Reworked reflection.h to be more general.

e.g. support generic reading/writing from structs/vectors etc.

Change-Id: I2eb6e24db088a72da444d5c8df7e506e53d5bc2d
Tested: on Linux.
Bug: 22660837
parent 0e064e41
......@@ -25,6 +25,7 @@ set(FlatBuffers_Library_SRCS
include/flatbuffers/reflection_generated.h
src/idl_parser.cpp
src/idl_gen_text.cpp
src/reflection.cpp
)
set(FlatBuffers_Compiler_SRCS
......@@ -43,14 +44,9 @@ set(FlatHash_SRCS
)
set(FlatBuffers_Tests_SRCS
include/flatbuffers/flatbuffers.h
include/flatbuffers/hash.h
include/flatbuffers/idl.h
include/flatbuffers/util.h
src/idl_parser.cpp
src/idl_gen_general.cpp
src/idl_gen_text.cpp
${FlatBuffers_Library_SRCS}
src/idl_gen_fbs.cpp
src/idl_gen_general.cpp
tests/test.cpp
# file generate by running compiler on tests/monster_test.fbs
${CMAKE_CURRENT_BINARY_DIR}/tests/monster_test_generated.h
......
......@@ -31,7 +31,9 @@ LOCAL_SRC_FILES := main.cpp \
../../tests/test.cpp \
../../src/idl_parser.cpp \
../../src/idl_gen_text.cpp \
../../src/idl_gen_fbs.cpp
../../src/idl_gen_fbs.cpp \
../../src/idl_gen_general.cpp \
../../src/reflection.cpp
LOCAL_LDLIBS := -llog -landroid
LOCAL_STATIC_LIBRARIES := android_native_app_glue flatbuffers
LOCAL_ARM_MODE := arm
......
......@@ -353,6 +353,24 @@ private:
}
};
// Represent a vector much like the template above, but in this case we
// don't know what the element types are (used with reflection.h).
class VectorOfAny {
public:
uoffset_t size() const { return EndianScalar(length_); }
const uint8_t *Data() const {
return reinterpret_cast<const uint8_t *>(&length_ + 1);
}
uint8_t *Data() {
return reinterpret_cast<uint8_t *>(&length_ + 1);
}
protected:
VectorOfAny();
uoffset_t length_;
};
// Convenient helper function to get the length of any vector, regardless
// of wether it is null or not (the field is not set).
template<typename T> static inline size_t VectorLength(const Vector<T> *v) {
......@@ -995,6 +1013,9 @@ class Struct FLATBUFFERS_FINAL_CLASS {
return reinterpret_cast<T>(&data_[o]);
}
const uint8_t *GetAddressOf(uoffset_t o) const { return &data_[o]; }
uint8_t *GetAddressOf(uoffset_t o) { return &data_[o]; }
private:
uint8_t data_[1];
};
......@@ -1027,7 +1048,6 @@ class Table {
? reinterpret_cast<P>(p + ReadScalar<uoffset_t>(p))
: nullptr;
}
template<typename P> P GetPointer(voffset_t field) const {
return const_cast<Table *>(this)->GetPointer<P>(field);
}
......@@ -1052,6 +1072,14 @@ class Table {
return true;
}
uint8_t *GetAddressOf(voffset_t field) {
auto field_offset = GetOptionalFieldOffset(field);
return field_offset ? data_ + field_offset : nullptr;
}
const uint8_t *GetAddressOf(voffset_t field) const {
return const_cast<Table *>(this)->GetAddressOf(field);
}
uint8_t *GetVTable() { return data_ - ReadScalar<soffset_t>(data_); }
bool CheckField(voffset_t field) const {
......
......@@ -17,8 +17,6 @@
#ifndef FLATBUFFERS_REFLECTION_H_
#define FLATBUFFERS_REFLECTION_H_
#include "flatbuffers/util.h"
// This is somewhat of a circular dependency because flatc (and thus this
// file) is needed to generate this header in the first place.
// Should normally not be a problem since it can be generated by the
......@@ -30,12 +28,28 @@
namespace flatbuffers {
// ------------------------- GETTERS -------------------------
// Size of a basic type, don't use with structs.
inline size_t GetTypeSize(reflection::BaseType base_type) {
// This needs to correspond to the BaseType enum.
static size_t sizes[] = { 0, 1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 4, 8, 4, 4, 4, 4 };
return sizes[base_type];
}
// Same as above, but now correctly returns the size of a struct if
// the field (or vector element) is a struct.
inline size_t GetTypeSizeInline(reflection::BaseType base_type,
int type_index,
const reflection::Schema &schema) {
if (base_type == reflection::Obj &&
schema.objects()->Get(type_index)->is_struct()) {
return schema.objects()->Get(type_index)->bytesize();
} else {
return GetTypeSize(base_type);
}
}
// Get the root, regardless of what type it is.
inline Table *GetAnyRoot(uint8_t *flatbuf) {
return GetMutableRoot<Table>(flatbuf);
......@@ -75,6 +89,14 @@ template<typename T> Vector<T> *GetFieldV(const Table &table,
return table.GetPointer<Vector<T> *>(field.offset());
}
// Get a field, if you know it's a vector, generically.
// To actually access elements, use the return value together with
// field.type()->element() in any of GetAnyVectorElemI below etc.
inline VectorOfAny *GetFieldAnyV(const Table &table,
const reflection::Field &field) {
return table.GetPointer<VectorOfAny *>(field.offset());
}
// Get a field, if you know it's a table.
inline Table *GetFieldT(const Table &table,
const reflection::Field &field) {
......@@ -83,93 +105,124 @@ inline Table *GetFieldT(const Table &table,
return table.GetPointer<Table *>(field.offset());
}
// Get any field as a 64bit int, regardless of what it is (bool/int/float/str).
// Raw helper functions used below: get any value in memory as a 64bit int, a
// double or a string.
// All scalars get static_cast to an int64_t, strings use strtoull, every other
// data type returns 0.
int64_t GetAnyValueI(reflection::BaseType type, const uint8_t *data);
// All scalars static cast to double, strings use strtod, every other data
// type is 0.0.
double GetAnyValueF(reflection::BaseType type, const uint8_t *data);
// All scalars converted using stringstream, strings as-is, and all other
// data types provide some level of debug-pretty-printing.
std::string GetAnyValueS(reflection::BaseType type, const uint8_t *data,
const reflection::Schema *schema,
int type_index);
// Get any table field as a 64bit int, regardless of what type it is.
inline int64_t GetAnyFieldI(const Table &table,
const reflection::Field &field) {
# define FLATBUFFERS_GET(C, T) \
static_cast<int64_t>(GetField##C<T>(table, field))
switch (field.type()->base_type()) {
case reflection::UType:
case reflection::Bool:
case reflection::UByte: return FLATBUFFERS_GET(I, uint8_t);
case reflection::Byte: return FLATBUFFERS_GET(I, int8_t);
case reflection::Short: return FLATBUFFERS_GET(I, int16_t);
case reflection::UShort: return FLATBUFFERS_GET(I, uint16_t);
case reflection::Int: return FLATBUFFERS_GET(I, int32_t);
case reflection::UInt: return FLATBUFFERS_GET(I, uint32_t);
case reflection::Long: return FLATBUFFERS_GET(I, int64_t);
case reflection::ULong: return FLATBUFFERS_GET(I, uint64_t);
case reflection::Float: return FLATBUFFERS_GET(F, float);
case reflection::Double: return FLATBUFFERS_GET(F, double);
case reflection::String: {
auto s = GetFieldS(table, field);
return s ? StringToInt(s->c_str()) : 0;
}
default: return 0;
}
# undef FLATBUFFERS_GET
auto field_ptr = table.GetAddressOf(field.offset());
return field_ptr ? GetAnyValueI(field.type()->base_type(), field_ptr)
: field.default_integer();
}
// Get any field as a double, regardless of what it is (bool/int/float/str).
// Get any table field as a double, regardless of what type it is.
inline double GetAnyFieldF(const Table &table,
const reflection::Field &field) {
switch (field.type()->base_type()) {
case reflection::Float: return GetFieldF<float>(table, field);
case reflection::Double: return GetFieldF<double>(table, field);
case reflection::String: {
auto s = GetFieldS(table, field);
return s ? strtod(s->c_str(), nullptr) : 0.0;
}
default: return static_cast<double>(GetAnyFieldI(table, field));
}
auto field_ptr = table.GetAddressOf(field.offset());
return field_ptr ? GetAnyValueF(field.type()->base_type(), field_ptr)
: field.default_real();
}
// Get any field as a string, regardless of what it is (bool/int/float/str).
// Get any table field as a string, regardless of what type it is.
// You may pass nullptr for the schema if you don't care to have fields that
// are of table type pretty-printed.
inline std::string GetAnyFieldS(const Table &table,
const reflection::Field &field,
const reflection::Schema &schema) {
switch (field.type()->base_type()) {
case reflection::Float:
case reflection::Double: return NumToString(GetAnyFieldF(table, field));
case reflection::String: {
auto s = GetFieldS(table, field);
return s ? s->c_str() : "";
}
case reflection::Obj: {
// Convert the table to a string. This is mostly for debugging purposes,
// and does NOT promise to be JSON compliant.
// Also prefixes the type.
auto &objectdef = *schema.objects()->Get(field.type()->index());
auto s = objectdef.name()->str();
if (objectdef.is_struct()) {
s += "(struct)"; // TODO: implement this as well.
} else {
auto table_field = GetFieldT(table, field);
s += " { ";
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
if (!table.CheckField(fielddef.offset())) continue;
auto val = GetAnyFieldS(*table_field, fielddef, schema);
if (fielddef.type()->base_type() == reflection::String)
val = "\"" + val + "\""; // Doesn't deal with escape codes etc.
s += fielddef.name()->str();
s += ": ";
s += val;
s += ", ";
}
s += "}";
}
return s;
}
case reflection::Vector:
return "[(elements)]"; // TODO: implement this as well.
case reflection::Union:
return "(union)"; // TODO: implement this as well.
default: return NumToString(GetAnyFieldI(table, field));
}
const reflection::Schema *schema) {
auto field_ptr = table.GetAddressOf(field.offset());
return field_ptr ? GetAnyValueS(field.type()->base_type(), field_ptr, schema,
field.type()->index())
: "";
}
// Get any struct field as a 64bit int, regardless of what type it is.
inline int64_t GetAnyFieldI(const Struct &st,
const reflection::Field &field) {
return GetAnyValueI(field.type()->base_type(),
st.GetAddressOf(field.offset()));
}
// Get any struct field as a double, regardless of what type it is.
inline double GetAnyFieldF(const Struct &st,
const reflection::Field &field) {
return GetAnyValueF(field.type()->base_type(),
st.GetAddressOf(field.offset()));
}
// Get any struct field as a string, regardless of what type it is.
inline std::string GetAnyFieldS(const Struct &st,
const reflection::Field &field) {
return GetAnyValueS(field.type()->base_type(),
st.GetAddressOf(field.offset()), nullptr, -1);
}
// Get any vector element as a 64bit int, regardless of what type it is.
inline int64_t GetAnyVectorElemI(const VectorOfAny *vec,
reflection::BaseType elem_type, size_t i) {
return GetAnyValueI(elem_type, vec->Data() + GetTypeSize(elem_type) * i);
}
// Get any vector element as a double, regardless of what type it is.
inline double GetAnyVectorElemF(const VectorOfAny *vec,
reflection::BaseType elem_type, size_t i) {
return GetAnyValueF(elem_type, vec->Data() + GetTypeSize(elem_type) * i);
}
// Get any vector element as a string, regardless of what type it is.
inline std::string GetAnyVectorElemS(const VectorOfAny *vec,
reflection::BaseType elem_type, size_t i) {
return GetAnyValueS(elem_type, vec->Data() + GetTypeSize(elem_type) * i,
nullptr, -1);
}
// Get a vector element that's a table/string/vector from a generic vector.
// Pass Table/String/VectorOfAny as template parameter.
// Warning: does no typechecking.
template<typename T> T *GetAnyVectorElemPointer(const VectorOfAny *vec,
size_t i) {
auto elem_ptr = vec->Data() + sizeof(uoffset_t) * i;
return (T *)(elem_ptr + ReadScalar<uoffset_t>(elem_ptr));
}
// Get the inline-address of a vector element. Useful for Structs (pass Struct
// as template arg), or being able to address a range of scalars in-line.
// Get elem_size from GetTypeSizeInline().
// Note: little-endian data on all platforms, use EndianScalar() instead of
// raw pointer access with scalars).
template<typename T> T *GetAnyVectorElemAddressOf(const VectorOfAny *vec,
size_t i,
size_t elem_size) {
// C-cast to allow const conversion.
return (T *)(vec->Data() + elem_size * i);
}
// Similarly, for elements of tables.
template<typename T> T *GetAnyFieldAddressOf(const Table &table,
const reflection::Field &field) {
return (T *)table.GetAddressOf(field.offset());
}
// Similarly, for elements of structs.
template<typename T> T *GetAnyFieldAddressOf(const Struct &st,
const reflection::Field &field) {
return (T *)st.GetAddressOf(field.offset());
}
// ------------------------- SETTERS -------------------------
// Set any scalar field, if you know its exact type.
template<typename T> bool SetField(Table *table, const reflection::Field &field,
T val) {
......@@ -177,52 +230,83 @@ template<typename T> bool SetField(Table *table, const reflection::Field &field,
return table->SetField(field.offset(), val);
}
// Set any field as a 64bit int, regardless of what it is (bool/int/float/str).
inline void SetAnyFieldI(Table *table, const reflection::Field &field,
// Raw helper functions used below: set any value in memory as a 64bit int, a
// double or a string.
// These work for all scalar values, but do nothing for other data types.
// To set a string, see SetString below.
void SetAnyValueI(reflection::BaseType type, uint8_t *data, int64_t val);
void SetAnyValueF(reflection::BaseType type, uint8_t *data, double val);
void SetAnyValueS(reflection::BaseType type, uint8_t *data, const char *val);
// Set any table field as a 64bit int, regardless of type what it is.
inline bool SetAnyFieldI(Table *table, const reflection::Field &field,
int64_t val) {
# define FLATBUFFERS_SET(T) SetField<T>(table, field, static_cast<T>(val))
switch (field.type()->base_type()) {
case reflection::UType:
case reflection::Bool:
case reflection::UByte: FLATBUFFERS_SET(uint8_t ); break;
case reflection::Byte: FLATBUFFERS_SET(int8_t ); break;
case reflection::Short: FLATBUFFERS_SET(int16_t ); break;
case reflection::UShort: FLATBUFFERS_SET(uint16_t ); break;
case reflection::Int: FLATBUFFERS_SET(int32_t ); break;
case reflection::UInt: FLATBUFFERS_SET(uint32_t ); break;
case reflection::Long: FLATBUFFERS_SET(int64_t ); break;
case reflection::ULong: FLATBUFFERS_SET(uint64_t ); break;
case reflection::Float: FLATBUFFERS_SET(float ); break;
case reflection::Double: FLATBUFFERS_SET(double ); break;
// TODO: support strings
default: break;
}
# undef FLATBUFFERS_SET
auto field_ptr = table->GetAddressOf(field.offset());
if (!field_ptr) return false;
SetAnyValueI(field.type()->base_type(), field_ptr, val);
return true;
}
// Set any field as a double, regardless of what it is (bool/int/float/str).
inline void SetAnyFieldF(Table *table, const reflection::Field &field,
// Set any table field as a double, regardless of what type it is.
inline bool SetAnyFieldF(Table *table, const reflection::Field &field,
double val) {
switch (field.type()->base_type()) {
case reflection::Float: SetField<float> (table, field,
static_cast<float>(val)); break;
case reflection::Double: SetField<double>(table, field, val); break;
// TODO: support strings.
default: SetAnyFieldI(table, field, static_cast<int64_t>(val)); break;
}
auto field_ptr = table->GetAddressOf(field.offset());
if (!field_ptr) return false;
SetAnyValueF(field.type()->base_type(), field_ptr, val);
return true;
}
// Set any table field as a string, regardless of what type it is.
inline bool SetAnyFieldS(Table *table, const reflection::Field &field,
const char *val) {
auto field_ptr = table->GetAddressOf(field.offset());
if (!field_ptr) return false;
SetAnyValueS(field.type()->base_type(), field_ptr, val);
return true;
}
// Set any field as a string, regardless of what it is (bool/int/float/str).
inline void SetAnyFieldS(Table *table, const reflection::Field &field,
// Set any struct field as a 64bit int, regardless of type what it is.
inline void SetAnyFieldI(Struct *st, const reflection::Field &field,
int64_t val) {
SetAnyValueI(field.type()->base_type(), st->GetAddressOf(field.offset()),
val);
}
// Set any struct field as a double, regardless of type what it is.
inline void SetAnyFieldF(Struct *st, const reflection::Field &field,
double val) {
SetAnyValueF(field.type()->base_type(), st->GetAddressOf(field.offset()),
val);
}
// Set any struct field as a string, regardless of type what it is.
inline void SetAnyFieldS(Struct *st, const reflection::Field &field,
const char *val) {
switch (field.type()->base_type()) {
case reflection::Float:
case reflection::Double: SetAnyFieldF(table, field, strtod(val, nullptr));
// TODO: support strings.
default: SetAnyFieldI(table, field, StringToInt(val)); break;
}
SetAnyValueS(field.type()->base_type(), st->GetAddressOf(field.offset()),
val);
}
// Set any vector element as a 64bit int, regardless of type what it is.
inline void SetAnyVectorElemI(VectorOfAny *vec, reflection::BaseType elem_type,
size_t i, int64_t val) {
SetAnyValueI(elem_type, vec->Data() + GetTypeSize(elem_type) * i, val);
}
// Set any vector element as a double, regardless of type what it is.
inline void SetAnyVectorElemF(VectorOfAny *vec, reflection::BaseType elem_type,
size_t i, double val) {
SetAnyValueF(elem_type, vec->Data() + GetTypeSize(elem_type) * i, val);
}
// Set any vector element as a string, regardless of type what it is.
inline void SetAnyVectorElemS(VectorOfAny *vec, reflection::BaseType elem_type,
size_t i, const char *val) {
SetAnyValueS(elem_type, vec->Data() + GetTypeSize(elem_type) * i, val);
}
// ------------------------- RESIZING SETTERS -------------------------
// "smart" pointer for use with resizing vectors: turns a pointer inside
// a vector into a relative offset, such that it is not affected by resizes.
template<typename T, typename U> class pointer_inside_vector {
......@@ -265,194 +349,43 @@ inline const reflection::Object &GetUnionType(
return *enumval->object();
}
// Resize a FlatBuffer in-place by iterating through all offsets in the buffer
// and adjusting them by "delta" if they straddle the start offset.
// Once that is done, bytes can now be inserted/deleted safely.
// "delta" may be negative (shrinking).
// Unless "delta" is a multiple of the largest alignment, you'll create a small
// amount of garbage space in the buffer (usually 0..7 bytes).
// If your FlatBuffer's root table is not the schema's root table, you should
// pass in your root_table type as well.
class ResizeContext {
public:
ResizeContext(const reflection::Schema &schema, uoffset_t start, int delta,
std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table = nullptr)
: schema_(schema), startptr_(flatbuf->data() + start),
delta_(delta), buf_(*flatbuf),
dag_check_(flatbuf->size() / sizeof(uoffset_t), false) {
auto mask = static_cast<int>(sizeof(largest_scalar_t) - 1);
delta_ = (delta_ + mask) & ~mask;
if (!delta_) return; // We can't shrink by less than largest_scalar_t.
// Now change all the offsets by delta_.
auto root = GetAnyRoot(buf_.data());
Straddle<uoffset_t, 1>(buf_.data(), root, buf_.data());
ResizeTable(root_table ? *root_table : *schema.root_table(), root);
// We can now add or remove bytes at start.
if (delta_ > 0) buf_.insert(buf_.begin() + start, delta_, 0);
else buf_.erase(buf_.begin() + start, buf_.begin() + start - delta_);
}
// Check if the range between first (lower address) and second straddles
// the insertion point. If it does, change the offset at offsetloc (of
// type T, with direction D).
template<typename T, int D> void Straddle(void *first, void *second,
void *offsetloc) {
if (first <= startptr_ && second >= startptr_) {
WriteScalar<T>(offsetloc, ReadScalar<T>(offsetloc) + delta_ * D);
DagCheck(offsetloc) = true;
}
}
// This returns a boolean that records if the corresponding offset location
// has been modified already. If so, we can't even read the corresponding
// offset, since it is pointing to a location that is illegal until the
// resize actually happens.
// This must be checked for every offset, since we can't know which offsets
// will straddle and which won't.
uint8_t &DagCheck(void *offsetloc) {
auto dag_idx = reinterpret_cast<uoffset_t *>(offsetloc) -
reinterpret_cast<uoffset_t *>(buf_.data());
return dag_check_[dag_idx];
}
void ResizeTable(const reflection::Object &objectdef, Table *table) {
if (DagCheck(table))
return; // Table already visited.
auto vtable = table->GetVTable();
// Check if the vtable offset points beyond the insertion point.
Straddle<soffset_t, -1>(table, vtable, table);
// This direction shouldn't happen because vtables that sit before tables
// are always directly adjacent, but check just in case we ever change the
// way flatbuffers are built.
Straddle<soffset_t, -1>(vtable, table, table);
// Early out: since all fields inside the table must point forwards in
// memory, if the insertion point is before the table we can stop here.
auto tableloc = reinterpret_cast<uint8_t *>(table);
if (startptr_ <= tableloc) return;
// Check each field.
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
auto base_type = fielddef.type()->base_type();
// Ignore scalars.
if (base_type <= reflection::Double) continue;
// Ignore fields that are not stored.
auto offset = table->GetOptionalFieldOffset(fielddef.offset());
if (!offset) continue;
// Ignore structs.
auto subobjectdef = base_type == reflection::Obj ?
schema_.objects()->Get(fielddef.type()->index()) : nullptr;
if (subobjectdef && subobjectdef->is_struct()) continue;
// Get this fields' offset, and read it if safe.
auto offsetloc = tableloc + offset;
if (DagCheck(offsetloc))
continue; // This offset already visited.
auto ref = offsetloc + ReadScalar<uoffset_t>(offsetloc);
Straddle<uoffset_t, 1>(offsetloc, ref, offsetloc);
// Recurse.
switch (base_type) {
case reflection::Obj: {
ResizeTable(*subobjectdef, reinterpret_cast<Table *>(ref));
break;
}
case reflection::Vector: {
auto elem_type = fielddef.type()->element();
if (elem_type != reflection::Obj && elem_type != reflection::String)
break;
auto vec = reinterpret_cast<Vector<uoffset_t> *>(ref);
auto elemobjectdef = elem_type == reflection::Obj
? schema_.objects()->Get(fielddef.type()->index())
: nullptr;
if (elemobjectdef && elemobjectdef->is_struct()) break;
for (uoffset_t i = 0; i < vec->size(); i++) {
auto loc = vec->Data() + i * sizeof(uoffset_t);
if (DagCheck(loc))
continue; // This offset already visited.
auto dest = loc + vec->Get(i);
Straddle<uoffset_t, 1>(loc, dest ,loc);
if (elemobjectdef)
ResizeTable(*elemobjectdef, reinterpret_cast<Table *>(dest));
}
break;
}
case reflection::Union: {
ResizeTable(GetUnionType(schema_, objectdef, fielddef, *table),
reinterpret_cast<Table *>(ref));
break;
}
case reflection::String:
break;
default:
assert(false);
}
}
}
void operator=(const ResizeContext &rc);
private:
const reflection::Schema &schema_;
uint8_t *startptr_;
int delta_;
std::vector<uint8_t> &buf_;
std::vector<uint8_t> dag_check_;
};
// Changes the contents of a string inside a FlatBuffer. FlatBuffer must
// live inside a std::vector so we can resize the buffer if needed.
// "str" must live inside "flatbuf" and may be invalidated after this call.
// If your FlatBuffer's root table is not the schema's root table, you should
// pass in your root_table type as well.
inline void SetString(const reflection::Schema &schema, const std::string &val,
const String *str, std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table = nullptr) {
auto delta = static_cast<int>(val.size()) - static_cast<int>(str->Length());
auto start = static_cast<uoffset_t>(reinterpret_cast<const uint8_t *>(str) -
flatbuf->data() +
sizeof(uoffset_t));
if (delta) {
// Clear the old string, since we don't want parts of it remaining.
memset(flatbuf->data() + start, 0, str->Length());
// Different size, we must expand (or contract).
ResizeContext(schema, start, delta, flatbuf, root_table);
}
// Copy new data. Safe because we created the right amount of space.
memcpy(flatbuf->data() + start, val.c_str(), val.size() + 1);
}
void SetString(const reflection::Schema &schema, const std::string &val,
const String *str, std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table = nullptr);
// Resizes a flatbuffers::Vector inside a FlatBuffer. FlatBuffer must
// live inside a std::vector so we can resize the buffer if needed.
// "vec" must live inside "flatbuf" and may be invalidated after this call.
// If your FlatBuffer's root table is not the schema's root table, you should
// pass in your root_table type as well.
uint8_t *ResizeAnyVector(const reflection::Schema &schema, uoffset_t newsize,
const VectorOfAny *vec, uoffset_t num_elems,
uoffset_t elem_size, std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table = nullptr);
template <typename T>
void ResizeVector(const reflection::Schema &schema, uoffset_t newsize, T val,
const Vector<T> *vec, std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table = nullptr) {
auto delta_elem = static_cast<int>(newsize) - static_cast<int>(vec->size());
auto delta_bytes = delta_elem * static_cast<int>(sizeof(T));
auto vec_start = reinterpret_cast<const uint8_t *>(vec) - flatbuf->data();
auto start = static_cast<uoffset_t>(vec_start + sizeof(uoffset_t) +
sizeof(T) * vec->size());
if (delta_bytes) {
if (delta_elem < 0) {
// Clear elements we're throwing away, since some might remain in the
// buffer.
memset(flatbuf->data() + start + delta_elem * sizeof(T), 0,
-delta_elem * sizeof(T));
}
ResizeContext(schema, start, delta_bytes, flatbuf, root_table);
WriteScalar(flatbuf->data() + vec_start, newsize); // Length field.
// Set new elements to "val".
for (int i = 0; i < delta_elem; i++) {
auto loc = flatbuf->data() + start + i * sizeof(T);
auto is_scalar = std::is_scalar<T>::value;
if (is_scalar) {
WriteScalar(loc, val);
} else { // struct
*reinterpret_cast<T *>(loc) = val;
}
auto newelems = ResizeAnyVector(schema, newsize,
reinterpret_cast<const VectorOfAny *>(vec),
vec->size(),
static_cast<uoffset_t>(sizeof(T)), flatbuf,
root_table);
// Set new elements to "val".
for (int i = 0; i < delta_elem; i++) {
auto loc = newelems + i * sizeof(T);
auto is_scalar = std::is_scalar<T>::value;
if (is_scalar) {
WriteScalar(loc, val);
} else { // struct
*reinterpret_cast<T *>(loc) = val;
}
}
}
......@@ -465,21 +398,8 @@ void ResizeVector(const reflection::Schema &schema, uoffset_t newsize, T val,
// existing one.
// The return value can now be set using Vector::MutateOffset or SetFieldT
// below.
inline const uint8_t *AddFlatBuffer(std::vector<uint8_t> &flatbuf,
const uint8_t *newbuf, size_t newlen) {
// Align to sizeof(uoffset_t) past sizeof(largest_scalar_t) since we're
// going to chop off the root offset.
while ((flatbuf.size() & (sizeof(uoffset_t) - 1)) ||
!(flatbuf.size() & (sizeof(largest_scalar_t) - 1))) {
flatbuf.push_back(0);
}
auto insertion_point = static_cast<uoffset_t>(flatbuf.size());
// Insert the entire FlatBuffer minus the root pointer.
flatbuf.insert(flatbuf.end(), newbuf + sizeof(uoffset_t),
newbuf + newlen - sizeof(uoffset_t));
auto root_offset = ReadScalar<uoffset_t>(newbuf) - sizeof(uoffset_t);
return flatbuf.data() + insertion_point + root_offset;
}
const uint8_t *AddFlatBuffer(std::vector<uint8_t> &flatbuf,
const uint8_t *newbuf, size_t newlen);
inline bool SetFieldT(Table *table, const reflection::Field &field,
const uint8_t *val) {
......@@ -487,6 +407,8 @@ inline bool SetFieldT(Table *table, const reflection::Field &field,
return table->SetPointer(field.offset(), val);
}
// ------------------------- COPYING -------------------------
// Generic copying of tables from a FlatBuffer into a FlatBuffer builder.
// Can be used to do any kind of merging/selecting you may want to do out
// of existing buffers. Also useful to reconstruct a whole buffer if the
......@@ -495,134 +417,10 @@ inline bool SetFieldT(Table *table, const reflection::Field &field,
// Note: this does not deal with DAGs correctly. If the table passed forms a
// DAG, the copy will be a tree instead (with duplicates).
inline void CopyInline(FlatBufferBuilder &fbb,
const reflection::Field &fielddef,
const Table &table,
size_t align, size_t size) {
fbb.Align(align);
fbb.PushBytes(table.GetStruct<const uint8_t *>(fielddef.offset()), size);
fbb.TrackField(fielddef.offset(), fbb.GetSize());
}
inline Offset<const Table *> CopyTable(FlatBufferBuilder &fbb,
const reflection::Schema &schema,
const reflection::Object &objectdef,
const Table &table) {
// Before we can construct the table, we have to first generate any
// subobjects, and collect their offsets.
std::vector<uoffset_t> offsets;
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
// Skip if field is not present in the source.
if (!table.CheckField(fielddef.offset())) continue;
uoffset_t offset = 0;
switch (fielddef.type()->base_type()) {
case reflection::String: {
offset = fbb.CreateString(GetFieldS(table, fielddef)).o;
break;
}
case reflection::Obj: {
auto &subobjectdef = *schema.objects()->Get(fielddef.type()->index());
if (!subobjectdef.is_struct()) {
offset = CopyTable(fbb, schema, subobjectdef,
*GetFieldT(table, fielddef)).o;
}
break;
}
case reflection::Union: {
auto &subobjectdef = GetUnionType(schema, objectdef, fielddef, table);
offset = CopyTable(fbb, schema, subobjectdef,
*GetFieldT(table, fielddef)).o;
break;
}
case reflection::Vector: {
auto vec = table.GetPointer<const Vector<Offset<Table>> *>(
fielddef.offset());
auto element_base_type = fielddef.type()->element();
auto elemobjectdef = element_base_type == reflection::Obj
? schema.objects()->Get(fielddef.type()->index())
: nullptr;
switch (element_base_type) {
case reflection::String: {
std::vector<Offset<const String *>> elements(vec->size());
auto vec_s = reinterpret_cast<const Vector<Offset<String>> *>(vec);
for (uoffset_t i = 0; i < vec_s->size(); i++) {
elements[i] = fbb.CreateString(vec_s->Get(i)).o;
}
offset = fbb.CreateVector(elements).o;
break;
}
case reflection::Obj: {
if (!elemobjectdef->is_struct()) {
std::vector<Offset<const Table *>> elements(vec->size());
for (uoffset_t i = 0; i < vec->size(); i++) {
elements[i] =
CopyTable(fbb, schema, *elemobjectdef, *vec->Get(i));
}
offset = fbb.CreateVector(elements).o;
break;
}
// FALL-THRU:
}
default: { // Scalars and structs.
auto element_size = GetTypeSize(element_base_type);
if (elemobjectdef && elemobjectdef->is_struct())
element_size = elemobjectdef->bytesize();
fbb.StartVector(element_size, vec->size());
fbb.PushBytes(vec->Data(), element_size * vec->size());
offset = fbb.EndVector(vec->size());
break;
}
}
break;
}
default: // Scalars.
break;
}
if (offset) {
offsets.push_back(offset);
}
}
// Now we can build the actual table from either offsets or scalar data.
auto start = objectdef.is_struct()
? fbb.StartStruct(objectdef.minalign())
: fbb.StartTable();
size_t offset_idx = 0;
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
if (!table.CheckField(fielddef.offset())) continue;
auto base_type = fielddef.type()->base_type();
switch (base_type) {
case reflection::Obj: {
auto &subobjectdef = *schema.objects()->Get(fielddef.type()->index());
if (subobjectdef.is_struct()) {
CopyInline(fbb, fielddef, table, subobjectdef.minalign(),
subobjectdef.bytesize());
break;
}
// else: FALL-THRU:
}
case reflection::Union:
case reflection::String:
case reflection::Vector:
fbb.AddOffset(fielddef.offset(), Offset<void>(offsets[offset_idx++]));
break;
default: { // Scalars.
auto size = GetTypeSize(base_type);
CopyInline(fbb, fielddef, table, size, size);
break;
}
}
}
assert(offset_idx == offsets.size());
if (objectdef.is_struct()) {
fbb.ClearOffsets();
return fbb.EndStruct();
} else {
return fbb.EndTable(start, static_cast<voffset_t>(fielddefs->size()));
}
}
Offset<const Table *> CopyTable(FlatBufferBuilder &fbb,
const reflection::Schema &schema,
const reflection::Object &objectdef,
const Table &table);
} // namespace flatbuffers
......
/*
* Copyright 2015 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "flatbuffers/reflection.h"
#include "flatbuffers/util.h"
// Helper functionality for reflection.
namespace flatbuffers {
int64_t GetAnyValueI(reflection::BaseType type, const uint8_t *data) {
# define FLATBUFFERS_GET(T) static_cast<int64_t>(ReadScalar<T>(data))
switch (type) {
case reflection::UType:
case reflection::Bool:
case reflection::UByte: return FLATBUFFERS_GET(uint8_t);
case reflection::Byte: return FLATBUFFERS_GET(int8_t);
case reflection::Short: return FLATBUFFERS_GET(int16_t);
case reflection::UShort: return FLATBUFFERS_GET(uint16_t);
case reflection::Int: return FLATBUFFERS_GET(int32_t);
case reflection::UInt: return FLATBUFFERS_GET(uint32_t);
case reflection::Long: return FLATBUFFERS_GET(int64_t);
case reflection::ULong: return FLATBUFFERS_GET(uint64_t);
case reflection::Float: return FLATBUFFERS_GET(float);
case reflection::Double: return FLATBUFFERS_GET(double);
case reflection::String: {
auto s = reinterpret_cast<const String *>(ReadScalar<uoffset_t>(data) +
data);
return s ? StringToInt(s->c_str()) : 0;
}
default: return 0; // Tables & vectors do not make sense.
}
# undef FLATBUFFERS_GET
}
double GetAnyValueF(reflection::BaseType type, const uint8_t *data) {
switch (type) {
case reflection::Float: return static_cast<double>(ReadScalar<float>(data));
case reflection::Double: return ReadScalar<double>(data);
case reflection::String: {
auto s = reinterpret_cast<const String *>(ReadScalar<uoffset_t>(data) +
data);
return s ? strtod(s->c_str(), nullptr) : 0.0;
}
default: return static_cast<double>(GetAnyValueI(type, data));
}
}
std::string GetAnyValueS(reflection::BaseType type, const uint8_t *data,
const reflection::Schema *schema, int type_index) {
switch (type) {
case reflection::Float:
case reflection::Double: return NumToString(GetAnyValueF(type, data));
case reflection::String: {
auto s = reinterpret_cast<const String *>(ReadScalar<uoffset_t>(data) +
data);
return s ? s->c_str() : "";
}
case reflection::Obj:
if (schema) {
// Convert the table to a string. This is mostly for debugging purposes,
// and does NOT promise to be JSON compliant.
// Also prefixes the type.
auto &objectdef = *schema->objects()->Get(type_index);
auto s = objectdef.name()->str();
if (objectdef.is_struct()) {
s += "(struct)"; // TODO: implement this as well.
} else {
auto table_field = reinterpret_cast<const Table *>(
ReadScalar<uoffset_t>(data) + data);
s += " { ";
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
if (!table_field->CheckField(fielddef.offset())) continue;
auto val = GetAnyFieldS(*table_field, fielddef, schema);
if (fielddef.type()->base_type() == reflection::String)
val = "\"" + val + "\""; // Doesn't deal with escape codes etc.
s += fielddef.name()->str();
s += ": ";
s += val;
s += ", ";
}
s += "}";
}
return s;
} else {
return "(table)";
}
case reflection::Vector:
return "[(elements)]"; // TODO: implement this as well.
case reflection::Union:
return "(union)"; // TODO: implement this as well.
default: return NumToString(GetAnyValueI(type, data));
}
}
void SetAnyValueI(reflection::BaseType type, uint8_t *data, int64_t val) {
# define FLATBUFFERS_SET(T) WriteScalar(data, static_cast<T>(val))
switch (type) {
case reflection::UType:
case reflection::Bool:
case reflection::UByte: FLATBUFFERS_SET(uint8_t ); break;
case reflection::Byte: FLATBUFFERS_SET(int8_t ); break;
case reflection::Short: FLATBUFFERS_SET(int16_t ); break;
case reflection::UShort: FLATBUFFERS_SET(uint16_t); break;
case reflection::Int: FLATBUFFERS_SET(int32_t ); break;
case reflection::UInt: FLATBUFFERS_SET(uint32_t); break;
case reflection::Long: FLATBUFFERS_SET(int64_t ); break;
case reflection::ULong: FLATBUFFERS_SET(uint64_t); break;
case reflection::Float: FLATBUFFERS_SET(float ); break;
case reflection::Double: FLATBUFFERS_SET(double ); break;
// TODO: support strings
default: break;
}
# undef FLATBUFFERS_SET
}
void SetAnyValueF(reflection::BaseType type, uint8_t *data, double val) {
switch (type) {
case reflection::Float: WriteScalar(data, static_cast<float>(val)); break;
case reflection::Double: WriteScalar(data, val); break;
// TODO: support strings.
default: SetAnyValueI(type, data, static_cast<int64_t>(val)); break;
}
}
void SetAnyValueS(reflection::BaseType type, uint8_t *data, const char *val) {
switch (type) {
case reflection::Float:
case reflection::Double: SetAnyValueF(type, data, strtod(val, nullptr));
// TODO: support strings.
default: SetAnyValueI(type, data, StringToInt(val)); break;
}
}
// Resize a FlatBuffer in-place by iterating through all offsets in the buffer
// and adjusting them by "delta" if they straddle the start offset.
// Once that is done, bytes can now be inserted/deleted safely.
// "delta" may be negative (shrinking).
// Unless "delta" is a multiple of the largest alignment, you'll create a small
// amount of garbage space in the buffer (usually 0..7 bytes).
// If your FlatBuffer's root table is not the schema's root table, you should
// pass in your root_table type as well.
class ResizeContext {
public:
ResizeContext(const reflection::Schema &schema, uoffset_t start, int delta,
std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table = nullptr)
: schema_(schema), startptr_(flatbuf->data() + start),
delta_(delta), buf_(*flatbuf),
dag_check_(flatbuf->size() / sizeof(uoffset_t), false) {
auto mask = static_cast<int>(sizeof(largest_scalar_t) - 1);
delta_ = (delta_ + mask) & ~mask;
if (!delta_) return; // We can't shrink by less than largest_scalar_t.
// Now change all the offsets by delta_.
auto root = GetAnyRoot(buf_.data());
Straddle<uoffset_t, 1>(buf_.data(), root, buf_.data());
ResizeTable(root_table ? *root_table : *schema.root_table(), root);
// We can now add or remove bytes at start.
if (delta_ > 0) buf_.insert(buf_.begin() + start, delta_, 0);
else buf_.erase(buf_.begin() + start, buf_.begin() + start - delta_);
}
// Check if the range between first (lower address) and second straddles
// the insertion point. If it does, change the offset at offsetloc (of
// type T, with direction D).
template<typename T, int D> void Straddle(void *first, void *second,
void *offsetloc) {
if (first <= startptr_ && second >= startptr_) {
WriteScalar<T>(offsetloc, ReadScalar<T>(offsetloc) + delta_ * D);
DagCheck(offsetloc) = true;
}
}
// This returns a boolean that records if the corresponding offset location
// has been modified already. If so, we can't even read the corresponding
// offset, since it is pointing to a location that is illegal until the
// resize actually happens.
// This must be checked for every offset, since we can't know which offsets
// will straddle and which won't.
uint8_t &DagCheck(void *offsetloc) {
auto dag_idx = reinterpret_cast<uoffset_t *>(offsetloc) -
reinterpret_cast<uoffset_t *>(buf_.data());
return dag_check_[dag_idx];
}
void ResizeTable(const reflection::Object &objectdef, Table *table) {
if (DagCheck(table))
return; // Table already visited.
auto vtable = table->GetVTable();
// Check if the vtable offset points beyond the insertion point.
Straddle<soffset_t, -1>(table, vtable, table);
// This direction shouldn't happen because vtables that sit before tables
// are always directly adjacent, but check just in case we ever change the
// way flatbuffers are built.
Straddle<soffset_t, -1>(vtable, table, table);
// Early out: since all fields inside the table must point forwards in
// memory, if the insertion point is before the table we can stop here.
auto tableloc = reinterpret_cast<uint8_t *>(table);
if (startptr_ <= tableloc) return;
// Check each field.
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
auto base_type = fielddef.type()->base_type();
// Ignore scalars.
if (base_type <= reflection::Double) continue;
// Ignore fields that are not stored.
auto offset = table->GetOptionalFieldOffset(fielddef.offset());
if (!offset) continue;
// Ignore structs.
auto subobjectdef = base_type == reflection::Obj ?
schema_.objects()->Get(fielddef.type()->index()) : nullptr;
if (subobjectdef && subobjectdef->is_struct()) continue;
// Get this fields' offset, and read it if safe.
auto offsetloc = tableloc + offset;
if (DagCheck(offsetloc))
continue; // This offset already visited.
auto ref = offsetloc + ReadScalar<uoffset_t>(offsetloc);
Straddle<uoffset_t, 1>(offsetloc, ref, offsetloc);
// Recurse.
switch (base_type) {
case reflection::Obj: {
ResizeTable(*subobjectdef, reinterpret_cast<Table *>(ref));
break;
}
case reflection::Vector: {
auto elem_type = fielddef.type()->element();
if (elem_type != reflection::Obj && elem_type != reflection::String)
break;
auto vec = reinterpret_cast<Vector<uoffset_t> *>(ref);
auto elemobjectdef = elem_type == reflection::Obj
? schema_.objects()->Get(fielddef.type()->index())
: nullptr;
if (elemobjectdef && elemobjectdef->is_struct()) break;
for (uoffset_t i = 0; i < vec->size(); i++) {
auto loc = vec->Data() + i * sizeof(uoffset_t);
if (DagCheck(loc))
continue; // This offset already visited.
auto dest = loc + vec->Get(i);
Straddle<uoffset_t, 1>(loc, dest ,loc);
if (elemobjectdef)
ResizeTable(*elemobjectdef, reinterpret_cast<Table *>(dest));
}
break;
}
case reflection::Union: {
ResizeTable(GetUnionType(schema_, objectdef, fielddef, *table),
reinterpret_cast<Table *>(ref));
break;
}
case reflection::String:
break;
default:
assert(false);
}
}
}
void operator=(const ResizeContext &rc);
private:
const reflection::Schema &schema_;
uint8_t *startptr_;
int delta_;
std::vector<uint8_t> &buf_;
std::vector<uint8_t> dag_check_;
};
void SetString(const reflection::Schema &schema, const std::string &val,
const String *str, std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table) {
auto delta = static_cast<int>(val.size()) - static_cast<int>(str->Length());
auto start = static_cast<uoffset_t>(reinterpret_cast<const uint8_t *>(str) -
flatbuf->data() +
sizeof(uoffset_t));
if (delta) {
// Clear the old string, since we don't want parts of it remaining.
memset(flatbuf->data() + start, 0, str->Length());
// Different size, we must expand (or contract).
ResizeContext(schema, start, delta, flatbuf, root_table);
}
// Copy new data. Safe because we created the right amount of space.
memcpy(flatbuf->data() + start, val.c_str(), val.size() + 1);
}
uint8_t *ResizeAnyVector(const reflection::Schema &schema, uoffset_t newsize,
const VectorOfAny *vec, uoffset_t num_elems,
uoffset_t elem_size, std::vector<uint8_t> *flatbuf,
const reflection::Object *root_table) {
auto delta_elem = static_cast<int>(newsize) - static_cast<int>(num_elems);
auto delta_bytes = delta_elem * static_cast<int>(elem_size);
auto vec_start = reinterpret_cast<const uint8_t *>(vec) - flatbuf->data();
auto start = static_cast<uoffset_t>(vec_start + sizeof(uoffset_t) +
elem_size * num_elems);
if (delta_bytes) {
if (delta_elem < 0) {
// Clear elements we're throwing away, since some might remain in the
// buffer.
auto size_clear = -delta_elem * elem_size;
memset(flatbuf->data() + start - size_clear, 0, size_clear);
}
ResizeContext(schema, start, delta_bytes, flatbuf, root_table);
WriteScalar(flatbuf->data() + vec_start, newsize); // Length field.
// Set new elements to 0.. this can be overwritten by the caller.
if (delta_elem > 0) {
memset(flatbuf->data() + start, 0, delta_elem * elem_size);
}
}
return flatbuf->data() + start;
}
const uint8_t *AddFlatBuffer(std::vector<uint8_t> &flatbuf,
const uint8_t *newbuf, size_t newlen) {
// Align to sizeof(uoffset_t) past sizeof(largest_scalar_t) since we're
// going to chop off the root offset.
while ((flatbuf.size() & (sizeof(uoffset_t) - 1)) ||
!(flatbuf.size() & (sizeof(largest_scalar_t) - 1))) {
flatbuf.push_back(0);
}
auto insertion_point = static_cast<uoffset_t>(flatbuf.size());
// Insert the entire FlatBuffer minus the root pointer.
flatbuf.insert(flatbuf.end(), newbuf + sizeof(uoffset_t),
newbuf + newlen - sizeof(uoffset_t));
auto root_offset = ReadScalar<uoffset_t>(newbuf) - sizeof(uoffset_t);
return flatbuf.data() + insertion_point + root_offset;
}
void CopyInline(FlatBufferBuilder &fbb, const reflection::Field &fielddef,
const Table &table, size_t align, size_t size) {
fbb.Align(align);
fbb.PushBytes(table.GetStruct<const uint8_t *>(fielddef.offset()), size);
fbb.TrackField(fielddef.offset(), fbb.GetSize());
}
Offset<const Table *> CopyTable(FlatBufferBuilder &fbb,
const reflection::Schema &schema,
const reflection::Object &objectdef,
const Table &table) {
// Before we can construct the table, we have to first generate any
// subobjects, and collect their offsets.
std::vector<uoffset_t> offsets;
auto fielddefs = objectdef.fields();
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
// Skip if field is not present in the source.
if (!table.CheckField(fielddef.offset())) continue;
uoffset_t offset = 0;
switch (fielddef.type()->base_type()) {
case reflection::String: {
offset = fbb.CreateString(GetFieldS(table, fielddef)).o;
break;
}
case reflection::Obj: {
auto &subobjectdef = *schema.objects()->Get(fielddef.type()->index());
if (!subobjectdef.is_struct()) {
offset = CopyTable(fbb, schema, subobjectdef,
*GetFieldT(table, fielddef)).o;
}
break;
}
case reflection::Union: {
auto &subobjectdef = GetUnionType(schema, objectdef, fielddef, table);
offset = CopyTable(fbb, schema, subobjectdef,
*GetFieldT(table, fielddef)).o;
break;
}
case reflection::Vector: {
auto vec = table.GetPointer<const Vector<Offset<Table>> *>(
fielddef.offset());
auto element_base_type = fielddef.type()->element();
auto elemobjectdef = element_base_type == reflection::Obj
? schema.objects()->Get(fielddef.type()->index())
: nullptr;
switch (element_base_type) {
case reflection::String: {
std::vector<Offset<const String *>> elements(vec->size());
auto vec_s = reinterpret_cast<const Vector<Offset<String>> *>(vec);
for (uoffset_t i = 0; i < vec_s->size(); i++) {
elements[i] = fbb.CreateString(vec_s->Get(i)).o;
}
offset = fbb.CreateVector(elements).o;
break;
}
case reflection::Obj: {
if (!elemobjectdef->is_struct()) {
std::vector<Offset<const Table *>> elements(vec->size());
for (uoffset_t i = 0; i < vec->size(); i++) {
elements[i] =
CopyTable(fbb, schema, *elemobjectdef, *vec->Get(i));
}
offset = fbb.CreateVector(elements).o;
break;
}
// FALL-THRU:
}
default: { // Scalars and structs.
auto element_size = GetTypeSize(element_base_type);
if (elemobjectdef && elemobjectdef->is_struct())
element_size = elemobjectdef->bytesize();
fbb.StartVector(element_size, vec->size());
fbb.PushBytes(vec->Data(), element_size * vec->size());
offset = fbb.EndVector(vec->size());
break;
}
}
break;
}
default: // Scalars.
break;
}
if (offset) {
offsets.push_back(offset);
}
}
// Now we can build the actual table from either offsets or scalar data.
auto start = objectdef.is_struct()
? fbb.StartStruct(objectdef.minalign())
: fbb.StartTable();
size_t offset_idx = 0;
for (auto it = fielddefs->begin(); it != fielddefs->end(); ++it) {
auto &fielddef = **it;
if (!table.CheckField(fielddef.offset())) continue;
auto base_type = fielddef.type()->base_type();
switch (base_type) {
case reflection::Obj: {
auto &subobjectdef = *schema.objects()->Get(fielddef.type()->index());
if (subobjectdef.is_struct()) {
CopyInline(fbb, fielddef, table, subobjectdef.minalign(),
subobjectdef.bytesize());
break;
}
// else: FALL-THRU:
}
case reflection::Union:
case reflection::String:
case reflection::Vector:
fbb.AddOffset(fielddef.offset(), Offset<void>(offsets[offset_idx++]));
break;
default: { // Scalars.
auto size = GetTypeSize(base_type);
CopyInline(fbb, fielddef, table, size, size);
break;
}
}
}
assert(offset_idx == offsets.size());
if (objectdef.is_struct()) {
fbb.ClearOffsets();
return fbb.EndStruct();
} else {
return fbb.EndTable(start, static_cast<voffset_t>(fielddefs->size()));
}
}
} // namespace flatbuffers
......@@ -324,7 +324,7 @@ void ReflectionTest(uint8_t *flatbuf, size_t length) {
TEST_EQ(hp_int64, 80);
auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
TEST_EQ(hp_double, 80.0);
auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, schema);
auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
TEST_EQ_STR(hp_string.c_str(), "80");
// We can also modify it.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment