void MaskCpuFlagsForTest(int enable_flags); static const int kCpuHasSSE2 = 1;
static const int kCpuHasSSSE3 = 2;
private: // SIMD support on ARM processors
// Global lock for the cpu initialization static const int kCpuHasNEON = 4;
static bool cpu_info_initialized_;
static int cpu_info_;
static void InitCpuFlags(); // Detect CPU has SSE2 etc.
bool TestCpuFlag(int flag);
DISALLOW_IMPLICIT_CONSTRUCTORS(CpuInfo); // For testing, allow CPU flags to be disabled.
}; void MaskCpuFlagsForTest(int enable_flags);
} // namespace libyuv } // namespace libyuv
......
...@@ -498,7 +498,7 @@ void ARGBToBayerRGB(const uint8* src_rgb, int src_pitch_rgb, ...@@ -498,7 +498,7 @@ void ARGBToBayerRGB(const uint8* src_rgb, int src_pitch_rgb,
void (*ARGBToBayerRow)(const uint8* src_argb, void (*ARGBToBayerRow)(const uint8* src_argb,
uint8* dst_bayer, uint32 selector, int pix); uint8* dst_bayer, uint32 selector, int pix);
#if defined(HAS_ARGBTOBAYERROW_SSSE3) #if defined(HAS_ARGBTOBAYERROW_SSSE3)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSSE3) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) &&
(width % 4 == 0) && (width % 4 == 0) &&
IS_ALIGNED(src_rgb, 16) && (src_pitch_rgb % 16 == 0) && IS_ALIGNED(src_rgb, 16) && (src_pitch_rgb % 16 == 0) &&
IS_ALIGNED(dst_bayer, 4) && (dst_pitch_bayer % 4 == 0)) { IS_ALIGNED(dst_bayer, 4) && (dst_pitch_bayer % 4 == 0)) {
......
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#if defined(LINUX) || defined(ANDROID)
#include "linux.h"
#include <ctype.h>
#include <errno.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <cstdio>
#include <set>
namespace libyuv {
static const char kCpuInfoFile[] = "/proc/cpuinfo";
static const char kCpuMaxFreqFile[] =
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq";
ProcCpuInfo::ProcCpuInfo() {
}
ProcCpuInfo::~ProcCpuInfo() {
}
bool ProcCpuInfo::LoadFromSystem() {
ConfigParser procfs;
if (!procfs.Open(kCpuInfoFile)) {
return false;
}
return procfs.Parse(&sections_);
};
bool ProcCpuInfo::GetSectionCount(size_t* count) {
if (sections_.empty()) {
return false;
}
if (count) {
*count = sections_.size();
}
return true;
}
bool ProcCpuInfo::GetNumCpus(int* num) {
if (sections_.empty()) {
return false;
}
int total_cpus = 0;
#if defined(__arm__)
// Count the number of blocks that have a "processor" key defined. On ARM,
// there may be extra blocks of information that aren't per-processor.
size_t section_count = sections_.size();
for (size_t i = 0; i < section_count; ++i) {
int processor_id;
if (GetSectionIntValue(i, "processor", &processor_id)) {
++total_cpus;
}
}
// Single core ARM systems don't include "processor" keys at all, so return
// that we have a single core if we didn't find any explicitly above.
if (total_cpus == 0) {
total_cpus = 1;
}
#else
// On X86, there is exactly one info section per processor.
total_cpus = static_cast<int>(sections_.size());
#endif
if (num) {
*num = total_cpus;
}
return true;
}
bool ProcCpuInfo::GetNumPhysicalCpus(int* num) {
if (sections_.empty()) {
return false;
}
// TODO(noahric): /proc/cpuinfo only reports cores that are currently
// _online_, so this may underreport the number of physical cores.
#if defined(__arm__)
// ARM (currently) has no hyperthreading, so just return the same value
// as GetNumCpus.
return GetNumCpus(num);
#else
int total_cores = 0;
std::set<int> physical_ids;
size_t section_count = sections_.size();
for (size_t i = 0; i < section_count; ++i) {
int physical_id;
int cores;
// Count the cores for the physical id only if we have not counted the id.
if (GetSectionIntValue(i, "physical id", &physical_id) &&
GetSectionIntValue(i, "cpu cores", &cores) &&
physical_ids.find(physical_id) == physical_ids.end()) {
physical_ids.insert(physical_id);
total_cores += cores;
}
}
if (num) {
*num = total_cores;
}
return true;
#endif
}
bool ProcCpuInfo::GetCpuFamily(int* id) {
int cpu_family = 0;
// shh {
#if defined(__arm__)
// On ChromeOS seaboard, there is no 'cpu family' in '/proc/cpuinfo'. But
// there is 'CPU Architecture' which can be used as 'cpu family'.
// See http://en.wikipedia.org/wiki/ARM_architecture for a good list of
// ARM cpu families, architectures, and their mappings.
// There may be multiple sessions that aren't per-processor. We need to scan
// through each session until we find the first 'CPU architecture'.
size_t section_count = sections_.size();
for (size_t i = 0; i < section_count; ++i) {
if (GetSectionIntValue(i, "CPU architecture", &cpu_family)) {
// We returns the first one (if there are multiple entries).
break;
};
}
#else
// shh }
GetSectionIntValue(0, "cpu family", &cpu_family);
// shh {
#endif
// shh }
if (id) {
*id = cpu_family;
}
return true;
}
bool ProcCpuInfo::GetSectionStringValue(size_t section_num,
const std::string& key,
std::string* result) {
if (section_num >= sections_.size()) {
return false;
}
ConfigParser::SimpleMap::iterator iter = sections_[section_num].find(key);
if (iter == sections_[section_num].end()) {
return false;
}
*result = iter->second;
return true;
}
bool ProcCpuInfo::GetSectionIntValue(size_t section_num,
const std::string& key,
int* result) {
if (section_num >= sections_.size()) {
return false;
}
ConfigParser::SimpleMap::iterator iter = sections_[section_num].find(key);
if (iter == sections_[section_num].end()) {
return false;
}
return FromString(iter->second, result);
}
ConfigParser::ConfigParser() {}
ConfigParser::~ConfigParser() {}
bool ConfigParser::Open(const std::string& filename) {
FileStream* fs = new FileStream();
if (!fs->Open(filename, "r", NULL)) {
return false;
}
instream_.reset(fs);
return true;
}
void ConfigParser::Attach(StreamInterface* stream) {
instream_.reset(stream);
}
bool ConfigParser::Parse(MapVector* key_val_pairs) {
// Parses the file and places the found key-value pairs into key_val_pairs.
SimpleMap section;
while (ParseSection(&section)) {
key_val_pairs->push_back(section);
section.clear();
}
return (!key_val_pairs->empty());
}
bool ConfigParser::ParseSection(SimpleMap* key_val_pair) {
// Parses the next section in the filestream and places the found key-value
// pairs into key_val_pair.
std::string key, value;
while (ParseLine(&key, &value)) {
(*key_val_pair)[key] = value;
}
return (!key_val_pair->empty());
}
bool ConfigParser::ParseLine(std::string* key, std::string* value) {
// Parses the next line in the filestream and places the found key-value
// pair into key and val.
std::string line;
if ((instream_->ReadLine(&line)) == EOF) {
return false;
}
std::vector<std::string> tokens;
if (2 != split(line, ':', &tokens)) {
return false;
}
// Removes whitespace at the end of Key name
size_t pos = tokens[0].length() - 1;
while ((pos > 0) && isspace(tokens[0][pos])) {
pos--;
}
tokens[0].erase(pos + 1);
// Removes whitespace at the start of value
pos = 0;
while (pos < tokens[1].length() && isspace(tokens[1][pos])) {
pos++;
}
tokens[1].erase(0, pos);
*key = tokens[0];
*value = tokens[1];
return true;
}
static bool ExpectLineFromStream(FileStream* stream,
std::string* out) {
StreamResult res = stream->ReadLine(out);
if (res != SR_SUCCESS) {
if (res != SR_EOS) {
LOG(LS_ERROR) << "Error when reading from stream";
} else {
LOG(LS_ERROR) << "Incorrect number of lines in stream";
}
return false;
}
return true;
}
static void ExpectEofFromStream(FileStream* stream) {
std::string unused;
StreamResult res = stream->ReadLine(&unused);
if (res == SR_SUCCESS) {
LOG(LS_WARNING) << "Ignoring unexpected extra lines from stream";
} else if (res != SR_EOS) {
LOG(LS_WARNING) << "Error when checking for extra lines from stream";
}
}
// For caching the lsb_release output (reading it invokes a sub-process and
// hence is somewhat expensive).
static std::string lsb_release_string;
static CriticalSection lsb_release_string_critsec;
std::string ReadLinuxLsbRelease() {
CritScope cs(&lsb_release_string_critsec);
if (!lsb_release_string.empty()) {
// Have cached result from previous call.
return lsb_release_string;
}
// No cached result. Run lsb_release and parse output.
POpenStream lsb_release_output;
if (!lsb_release_output.Open("lsb_release -idrcs", "r", NULL)) {
LOG_ERR(LS_ERROR) << "Can't run lsb_release";
return lsb_release_string; // empty
}
// Read in the command's output and build the string.
std::ostringstream sstr;
std::string line;
int wait_status;
if (!ExpectLineFromStream(&lsb_release_output, &line)) {
return lsb_release_string; // empty
}
sstr << "DISTRIB_ID=" << line;
if (!ExpectLineFromStream(&lsb_release_output, &line)) {
return lsb_release_string; // empty
}
sstr << " DISTRIB_DESCRIPTION=\"" << line << '"';
if (!ExpectLineFromStream(&lsb_release_output, &line)) {
return lsb_release_string; // empty
}
sstr << " DISTRIB_RELEASE=" << line;
if (!ExpectLineFromStream(&lsb_release_output, &line)) {
return lsb_release_string; // empty
}
sstr << " DISTRIB_CODENAME=" << line;
// Should not be anything left.
ExpectEofFromStream(&lsb_release_output);
lsb_release_output.Close();
wait_status = lsb_release_output.GetWaitStatus();
if (wait_status == -1 ||
!WIFEXITED(wait_status) ||
WEXITSTATUS(wait_status) != 0) {
LOG(LS_WARNING) << "Unexpected exit status from lsb_release";
}
lsb_release_string = sstr.str();
return lsb_release_string;
}
std::string ReadLinuxUname() {
struct utsname buf;
if (uname(&buf) < 0) {
LOG_ERR(LS_ERROR) << "Can't call uname()";
return std::string();
}
std::ostringstream sstr;
sstr << buf.sysname << " "
<< buf.release << " "
<< buf.version << " "
<< buf.machine;
return sstr.str();
}
int ReadCpuMaxFreq() {
FileStream fs;
std::string str;
int freq = -1;
if (!fs.Open(kCpuMaxFreqFile, "r", NULL) ||
SR_SUCCESS != fs.ReadLine(&str) ||
!FromString(str, &freq)) {
return -1;
}
return freq;
}
} // namespace libyuv
#endif // defined(LINUX) || defined(ANDROID)
/*
* Copyright (c) 2011 The LibYuv project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef LIBYUV_SOURCE_LINUX_H_
#define LIBYUV_SOURCE_LINUX_H_
#if defined(LINUX) || defined(ANDROID)
#include <string>
#include <map>
#include <vector>
namespace libyuv {
//////////////////////////////////////////////////////////////////////////////
// ConfigParser parses a FileStream of an ".ini."-type format into a map.
//////////////////////////////////////////////////////////////////////////////
// Sample Usage:
// ConfigParser parser;
// ConfigParser::MapVector key_val_pairs;
// if (parser.Open(inifile) && parser.Parse(&key_val_pairs)) {
// for (int section_num=0; i < key_val_pairs.size(); ++section_num) {
// std::string val1 = key_val_pairs[section_num][key1];
// std::string val2 = key_val_pairs[section_num][key2];
// // Do something with valn;
// }
// }
class ConfigParser {
public:
typedef std::map<std::string, std::string> SimpleMap;
typedef std::vector<SimpleMap> MapVector;
ConfigParser();
virtual ~ConfigParser();
virtual bool Open(const std::string& filename);
virtual void Attach(StreamInterface* stream);
virtual bool Parse(MapVector* key_val_pairs);
virtual bool ParseSection(SimpleMap* key_val_pair);
virtual bool ParseLine(std::string* key, std::string* value);
private:
scoped_ptr<StreamInterface> instream_;
};
//////////////////////////////////////////////////////////////////////////////
// ProcCpuInfo reads CPU info from the /proc subsystem on any *NIX platform.
//////////////////////////////////////////////////////////////////////////////
// Sample Usage:
// ProcCpuInfo proc_info;
// int no_of_cpu;
// if (proc_info.LoadFromSystem()) {
// std::string out_str;
// proc_info.GetNumCpus(&no_of_cpu);
// proc_info.GetCpuStringValue(0, "vendor_id", &out_str);
// }
// }
class ProcCpuInfo {
public:
ProcCpuInfo();
virtual ~ProcCpuInfo();
// Reads the proc subsystem's cpu info into memory. If this fails, this
// returns false; if it succeeds, it returns true.
virtual bool LoadFromSystem();
// Obtains the number of logical CPU threads and places the value num.
virtual bool GetNumCpus(int* num);
// Obtains the number of physical CPU cores and places the value num.
virtual bool GetNumPhysicalCpus(int* num);
// Obtains the CPU family id.
virtual bool GetCpuFamily(int* id);
// Obtains the number of sections in /proc/cpuinfo, which may be greater
// than the number of CPUs (e.g. on ARM)
virtual bool GetSectionCount(size_t* count);
// Looks for the CPU proc item with the given name for the given section
// number and places the string value in result.
virtual bool GetSectionStringValue(size_t section_num, const std::string& key,
std::string* result);
// Looks for the CPU proc item with the given name for the given section
// number and places the int value in result.
virtual bool GetSectionIntValue(size_t section_num, const std::string& key,
int* result);
private:
ConfigParser::MapVector sections_;
};
// Builds a string containing the info from lsb_release on a single line.
std::string ReadLinuxLsbRelease();
// Returns the output of "uname".
std::string ReadLinuxUname();
// Returns the content (int) of
// /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq
// Returns -1 on error.
int ReadCpuMaxFreq();
} // namespace libyuv
#endif // defined(LINUX) || defined(ANDROID)
#endif // LIBYUV_SOURCE_LINUX_H_
...@@ -357,7 +357,7 @@ static void X420ToI420(const uint8* src_y, ...@@ -357,7 +357,7 @@ static void X420ToI420(const uint8* src_y,
int halfwidth = (width + 1) >> 1; int halfwidth = (width + 1) >> 1;
void (*SplitUV)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix); void (*SplitUV)(const uint8* src_uv, uint8* dst_u, uint8* dst_v, int pix);
#if defined(HAS_SPLITUV_NEON) #if defined(HAS_SPLITUV_NEON)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasNEON) && if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON) &&
(halfwidth % 16 == 0) && (halfwidth % 16 == 0) &&
IS_ALIGNED(src_uv, 16) && (src_pitch_uv % 16 == 0) && IS_ALIGNED(src_uv, 16) && (src_pitch_uv % 16 == 0) &&
IS_ALIGNED(dst_u, 16) && (dst_pitch_u % 16 == 0) && IS_ALIGNED(dst_u, 16) && (dst_pitch_u % 16 == 0) &&
...@@ -365,7 +365,7 @@ static void X420ToI420(const uint8* src_y, ...@@ -365,7 +365,7 @@ static void X420ToI420(const uint8* src_y,
SplitUV = SplitUV_NEON; SplitUV = SplitUV_NEON;
} else } else
#elif defined(HAS_SPLITUV_SSSE3) #elif defined(HAS_SPLITUV_SSSE3)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSSE3) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) &&
(halfwidth % 16 == 0) && (halfwidth % 16 == 0) &&
IS_ALIGNED(src_uv, 16) && (src_pitch_uv % 16 == 0) && IS_ALIGNED(src_uv, 16) && (src_pitch_uv % 16 == 0) &&
IS_ALIGNED(dst_u, 16) && (dst_pitch_u % 16 == 0) && IS_ALIGNED(dst_u, 16) && (dst_pitch_u % 16 == 0) &&
...@@ -373,7 +373,7 @@ static void X420ToI420(const uint8* src_y, ...@@ -373,7 +373,7 @@ static void X420ToI420(const uint8* src_y,
SplitUV = SplitUV_SSSE3; SplitUV = SplitUV_SSSE3;
} else } else
#elif defined(HAS_SPLITUV_SSE2) #elif defined(HAS_SPLITUV_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(halfwidth % 16 == 0) && (halfwidth % 16 == 0) &&
IS_ALIGNED(src_uv, 16) && (src_pitch_uv % 16 == 0) && IS_ALIGNED(src_uv, 16) && (src_pitch_uv % 16 == 0) &&
IS_ALIGNED(dst_u, 16) && (dst_pitch_u % 16 == 0) && IS_ALIGNED(dst_u, 16) && (dst_pitch_u % 16 == 0) &&
...@@ -552,7 +552,7 @@ void Q420ToI420(const uint8* src_y, int src_pitch_y, ...@@ -552,7 +552,7 @@ void Q420ToI420(const uint8* src_y, int src_pitch_y,
void (*SplitYUY2)(const uint8* src_yuy2, void (*SplitYUY2)(const uint8* src_yuy2,
uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix); uint8* dst_y, uint8* dst_u, uint8* dst_v, int pix);
#if defined(HAS_SPLITYUY2_SSE2) #if defined(HAS_SPLITYUY2_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(width % 16 == 0) && (width % 16 == 0) &&
IS_ALIGNED(src_yuy2, 16) && (src_pitch_yuy2 % 16 == 0) && IS_ALIGNED(src_yuy2, 16) && (src_pitch_yuy2 % 16 == 0) &&
IS_ALIGNED(dst_y, 16) && (dst_pitch_y % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_pitch_y % 16 == 0) &&
...@@ -931,7 +931,7 @@ void YUY2ToI420(const uint8* src_yuy2, int src_pitch_yuy2, ...@@ -931,7 +931,7 @@ void YUY2ToI420(const uint8* src_yuy2, int src_pitch_yuy2,
void (*YUY2ToI420RowY)(const uint8* src_yuy2, void (*YUY2ToI420RowY)(const uint8* src_yuy2,
uint8* dst_y, int pix); uint8* dst_y, int pix);
#if defined(HAS_YUY2TOI420ROW_SSE2) #if defined(HAS_YUY2TOI420ROW_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(width % 16 == 0) && (width % 16 == 0) &&
IS_ALIGNED(src_yuy2, 16) && (src_pitch_yuy2 % 16 == 0) && IS_ALIGNED(src_yuy2, 16) && (src_pitch_yuy2 % 16 == 0) &&
IS_ALIGNED(dst_y, 16) && (dst_pitch_y % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_pitch_y % 16 == 0) &&
...@@ -971,7 +971,7 @@ void UYVYToI420(const uint8* src_uyvy, int src_pitch_uyvy, ...@@ -971,7 +971,7 @@ void UYVYToI420(const uint8* src_uyvy, int src_pitch_uyvy,
void (*UYVYToI420RowY)(const uint8* src_uyvy, void (*UYVYToI420RowY)(const uint8* src_uyvy,
uint8* dst_y, int pix); uint8* dst_y, int pix);
#if defined(HAS_UYVYTOI420ROW_SSE2) #if defined(HAS_UYVYTOI420ROW_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(width % 16 == 0) && (width % 16 == 0) &&
IS_ALIGNED(src_uyvy, 16) && (src_pitch_uyvy % 16 == 0) && IS_ALIGNED(src_uyvy, 16) && (src_pitch_uyvy % 16 == 0) &&
IS_ALIGNED(dst_y, 16) && (dst_pitch_y % 16 == 0) && IS_ALIGNED(dst_y, 16) && (dst_pitch_y % 16 == 0) &&
...@@ -1188,7 +1188,7 @@ void I400ToARGB(const uint8* src_y, int src_pitch_y, ...@@ -1188,7 +1188,7 @@ void I400ToARGB(const uint8* src_y, int src_pitch_y,
int width, int height) { int width, int height) {
void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix); void (*I400ToARGBRow)(const uint8* src_y, uint8* dst_argb, int pix);
#if defined(HAS_I400TOARGBROW_SSE2) #if defined(HAS_I400TOARGBROW_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(width % 8 == 0) && (width % 8 == 0) &&
IS_ALIGNED(src_y, 8) && (src_pitch_y % 8 == 0) && IS_ALIGNED(src_y, 8) && (src_pitch_y % 8 == 0) &&
IS_ALIGNED(dst_argb, 16) && (dst_pitch_argb % 16 == 0)) { IS_ALIGNED(dst_argb, 16) && (dst_pitch_argb % 16 == 0)) {
......
...@@ -2182,14 +2182,14 @@ static void ScalePlaneDown2(int32 iwidth, int32 iheight, ...@@ -2182,14 +2182,14 @@ static void ScalePlaneDown2(int32 iwidth, int32 iheight,
uint8* orow, int32 owidth); uint8* orow, int32 owidth);
#if defined(HAS_SCALEROWDOWN2_NEON) #if defined(HAS_SCALEROWDOWN2_NEON)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasNEON) && if (libyuv::TestCpuFlag(libyuv::kCpuHasNEON) &&
(owidth % 16 == 0) && (istride % 16 == 0) && (ostride % 16 == 0) && (owidth % 16 == 0) && (istride % 16 == 0) && (ostride % 16 == 0) &&
IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 16)) { IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 16)) {
ScaleRowDown2 = interpolate ? ScaleRowDown2Int_NEON : ScaleRowDown2_NEON; ScaleRowDown2 = interpolate ? ScaleRowDown2Int_NEON : ScaleRowDown2_NEON;
} else } else
#endif #endif
#if defined(HAS_SCALEROWDOWN2_SSE2) #if defined(HAS_SCALEROWDOWN2_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(owidth % 16 == 0) && IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 16)) { (owidth % 16 == 0) && IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 16)) {
ScaleRowDown2 = interpolate ? ScaleRowDown2Int_SSE2 : ScaleRowDown2_SSE2; ScaleRowDown2 = interpolate ? ScaleRowDown2Int_SSE2 : ScaleRowDown2_SSE2;
} else } else
...@@ -2222,7 +2222,7 @@ static void ScalePlaneDown4(int32 iwidth, int32 iheight, ...@@ -2222,7 +2222,7 @@ static void ScalePlaneDown4(int32 iwidth, int32 iheight,
uint8* orow, int32 owidth); uint8* orow, int32 owidth);
#if defined(HAS_SCALEROWDOWN4_SSE2) #if defined(HAS_SCALEROWDOWN4_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(owidth % 8 == 0) && (istride % 16 == 0) && (ostride % 8 == 0) && (owidth % 8 == 0) && (istride % 16 == 0) && (ostride % 8 == 0) &&
IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 8)) { IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 8)) {
ScaleRowDown4 = interpolate ? ScaleRowDown4Int_SSE2 : ScaleRowDown4_SSE2; ScaleRowDown4 = interpolate ? ScaleRowDown4Int_SSE2 : ScaleRowDown4_SSE2;
...@@ -2256,7 +2256,7 @@ static void ScalePlaneDown8(int32 iwidth, int32 iheight, ...@@ -2256,7 +2256,7 @@ static void ScalePlaneDown8(int32 iwidth, int32 iheight,
void (*ScaleRowDown8)(const uint8* iptr, int32 istride, void (*ScaleRowDown8)(const uint8* iptr, int32 istride,
uint8* orow, int32 owidth); uint8* orow, int32 owidth);
#if defined(HAS_SCALEROWDOWN8_SSE2) #if defined(HAS_SCALEROWDOWN8_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(owidth % 16 == 0) && owidth <= kMaxOutputWidth && (owidth % 16 == 0) && owidth <= kMaxOutputWidth &&
(istride % 16 == 0) && (ostride % 16 == 0) && (istride % 16 == 0) && (ostride % 16 == 0) &&
IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 16)) { IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 16)) {
...@@ -2291,7 +2291,7 @@ static void ScalePlaneDown34(int32 iwidth, int32 iheight, ...@@ -2291,7 +2291,7 @@ static void ScalePlaneDown34(int32 iwidth, int32 iheight,
void (*ScaleRowDown34_1)(const uint8* iptr, int32 istride, void (*ScaleRowDown34_1)(const uint8* iptr, int32 istride,
uint8* orow, int32 owidth); uint8* orow, int32 owidth);
#if defined(HAS_SCALEROWDOWN34_SSSE3) #if defined(HAS_SCALEROWDOWN34_SSSE3)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSSE3) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) &&
(owidth % 24 == 0) && (istride % 16 == 0) && (ostride % 8 == 0) && (owidth % 24 == 0) && (istride % 16 == 0) && (ostride % 8 == 0) &&
IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 8)) { IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 8)) {
if (!interpolate) { if (!interpolate) {
...@@ -2304,7 +2304,7 @@ static void ScalePlaneDown34(int32 iwidth, int32 iheight, ...@@ -2304,7 +2304,7 @@ static void ScalePlaneDown34(int32 iwidth, int32 iheight,
} else } else
#endif #endif
#if defined(HAS_SCALEROWDOWN34_SSE2) #if defined(HAS_SCALEROWDOWN34_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(owidth % 24 == 0) && (istride % 16 == 0) && (ostride % 8 == 0) && (owidth % 24 == 0) && (istride % 16 == 0) && (ostride % 8 == 0) &&
IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 8) && IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 8) &&
interpolate) { interpolate) {
...@@ -2372,7 +2372,7 @@ static void ScalePlaneDown38(int32 iwidth, int32 iheight, ...@@ -2372,7 +2372,7 @@ static void ScalePlaneDown38(int32 iwidth, int32 iheight,
void (*ScaleRowDown38_2)(const uint8* iptr, int32 istride, void (*ScaleRowDown38_2)(const uint8* iptr, int32 istride,
uint8* orow, int32 owidth); uint8* orow, int32 owidth);
#if defined(HAS_SCALEROWDOWN38_SSSE3) #if defined(HAS_SCALEROWDOWN38_SSSE3)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSSE3) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) &&
(owidth % 24 == 0) && (istride % 16 == 0) && (ostride % 8 == 0) && (owidth % 24 == 0) && (istride % 16 == 0) && (ostride % 8 == 0) &&
IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 8)) { IS_ALIGNED(iptr, 16) && IS_ALIGNED(optr, 8)) {
if (!interpolate) { if (!interpolate) {
...@@ -2520,7 +2520,7 @@ static void ScalePlaneBox(int32 iwidth, int32 iheight, ...@@ -2520,7 +2520,7 @@ static void ScalePlaneBox(int32 iwidth, int32 iheight,
void (*ScaleAddCols)(int32 owidth, int32 boxheight, int dx, void (*ScaleAddCols)(int32 owidth, int32 boxheight, int dx,
const uint16 *iptr, uint8 *optr); const uint16 *iptr, uint8 *optr);
#if defined(HAS_SCALEADDROWS_SSE2) #if defined(HAS_SCALEADDROWS_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(istride % 16 == 0) && IS_ALIGNED(iptr, 16) && (iwidth % 16) == 0) { (istride % 16 == 0) && IS_ALIGNED(iptr, 16) && (iwidth % 16) == 0) {
ScaleAddRows = ScaleAddRows_SSE2; ScaleAddRows = ScaleAddRows_SSE2;
} else } else
...@@ -2611,13 +2611,13 @@ static void ScalePlaneBilinear(int32 iwidth, int32 iheight, ...@@ -2611,13 +2611,13 @@ static void ScalePlaneBilinear(int32 iwidth, int32 iheight,
void (*ScaleFilterCols)(uint8* optr, const uint8* iptr, void (*ScaleFilterCols)(uint8* optr, const uint8* iptr,
int owidth, int dx); int owidth, int dx);
#if defined(HAS_SCALEFILTERROWS_SSSE3) #if defined(HAS_SCALEFILTERROWS_SSSE3)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSSE3) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSSE3) &&
(istride % 16 == 0) && IS_ALIGNED(iptr, 16) && (iwidth % 16) == 0) { (istride % 16 == 0) && IS_ALIGNED(iptr, 16) && (iwidth % 16) == 0) {
ScaleFilterRows = ScaleFilterRows_SSSE3; ScaleFilterRows = ScaleFilterRows_SSSE3;
} else } else
#endif #endif
#if defined(HAS_SCALEFILTERROWS_SSE2) #if defined(HAS_SCALEFILTERROWS_SSE2)
if (libyuv::CpuInfo::TestCpuFlag(libyuv::CpuInfo::kCpuHasSSE2) && if (libyuv::TestCpuFlag(libyuv::kCpuHasSSE2) &&
(istride % 16 == 0) && IS_ALIGNED(iptr, 16) && (iwidth % 16) == 0) { (istride % 16 == 0) && IS_ALIGNED(iptr, 16) && (iwidth % 16) == 0) {
ScaleFilterRows = ScaleFilterRows_SSE2; ScaleFilterRows = ScaleFilterRows_SSE2;
} else } else
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment