Commit ae5b2c52 authored by foo86's avatar foo86 Committed by Hendrik Leppkes

avcodec/dca: add new decoder based on libdcadec

parent 0930b2dd
......@@ -61,6 +61,7 @@ version <next>:
- support for dvaudio in wav and avi
- libaacplus and libvo-aacenc support removed
- Cineform HD decoder
- new DCA decoder with full support for DTS-HD extensions
version 2.8:
......
......@@ -2271,6 +2271,7 @@ comfortnoise_encoder_select="lpc"
cook_decoder_select="audiodsp mdct sinewin"
cscd_decoder_select="lzo"
cscd_decoder_suggest="zlib"
dca_decoder_select="mdct"
dds_decoder_select="texturedsp"
dirac_decoder_select="dirac_parse dwt golomb videodsp mpegvideoenc"
dnxhd_decoder_select="blockdsp idctdsp"
......
......@@ -222,6 +222,9 @@ OBJS-$(CONFIG_COMFORTNOISE_ENCODER) += cngenc.o
OBJS-$(CONFIG_CPIA_DECODER) += cpia.o
OBJS-$(CONFIG_CSCD_DECODER) += cscd.o
OBJS-$(CONFIG_CYUV_DECODER) += cyuv.o
OBJS-$(CONFIG_DCA_DECODER) += dcadec.o dca.o dcadata.o \
dca_core.o dca_exss.o dca_xll.o \
dcadsp.o dcadct.o synth_filter.o
OBJS-$(CONFIG_DCA_ENCODER) += dcaenc.o dca.o dcadata.o
OBJS-$(CONFIG_DDS_DECODER) += dds.o
OBJS-$(CONFIG_DIRAC_DECODER) += diracdec.o dirac.o diracdsp.o \
......
#OBJS-$(CONFIG_DCA_DECODER) += aarch64/synth_filter_init.o
OBJS-$(CONFIG_DCA_DECODER) += aarch64/synth_filter_init.o
OBJS-$(CONFIG_FFT) += aarch64/fft_init_aarch64.o
OBJS-$(CONFIG_FMTCONVERT) += aarch64/fmtconvert_init.o
OBJS-$(CONFIG_H264CHROMA) += aarch64/h264chroma_init_aarch64.o
......@@ -17,7 +17,7 @@ OBJS-$(CONFIG_VORBIS_DECODER) += aarch64/vorbisdsp_init.o
ARMV8-OBJS-$(CONFIG_VIDEODSP) += aarch64/videodsp.o
#NEON-OBJS-$(CONFIG_DCA_DECODER) += aarch64/synth_filter_neon.o
NEON-OBJS-$(CONFIG_DCA_DECODER) += aarch64/synth_filter_neon.o
NEON-OBJS-$(CONFIG_FFT) += aarch64/fft_neon.o
NEON-OBJS-$(CONFIG_FMTCONVERT) += aarch64/fmtconvert_neon.o
NEON-OBJS-$(CONFIG_H264CHROMA) += aarch64/h264cmc_neon.o
......
......@@ -391,7 +391,7 @@ void avcodec_register_all(void)
REGISTER_DECODER(BINKAUDIO_RDFT, binkaudio_rdft);
REGISTER_DECODER(BMV_AUDIO, bmv_audio);
REGISTER_DECODER(COOK, cook);
REGISTER_ENCODER(DCA, dca);
REGISTER_ENCDEC (DCA, dca);
REGISTER_DECODER(DSD_LSBF, dsd_lsbf);
REGISTER_DECODER(DSD_MSBF, dsd_msbf);
REGISTER_DECODER(DSD_LSBF_PLANAR, dsd_lsbf_planar);
......
......@@ -36,7 +36,7 @@ OBJS-$(CONFIG_VP8DSP) += arm/vp8dsp_init_arm.o
# decoders/encoders
OBJS-$(CONFIG_AAC_DECODER) += arm/aacpsdsp_init_arm.o \
arm/sbrdsp_init_arm.o
#OBJS-$(CONFIG_DCA_DECODER) += arm/synth_filter_init_arm.o
OBJS-$(CONFIG_DCA_DECODER) += arm/synth_filter_init_arm.o
OBJS-$(CONFIG_HEVC_DECODER) += arm/hevcdsp_init_arm.o
OBJS-$(CONFIG_MLP_DECODER) += arm/mlpdsp_init_arm.o
OBJS-$(CONFIG_RV40_DECODER) += arm/rv40dsp_init_arm.o
......@@ -87,7 +87,7 @@ VFP-OBJS-$(CONFIG_FMTCONVERT) += arm/fmtconvert_vfp.o
VFP-OBJS-$(CONFIG_MDCT) += arm/mdct_vfp.o
# decoders/encoders
#VFP-OBJS-$(CONFIG_DCA_DECODER) += arm/synth_filter_vfp.o
VFP-OBJS-$(CONFIG_DCA_DECODER) += arm/synth_filter_vfp.o
# NEON optimizations
......@@ -126,7 +126,7 @@ NEON-OBJS-$(CONFIG_VP8DSP) += arm/vp8dsp_init_neon.o \
NEON-OBJS-$(CONFIG_AAC_DECODER) += arm/aacpsdsp_neon.o \
arm/sbrdsp_neon.o
NEON-OBJS-$(CONFIG_LLAUDDSP) += arm/lossless_audiodsp_neon.o
#NEON-OBJS-$(CONFIG_DCA_DECODER) += arm/synth_filter_neon.o
NEON-OBJS-$(CONFIG_DCA_DECODER) += arm/synth_filter_neon.o
NEON-OBJS-$(CONFIG_HEVC_DECODER) += arm/hevcdsp_init_neon.o \
arm/hevcdsp_deblock_neon.o \
arm/hevcdsp_idct_neon.o \
......
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dcadec.h"
#include "dcadata.h"
#include "dcahuff.h"
#include "dcamath.h"
#include "dca_syncwords.h"
#if ARCH_ARM
#include "arm/dca.h"
#endif
enum HeaderType {
HEADER_CORE,
HEADER_XCH,
HEADER_XXCH
};
enum AudioMode {
AMODE_MONO, // Mode 0: A (mono)
AMODE_MONO_DUAL, // Mode 1: A + B (dual mono)
AMODE_STEREO, // Mode 2: L + R (stereo)
AMODE_STEREO_SUMDIFF, // Mode 3: (L+R) + (L-R) (sum-diff)
AMODE_STEREO_TOTAL, // Mode 4: LT + RT (left and right total)
AMODE_3F, // Mode 5: C + L + R
AMODE_2F1R, // Mode 6: L + R + S
AMODE_3F1R, // Mode 7: C + L + R + S
AMODE_2F2R, // Mode 8: L + R + SL + SR
AMODE_3F2R, // Mode 9: C + L + R + SL + SR
AMODE_COUNT
};
enum ExtAudioType {
EXT_AUDIO_XCH = 0,
EXT_AUDIO_X96 = 2,
EXT_AUDIO_XXCH = 6
};
enum LFEFlag {
LFE_FLAG_NONE,
LFE_FLAG_128,
LFE_FLAG_64,
LFE_FLAG_INVALID
};
static const int8_t prm_ch_to_spkr_map[AMODE_COUNT][5] = {
{ DCA_SPEAKER_C, -1, -1, -1, -1 },
{ DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 },
{ DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 },
{ DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 },
{ DCA_SPEAKER_L, DCA_SPEAKER_R, -1, -1, -1 },
{ DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , -1, -1 },
{ DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Cs, -1, -1 },
{ DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R , DCA_SPEAKER_Cs, -1 },
{ DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs, -1 },
{ DCA_SPEAKER_C, DCA_SPEAKER_L, DCA_SPEAKER_R, DCA_SPEAKER_Ls, DCA_SPEAKER_Rs }
};
static const uint8_t audio_mode_ch_mask[AMODE_COUNT] = {
DCA_SPEAKER_LAYOUT_MONO,
DCA_SPEAKER_LAYOUT_STEREO,
DCA_SPEAKER_LAYOUT_STEREO,
DCA_SPEAKER_LAYOUT_STEREO,
DCA_SPEAKER_LAYOUT_STEREO,
DCA_SPEAKER_LAYOUT_3_0,
DCA_SPEAKER_LAYOUT_2_1,
DCA_SPEAKER_LAYOUT_3_1,
DCA_SPEAKER_LAYOUT_2_2,
DCA_SPEAKER_LAYOUT_5POINT0
};
static const uint8_t block_code_nbits[7] = {
7, 10, 12, 13, 15, 17, 19
};
static const uint8_t quant_index_sel_nbits[DCA_CODE_BOOKS] = {
1, 2, 2, 2, 2, 3, 3, 3, 3, 3
};
static const uint8_t quant_index_group_size[DCA_CODE_BOOKS] = {
1, 3, 3, 3, 3, 7, 7, 7, 7, 7
};
typedef struct DCAVLC {
int offset; ///< Code values offset
int max_depth; ///< Parameter for get_vlc2()
VLC vlc[7]; ///< Actual codes
} DCAVLC;
static DCAVLC vlc_bit_allocation;
static DCAVLC vlc_transition_mode;
static DCAVLC vlc_scale_factor;
static DCAVLC vlc_quant_index[DCA_CODE_BOOKS];
static av_cold void dca_init_vlcs(void)
{
static VLC_TYPE dca_table[23622][2];
static int vlcs_initialized = 0;
int i, j, k;
if (vlcs_initialized)
return;
#define DCA_INIT_VLC(vlc, a, b, c, d) \
do { \
vlc.table = &dca_table[ff_dca_vlc_offs[k]]; \
vlc.table_allocated = ff_dca_vlc_offs[k + 1] - ff_dca_vlc_offs[k]; \
init_vlc(&vlc, a, b, c, 1, 1, d, 2, 2, INIT_VLC_USE_NEW_STATIC); \
} while (0)
vlc_bit_allocation.offset = 1;
vlc_bit_allocation.max_depth = 2;
for (i = 0, k = 0; i < 5; i++, k++)
DCA_INIT_VLC(vlc_bit_allocation.vlc[i], bitalloc_12_vlc_bits[i], 12,
bitalloc_12_bits[i], bitalloc_12_codes[i]);
vlc_scale_factor.offset = -64;
vlc_scale_factor.max_depth = 2;
for (i = 0; i < 5; i++, k++)
DCA_INIT_VLC(vlc_scale_factor.vlc[i], SCALES_VLC_BITS, 129,
scales_bits[i], scales_codes[i]);
vlc_transition_mode.offset = 0;
vlc_transition_mode.max_depth = 1;
for (i = 0; i < 4; i++, k++)
DCA_INIT_VLC(vlc_transition_mode.vlc[i], tmode_vlc_bits[i], 4,
tmode_bits[i], tmode_codes[i]);
for (i = 0; i < DCA_CODE_BOOKS; i++) {
vlc_quant_index[i].offset = bitalloc_offsets[i];
vlc_quant_index[i].max_depth = 1 + (i > 4);
for (j = 0; j < quant_index_group_size[i]; j++, k++)
DCA_INIT_VLC(vlc_quant_index[i].vlc[j], bitalloc_maxbits[i][j],
bitalloc_sizes[i], bitalloc_bits[i][j], bitalloc_codes[i][j]);
}
vlcs_initialized = 1;
}
static int get_vlc(GetBitContext *s, DCAVLC *v, int i)
{
return get_vlc2(s, v->vlc[i].table, v->vlc[i].bits, v->max_depth) + v->offset;
}
static void get_array(GetBitContext *s, int32_t *array, int size, int n)
{
int i;
for (i = 0; i < size; i++)
array[i] = get_sbits(s, n);
}
// 5.3.1 - Bit stream header
static int parse_frame_header(DCACoreDecoder *s)
{
int normal_frame, pcmr_index;
// Frame type
normal_frame = get_bits1(&s->gb);
// Deficit sample count
if (get_bits(&s->gb, 5) != DCA_PCMBLOCK_SAMPLES - 1) {
av_log(s->avctx, AV_LOG_ERROR, "Deficit samples are not supported\n");
return normal_frame ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME;
}
// CRC present flag
s->crc_present = get_bits1(&s->gb);
// Number of PCM sample blocks
s->npcmblocks = get_bits(&s->gb, 7) + 1;
if (s->npcmblocks & (DCA_SUBBAND_SAMPLES - 1)) {
av_log(s->avctx, AV_LOG_ERROR, "Unsupported number of PCM sample blocks (%d)\n", s->npcmblocks);
return (s->npcmblocks < 6 || normal_frame) ? AVERROR_INVALIDDATA : AVERROR_PATCHWELCOME;
}
// Primary frame byte size
s->frame_size = get_bits(&s->gb, 14) + 1;
if (s->frame_size < 96) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid core frame size (%d bytes)\n", s->frame_size);
return AVERROR_INVALIDDATA;
}
// Audio channel arrangement
s->audio_mode = get_bits(&s->gb, 6);
if (s->audio_mode >= AMODE_COUNT) {
av_log(s->avctx, AV_LOG_ERROR, "Unsupported audio channel arrangement (%d)\n", s->audio_mode);
return AVERROR_PATCHWELCOME;
}
// Core audio sampling frequency
s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
if (!s->sample_rate) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid core audio sampling frequency\n");
return AVERROR_INVALIDDATA;
}
// Transmission bit rate
s->bit_rate = ff_dca_bit_rates[get_bits(&s->gb, 5)];
// Reserved field
skip_bits1(&s->gb);
// Embedded dynamic range flag
s->drc_present = get_bits1(&s->gb);
// Embedded time stamp flag
s->ts_present = get_bits1(&s->gb);
// Auxiliary data flag
s->aux_present = get_bits1(&s->gb);
// HDCD mastering flag
skip_bits1(&s->gb);
// Extension audio descriptor flag
s->ext_audio_type = get_bits(&s->gb, 3);
// Extended coding flag
s->ext_audio_present = get_bits1(&s->gb);
// Audio sync word insertion flag
s->sync_ssf = get_bits1(&s->gb);
// Low frequency effects flag
s->lfe_present = get_bits(&s->gb, 2);
if (s->lfe_present == LFE_FLAG_INVALID) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid low frequency effects flag\n");
return AVERROR_INVALIDDATA;
}
// Predictor history flag switch
s->predictor_history = get_bits1(&s->gb);
// Header CRC check bytes
if (s->crc_present)
skip_bits(&s->gb, 16);
// Multirate interpolator switch
s->filter_perfect = get_bits1(&s->gb);
// Encoder software revision
skip_bits(&s->gb, 4);
// Copy history
skip_bits(&s->gb, 2);
// Source PCM resolution
s->source_pcm_res = ff_dca_bits_per_sample[pcmr_index = get_bits(&s->gb, 3)];
if (!s->source_pcm_res) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid source PCM resolution\n");
return AVERROR_INVALIDDATA;
}
s->es_format = pcmr_index & 1;
// Front sum/difference flag
s->sumdiff_front = get_bits1(&s->gb);
// Surround sum/difference flag
s->sumdiff_surround = get_bits1(&s->gb);
// Dialog normalization / unspecified
skip_bits(&s->gb, 4);
return 0;
}
// 5.3.2 - Primary audio coding header
static int parse_coding_header(DCACoreDecoder *s, enum HeaderType header, int xch_base)
{
int n, ch, nchannels, header_size = 0, header_pos = get_bits_count(&s->gb);
unsigned int mask, index;
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
switch (header) {
case HEADER_CORE:
// Number of subframes
s->nsubframes = get_bits(&s->gb, 4) + 1;
// Number of primary audio channels
s->nchannels = get_bits(&s->gb, 3) + 1;
if (s->nchannels != ff_dca_channels[s->audio_mode]) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of primary audio channels (%d) for audio channel arrangement (%d)\n", s->nchannels, s->audio_mode);
return AVERROR_INVALIDDATA;
}
av_assert1(s->nchannels <= DCA_CHANNELS - 2);
s->ch_mask = audio_mode_ch_mask[s->audio_mode];
// Add LFE channel if present
if (s->lfe_present)
s->ch_mask |= DCA_SPEAKER_MASK_LFE1;
break;
case HEADER_XCH:
s->nchannels = ff_dca_channels[s->audio_mode] + 1;
av_assert1(s->nchannels <= DCA_CHANNELS - 1);
s->ch_mask |= DCA_SPEAKER_MASK_Cs;
break;
case HEADER_XXCH:
// Channel set header length
header_size = get_bits(&s->gb, 7) + 1;
// Check CRC
if (s->xxch_crc_present
&& (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, header_pos, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH channel set header checksum\n");
return AVERROR_INVALIDDATA;
}
// Number of channels in a channel set
nchannels = get_bits(&s->gb, 3) + 1;
if (nchannels > DCA_XXCH_CHANNELS_MAX) {
avpriv_request_sample(s->avctx, "%d XXCH channels", nchannels);
return AVERROR_PATCHWELCOME;
}
s->nchannels = ff_dca_channels[s->audio_mode] + nchannels;
av_assert1(s->nchannels <= DCA_CHANNELS);
// Loudspeaker layout mask
mask = get_bits_long(&s->gb, s->xxch_mask_nbits - DCA_SPEAKER_Cs);
s->xxch_spkr_mask = mask << DCA_SPEAKER_Cs;
if (av_popcount(s->xxch_spkr_mask) != nchannels) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH speaker layout mask (%#x)\n", s->xxch_spkr_mask);
return AVERROR_INVALIDDATA;
}
if (s->xxch_core_mask & s->xxch_spkr_mask) {
av_log(s->avctx, AV_LOG_ERROR, "XXCH speaker layout mask (%#x) overlaps with core (%#x)\n", s->xxch_spkr_mask, s->xxch_core_mask);
return AVERROR_INVALIDDATA;
}
// Combine core and XXCH masks together
s->ch_mask = s->xxch_core_mask | s->xxch_spkr_mask;
// Downmix coefficients present in stream
if (get_bits1(&s->gb)) {
int *coeff_ptr = s->xxch_dmix_coeff;
// Downmix already performed by encoder
s->xxch_dmix_embedded = get_bits1(&s->gb);
// Downmix scale factor
index = get_bits(&s->gb, 6) * 4 - FF_DCA_DMIXTABLE_OFFSET - 3;
if (index >= FF_DCA_INV_DMIXTABLE_SIZE) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix scale index (%d)\n", index);
return AVERROR_INVALIDDATA;
}
s->xxch_dmix_scale_inv = ff_dca_inv_dmixtable[index];
// Downmix channel mapping mask
for (ch = 0; ch < nchannels; ch++) {
mask = get_bits_long(&s->gb, s->xxch_mask_nbits);
if ((mask & s->xxch_core_mask) != mask) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix channel mapping mask (%#x)\n", mask);
return AVERROR_INVALIDDATA;
}
s->xxch_dmix_mask[ch] = mask;
}
// Downmix coefficients
for (ch = 0; ch < nchannels; ch++) {
for (n = 0; n < s->xxch_mask_nbits; n++) {
if (s->xxch_dmix_mask[ch] & (1U << n)) {
int code = get_bits(&s->gb, 7);
int sign = (code >> 6) - 1;
if (code &= 63) {
index = code * 4 - 3;
if (index >= FF_DCA_DMIXTABLE_SIZE) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH downmix coefficient index (%d)\n", index);
return AVERROR_INVALIDDATA;
}
*coeff_ptr++ = (ff_dca_dmixtable[index] ^ sign) - sign;
} else {
*coeff_ptr++ = 0;
}
}
}
}
} else {
s->xxch_dmix_embedded = 0;
}
break;
}
// Subband activity count
for (ch = xch_base; ch < s->nchannels; ch++) {
s->nsubbands[ch] = get_bits(&s->gb, 5) + 2;
if (s->nsubbands[ch] > DCA_SUBBANDS) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid subband activity count\n");
return AVERROR_INVALIDDATA;
}
}
// High frequency VQ start subband
for (ch = xch_base; ch < s->nchannels; ch++)
s->subband_vq_start[ch] = get_bits(&s->gb, 5) + 1;
// Joint intensity coding index
for (ch = xch_base; ch < s->nchannels; ch++) {
if ((n = get_bits(&s->gb, 3)) && header == HEADER_XXCH)
n += xch_base - 1;
if (n > s->nchannels) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid joint intensity coding index\n");
return AVERROR_INVALIDDATA;
}
s->joint_intensity_index[ch] = n;
}
// Transient mode code book
for (ch = xch_base; ch < s->nchannels; ch++)
s->transition_mode_sel[ch] = get_bits(&s->gb, 2);
// Scale factor code book
for (ch = xch_base; ch < s->nchannels; ch++) {
s->scale_factor_sel[ch] = get_bits(&s->gb, 3);
if (s->scale_factor_sel[ch] == 7) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor code book\n");
return AVERROR_INVALIDDATA;
}
}
// Bit allocation quantizer select
for (ch = xch_base; ch < s->nchannels; ch++) {
s->bit_allocation_sel[ch] = get_bits(&s->gb, 3);
if (s->bit_allocation_sel[ch] == 7) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation quantizer select\n");
return AVERROR_INVALIDDATA;
}
}
// Quantization index codebook select
for (n = 0; n < DCA_CODE_BOOKS; n++)
for (ch = xch_base; ch < s->nchannels; ch++)
s->quant_index_sel[ch][n] = get_bits(&s->gb, quant_index_sel_nbits[n]);
// Scale factor adjustment index
for (n = 0; n < DCA_CODE_BOOKS; n++)
for (ch = xch_base; ch < s->nchannels; ch++)
if (s->quant_index_sel[ch][n] < quant_index_group_size[n])
s->scale_factor_adj[ch][n] = ff_dca_scale_factor_adj[get_bits(&s->gb, 2)];
if (header == HEADER_XXCH) {
// Reserved
// Byte align
// CRC16 of channel set header
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set header\n");
return AVERROR_INVALIDDATA;
}
} else {
// Audio header CRC check word
if (s->crc_present)
skip_bits(&s->gb, 16);
}
return 0;
}
static inline int parse_scale(DCACoreDecoder *s, int *scale_index, int sel)
{
const uint32_t *scale_table;
unsigned int scale_size;
// Select the root square table
if (sel > 5) {
scale_table = ff_dca_scale_factor_quant7;
scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7);
} else {
scale_table = ff_dca_scale_factor_quant6;
scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6);
}
// If Huffman code was used, the difference of scales was encoded
if (sel < 5)
*scale_index += get_vlc(&s->gb, &vlc_scale_factor, sel);
else
*scale_index = get_bits(&s->gb, sel + 1);
// Look up scale factor from the root square table
if ((unsigned int)*scale_index >= scale_size) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor index\n");
return AVERROR_INVALIDDATA;
}
return scale_table[*scale_index];
}
static inline int parse_joint_scale(DCACoreDecoder *s, int sel)
{
int scale_index;
// Absolute value was encoded even when Huffman code was used
if (sel < 5)
scale_index = get_vlc(&s->gb, &vlc_scale_factor, sel);
else
scale_index = get_bits(&s->gb, sel + 1);
// Bias by 64
scale_index += 64;
// Look up joint scale factor
if ((unsigned int)scale_index >= FF_ARRAY_ELEMS(ff_dca_joint_scale_factors)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor index\n");
return AVERROR_INVALIDDATA;
}
return ff_dca_joint_scale_factors[scale_index];
}
// 5.4.1 - Primary audio coding side information
static int parse_subframe_header(DCACoreDecoder *s, int sf,
enum HeaderType header, int xch_base)
{
int ch, band, ret;
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
if (header == HEADER_CORE) {
// Subsubframe count
s->nsubsubframes[sf] = get_bits(&s->gb, 2) + 1;
// Partial subsubframe sample count
skip_bits(&s->gb, 3);
}
// Prediction mode
for (ch = xch_base; ch < s->nchannels; ch++)
for (band = 0; band < s->nsubbands[ch]; band++)
s->prediction_mode[ch][band] = get_bits1(&s->gb);
// Prediction coefficients VQ address
for (ch = xch_base; ch < s->nchannels; ch++)
for (band = 0; band < s->nsubbands[ch]; band++)
if (s->prediction_mode[ch][band])
s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12);
// Bit allocation index
for (ch = xch_base; ch < s->nchannels; ch++) {
int sel = s->bit_allocation_sel[ch];
for (band = 0; band < s->subband_vq_start[ch]; band++) {
int abits;
if (sel < 5)
abits = get_vlc(&s->gb, &vlc_bit_allocation, sel);
else
abits = get_bits(&s->gb, sel - 1);
if (abits > DCA_ABITS_MAX) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid bit allocation index\n");
return AVERROR_INVALIDDATA;
}
s->bit_allocation[ch][band] = abits;
}
}
// Transition mode
for (ch = xch_base; ch < s->nchannels; ch++) {
// Clear transition mode for all subbands
memset(s->transition_mode[sf][ch], 0, sizeof(s->transition_mode[0][0]));
// Transient possible only if more than one subsubframe
if (s->nsubsubframes[sf] > 1) {
int sel = s->transition_mode_sel[ch];
for (band = 0; band < s->subband_vq_start[ch]; band++)
if (s->bit_allocation[ch][band])
s->transition_mode[sf][ch][band] = get_vlc(&s->gb, &vlc_transition_mode, sel);
}
}
// Scale factors
for (ch = xch_base; ch < s->nchannels; ch++) {
int sel = s->scale_factor_sel[ch];
int scale_index = 0;
// Extract scales for subbands up to VQ
for (band = 0; band < s->subband_vq_start[ch]; band++) {
if (s->bit_allocation[ch][band]) {
if ((ret = parse_scale(s, &scale_index, sel)) < 0)
return ret;
s->scale_factors[ch][band][0] = ret;
if (s->transition_mode[sf][ch][band]) {
if ((ret = parse_scale(s, &scale_index, sel)) < 0)
return ret;
s->scale_factors[ch][band][1] = ret;
}
} else {
s->scale_factors[ch][band][0] = 0;
}
}
// High frequency VQ subbands
for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++) {
if ((ret = parse_scale(s, &scale_index, sel)) < 0)
return ret;
s->scale_factors[ch][band][0] = ret;
}
}
// Joint subband codebook select
for (ch = xch_base; ch < s->nchannels; ch++) {
if (s->joint_intensity_index[ch]) {
s->joint_scale_sel[ch] = get_bits(&s->gb, 3);
if (s->joint_scale_sel[ch] == 7) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid joint scale factor code book\n");
return AVERROR_INVALIDDATA;
}
}
}
// Scale factors for joint subband coding
for (ch = xch_base; ch < s->nchannels; ch++) {
int src_ch = s->joint_intensity_index[ch] - 1;
if (src_ch >= 0) {
int sel = s->joint_scale_sel[ch];
for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) {
if ((ret = parse_joint_scale(s, sel)) < 0)
return ret;
s->joint_scale_factors[ch][band] = ret;
}
}
}
// Dynamic range coefficient
if (s->drc_present && header == HEADER_CORE)
skip_bits(&s->gb, 8);
// Side information CRC check word
if (s->crc_present)
skip_bits(&s->gb, 16);
return 0;
}
#ifndef decode_blockcodes
static inline int decode_blockcodes(int code1, int code2, int levels, int32_t *audio)
{
int offset = (levels - 1) / 2;
int n, div;
for (n = 0; n < DCA_SUBBAND_SAMPLES / 2; n++) {
div = FASTDIV(code1, levels);
audio[n] = code1 - div * levels - offset;
code1 = div;
}
for (; n < DCA_SUBBAND_SAMPLES; n++) {
div = FASTDIV(code2, levels);
audio[n] = code2 - div * levels - offset;
code2 = div;
}
return code1 | code2;
}
#endif
static inline int parse_block_codes(DCACoreDecoder *s, int32_t *audio, int abits)
{
// Extract block code indices from the bit stream
int code1 = get_bits(&s->gb, block_code_nbits[abits - 1]);
int code2 = get_bits(&s->gb, block_code_nbits[abits - 1]);
int levels = ff_dca_quant_levels[abits];
// Look up samples from the block code book
if (decode_blockcodes(code1, code2, levels, audio)) {
av_log(s->avctx, AV_LOG_ERROR, "Failed to decode block code(s)\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static inline int parse_huffman_codes(DCACoreDecoder *s, int32_t *audio, int abits, int sel)
{
int i;
// Extract Huffman codes from the bit stream
for (i = 0; i < DCA_SUBBAND_SAMPLES; i++)
audio[i] = get_vlc(&s->gb, &vlc_quant_index[abits - 1], sel);
return 1;
}
static inline int extract_audio(DCACoreDecoder *s, int32_t *audio, int abits, int ch)
{
av_assert1(abits >= 0 && abits <= DCA_ABITS_MAX);
if (abits == 0) {
// No bits allocated
memset(audio, 0, DCA_SUBBAND_SAMPLES * sizeof(*audio));
return 0;
}
if (abits <= DCA_CODE_BOOKS) {
int sel = s->quant_index_sel[ch][abits - 1];
if (sel < quant_index_group_size[abits - 1]) {
// Huffman codes
return parse_huffman_codes(s, audio, abits, sel);
}
if (abits <= 7) {
// Block codes
return parse_block_codes(s, audio, abits);
}
}
// No further encoding
get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3);
return 0;
}
static inline void dequantize(int32_t *output, const int32_t *input,
int32_t step_size, int32_t scale, int residual)
{
// Account for quantizer step size
int64_t step_scale = (int64_t)step_size * scale;
int n, shift = 0;
// Limit scale factor resolution to 22 bits
if (step_scale > (1 << 23)) {
shift = av_log2(step_scale >> 23) + 1;
step_scale >>= shift;
}
// Scale the samples
if (residual) {
for (n = 0; n < DCA_SUBBAND_SAMPLES; n++)
output[n] += clip23(norm__(input[n] * step_scale, 22 - shift));
} else {
for (n = 0; n < DCA_SUBBAND_SAMPLES; n++)
output[n] = clip23(norm__(input[n] * step_scale, 22 - shift));
}
}
static inline void inverse_adpcm(int32_t **subband_samples,
const int16_t *vq_index,
const int8_t *prediction_mode,
int sb_start, int sb_end,
int ofs, int len)
{
int i, j, k;
for (i = sb_start; i < sb_end; i++) {
if (prediction_mode[i]) {
const int16_t *coeff = ff_dca_adpcm_vb[vq_index[i]];
int32_t *ptr = subband_samples[i] + ofs;
for (j = 0; j < len; j++) {
int64_t err = 0;
for (k = 0; k < DCA_ADPCM_COEFFS; k++)
err += (int64_t)ptr[j - k - 1] * coeff[k];
ptr[j] = clip23(ptr[j] + clip23(norm13(err)));
}
}
}
}
// 5.5 - Primary audio data arrays
static int parse_subframe_audio(DCACoreDecoder *s, int sf, enum HeaderType header,
int xch_base, int *sub_pos, int *lfe_pos)
{
int32_t audio[16], scale;
int n, ssf, ofs, ch, band;
// Check number of subband samples in this subframe
int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES;
if (*sub_pos + nsamples > s->npcmblocks) {
av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n");
return AVERROR_INVALIDDATA;
}
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
// VQ encoded subbands
for (ch = xch_base; ch < s->nchannels; ch++) {
int32_t vq_index[DCA_SUBBANDS];
for (band = s->subband_vq_start[ch]; band < s->nsubbands[ch]; band++)
// Extract the VQ address from the bit stream
vq_index[band] = get_bits(&s->gb, 10);
if (s->subband_vq_start[ch] < s->nsubbands[ch]) {
s->dcadsp->decode_hf(s->subband_samples[ch], vq_index,
ff_dca_high_freq_vq, s->scale_factors[ch],
s->subband_vq_start[ch], s->nsubbands[ch],
*sub_pos, nsamples);
}
}
// Low frequency effect data
if (s->lfe_present && header == HEADER_CORE) {
unsigned int index;
// Determine number of LFE samples in this subframe
int nlfesamples = 2 * s->lfe_present * s->nsubsubframes[sf];
av_assert1((unsigned int)nlfesamples <= FF_ARRAY_ELEMS(audio));
// Extract LFE samples from the bit stream
get_array(&s->gb, audio, nlfesamples, 8);
// Extract scale factor index from the bit stream
index = get_bits(&s->gb, 8);
if (index >= FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE scale factor index\n");
return AVERROR_INVALIDDATA;
}
// Look up the 7-bit root square quantization table
scale = ff_dca_scale_factor_quant7[index];
// Account for quantizer step size which is 0.035
scale = mul23(4697620 /* 0.035 * (1 << 27) */, scale);
// Scale and take the LFE samples
for (n = 0, ofs = *lfe_pos; n < nlfesamples; n++, ofs++)
s->lfe_samples[ofs] = clip23(audio[n] * scale >> 4);
// Advance LFE sample pointer for the next subframe
*lfe_pos = ofs;
}
// Audio data
for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) {
for (ch = xch_base; ch < s->nchannels; ch++) {
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
// Not high frequency VQ subbands
for (band = 0; band < s->subband_vq_start[ch]; band++) {
int ret, trans_ssf, abits = s->bit_allocation[ch][band];
int32_t step_size;
// Extract bits from the bit stream
if ((ret = extract_audio(s, audio, abits, ch)) < 0)
return ret;
// Select quantization step size table and look up
// quantization step size
if (s->bit_rate == 3)
step_size = ff_dca_lossless_quant[abits];
else
step_size = ff_dca_lossy_quant[abits];
// Identify transient location
trans_ssf = s->transition_mode[sf][ch][band];
// Determine proper scale factor
if (trans_ssf == 0 || ssf < trans_ssf)
scale = s->scale_factors[ch][band][0];
else
scale = s->scale_factors[ch][band][1];
// Adjust scale factor when SEL indicates Huffman code
if (ret > 0) {
int64_t adj = s->scale_factor_adj[ch][abits - 1];
scale = clip23(adj * scale >> 22);
}
dequantize(s->subband_samples[ch][band] + ofs,
audio, step_size, scale, 0);
}
}
// DSYNC
if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) {
av_log(s->avctx, AV_LOG_ERROR, "DSYNC check failed\n");
return AVERROR_INVALIDDATA;
}
ofs += DCA_SUBBAND_SAMPLES;
}
// Inverse ADPCM
for (ch = xch_base; ch < s->nchannels; ch++) {
inverse_adpcm(s->subband_samples[ch], s->prediction_vq_index[ch],
s->prediction_mode[ch], 0, s->nsubbands[ch],
*sub_pos, nsamples);
}
// Joint subband coding
for (ch = xch_base; ch < s->nchannels; ch++) {
int src_ch = s->joint_intensity_index[ch] - 1;
if (src_ch >= 0) {
s->dcadsp->decode_joint(s->subband_samples[ch], s->subband_samples[src_ch],
s->joint_scale_factors[ch], s->nsubbands[ch],
s->nsubbands[src_ch], *sub_pos, nsamples);
}
}
// Advance subband sample pointer for the next subframe
*sub_pos = ofs;
return 0;
}
static void erase_adpcm_history(DCACoreDecoder *s)
{
int ch, band;
// Erase ADPCM history from previous frame if
// predictor history switch was disabled
for (ch = 0; ch < DCA_CHANNELS; ch++)
for (band = 0; band < DCA_SUBBANDS; band++)
AV_ZERO128(s->subband_samples[ch][band] - DCA_ADPCM_COEFFS);
}
static int alloc_sample_buffer(DCACoreDecoder *s)
{
int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks;
int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS;
int nlfesamples = DCA_LFE_HISTORY + s->npcmblocks / 2;
unsigned int size = s->subband_size;
int ch, band;
// Reallocate subband sample buffer
av_fast_mallocz(&s->subband_buffer, &s->subband_size,
(nframesamples + nlfesamples) * sizeof(int32_t));
if (!s->subband_buffer)
return AVERROR(ENOMEM);
if (size != s->subband_size) {
for (ch = 0; ch < DCA_CHANNELS; ch++)
for (band = 0; band < DCA_SUBBANDS; band++)
s->subband_samples[ch][band] = s->subband_buffer +
(ch * DCA_SUBBANDS + band) * nchsamples + DCA_ADPCM_COEFFS;
s->lfe_samples = s->subband_buffer + nframesamples;
}
if (!s->predictor_history)
erase_adpcm_history(s);
return 0;
}
static int parse_frame_data(DCACoreDecoder *s, enum HeaderType header, int xch_base)
{
int sf, ch, ret, band, sub_pos, lfe_pos;
if ((ret = parse_coding_header(s, header, xch_base)) < 0)
return ret;
for (sf = 0, sub_pos = 0, lfe_pos = DCA_LFE_HISTORY; sf < s->nsubframes; sf++) {
if ((ret = parse_subframe_header(s, sf, header, xch_base)) < 0)
return ret;
if ((ret = parse_subframe_audio(s, sf, header, xch_base, &sub_pos, &lfe_pos)) < 0)
return ret;
}
for (ch = xch_base; ch < s->nchannels; ch++) {
// Determine number of active subbands for this channel
int nsubbands = s->nsubbands[ch];
if (s->joint_intensity_index[ch])
nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]);
// Update history for ADPCM
for (band = 0; band < nsubbands; band++) {
int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS;
AV_COPY128(samples, samples + s->npcmblocks);
}
// Clear inactive subbands
for (; band < DCA_SUBBANDS; band++) {
int32_t *samples = s->subband_samples[ch][band] - DCA_ADPCM_COEFFS;
memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t));
}
}
return 0;
}
static int parse_xch_frame(DCACoreDecoder *s)
{
int ret;
if (s->ch_mask & DCA_SPEAKER_MASK_Cs) {
av_log(s->avctx, AV_LOG_ERROR, "XCH with Cs speaker already present\n");
return AVERROR_INVALIDDATA;
}
if ((ret = parse_frame_data(s, HEADER_XCH, s->nchannels)) < 0)
return ret;
// Seek to the end of core frame, don't trust XCH frame size
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XCH frame\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int parse_xxch_frame(DCACoreDecoder *s)
{
int xxch_nchsets, xxch_frame_size;
int ret, mask, header_size, header_pos = get_bits_count(&s->gb);
// XXCH sync word
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XXCH) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH sync word\n");
return AVERROR_INVALIDDATA;
}
// XXCH frame header length
header_size = get_bits(&s->gb, 6) + 1;
// Check XXCH frame header CRC
if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XXCH frame header checksum\n");
return AVERROR_INVALIDDATA;
}
// CRC presence flag for channel set header
s->xxch_crc_present = get_bits1(&s->gb);
// Number of bits for loudspeaker mask
s->xxch_mask_nbits = get_bits(&s->gb, 5) + 1;
if (s->xxch_mask_nbits <= DCA_SPEAKER_Cs) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XXCH speaker mask (%d)\n", s->xxch_mask_nbits);
return AVERROR_INVALIDDATA;
}
// Number of channel sets
xxch_nchsets = get_bits(&s->gb, 2) + 1;
if (xxch_nchsets > 1) {
avpriv_request_sample(s->avctx, "%d XXCH channel sets", xxch_nchsets);
return AVERROR_PATCHWELCOME;
}
// Channel set 0 data byte size
xxch_frame_size = get_bits(&s->gb, 14) + 1;
// Core loudspeaker activity mask
s->xxch_core_mask = get_bits_long(&s->gb, s->xxch_mask_nbits);
// Validate the core mask
mask = s->ch_mask;
if ((mask & DCA_SPEAKER_MASK_Ls) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss))
mask = (mask & ~DCA_SPEAKER_MASK_Ls) | DCA_SPEAKER_MASK_Lss;
if ((mask & DCA_SPEAKER_MASK_Rs) && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss))
mask = (mask & ~DCA_SPEAKER_MASK_Rs) | DCA_SPEAKER_MASK_Rss;
if (mask != s->xxch_core_mask) {
av_log(s->avctx, AV_LOG_ERROR, "XXCH core speaker activity mask (%#x) disagrees with core (%#x)\n", s->xxch_core_mask, mask);
return AVERROR_INVALIDDATA;
}
// Reserved
// Byte align
// CRC16 of XXCH frame header
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH frame header\n");
return AVERROR_INVALIDDATA;
}
// Parse XXCH channel set 0
if ((ret = parse_frame_data(s, HEADER_XXCH, s->nchannels)) < 0)
return ret;
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8 + xxch_frame_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XXCH channel set\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int parse_xbr_subframe(DCACoreDecoder *s, int xbr_base_ch, int xbr_nchannels,
int *xbr_nsubbands, int xbr_transition_mode, int sf, int *sub_pos)
{
int xbr_nabits[DCA_CHANNELS];
int xbr_bit_allocation[DCA_CHANNELS][DCA_SUBBANDS];
int xbr_scale_nbits[DCA_CHANNELS];
int32_t xbr_scale_factors[DCA_CHANNELS][DCA_SUBBANDS][2];
int ssf, ch, band, ofs;
// Check number of subband samples in this subframe
if (*sub_pos + s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES > s->npcmblocks) {
av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n");
return AVERROR_INVALIDDATA;
}
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
// Number of bits for XBR bit allocation index
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++)
xbr_nabits[ch] = get_bits(&s->gb, 2) + 2;
// XBR bit allocation index
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) {
for (band = 0; band < xbr_nsubbands[ch]; band++) {
xbr_bit_allocation[ch][band] = get_bits(&s->gb, xbr_nabits[ch]);
if (xbr_bit_allocation[ch][band] > DCA_ABITS_MAX) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR bit allocation index\n");
return AVERROR_INVALIDDATA;
}
}
}
// Number of bits for scale indices
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) {
xbr_scale_nbits[ch] = get_bits(&s->gb, 3);
if (!xbr_scale_nbits[ch]) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of bits for XBR scale factor index\n");
return AVERROR_INVALIDDATA;
}
}
// XBR scale factors
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) {
const uint32_t *scale_table;
int scale_size;
// Select the root square table
if (s->scale_factor_sel[ch] > 5) {
scale_table = ff_dca_scale_factor_quant7;
scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant7);
} else {
scale_table = ff_dca_scale_factor_quant6;
scale_size = FF_ARRAY_ELEMS(ff_dca_scale_factor_quant6);
}
// Parse scale factor indices and look up scale factors from the root
// square table
for (band = 0; band < xbr_nsubbands[ch]; band++) {
if (xbr_bit_allocation[ch][band]) {
int scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]);
if (scale_index >= scale_size) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n");
return AVERROR_INVALIDDATA;
}
xbr_scale_factors[ch][band][0] = scale_table[scale_index];
if (xbr_transition_mode && s->transition_mode[sf][ch][band]) {
scale_index = get_bits(&s->gb, xbr_scale_nbits[ch]);
if (scale_index >= scale_size) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR scale factor index\n");
return AVERROR_INVALIDDATA;
}
xbr_scale_factors[ch][band][1] = scale_table[scale_index];
}
}
}
}
// Audio data
for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) {
for (ch = xbr_base_ch; ch < xbr_nchannels; ch++) {
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
for (band = 0; band < xbr_nsubbands[ch]; band++) {
int ret, trans_ssf, abits = xbr_bit_allocation[ch][band];
int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale;
// Extract bits from the bit stream
if (abits > 7) {
// No further encoding
get_array(&s->gb, audio, DCA_SUBBAND_SAMPLES, abits - 3);
} else if (abits > 0) {
// Block codes
if ((ret = parse_block_codes(s, audio, abits)) < 0)
return ret;
} else {
// No bits allocated
continue;
}
// Look up quantization step size
step_size = ff_dca_lossless_quant[abits];
// Identify transient location
if (xbr_transition_mode)
trans_ssf = s->transition_mode[sf][ch][band];
else
trans_ssf = 0;
// Determine proper scale factor
if (trans_ssf == 0 || ssf < trans_ssf)
scale = xbr_scale_factors[ch][band][0];
else
scale = xbr_scale_factors[ch][band][1];
dequantize(s->subband_samples[ch][band] + ofs,
audio, step_size, scale, 1);
}
}
// DSYNC
if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) {
av_log(s->avctx, AV_LOG_ERROR, "XBR-DSYNC check failed\n");
return AVERROR_INVALIDDATA;
}
ofs += DCA_SUBBAND_SAMPLES;
}
// Advance subband sample pointer for the next subframe
*sub_pos = ofs;
return 0;
}
static int parse_xbr_frame(DCACoreDecoder *s)
{
int xbr_frame_size[DCA_EXSS_CHSETS_MAX];
int xbr_nchannels[DCA_EXSS_CHSETS_MAX];
int xbr_nsubbands[DCA_EXSS_CHSETS_MAX * DCA_EXSS_CHANNELS_MAX];
int xbr_nchsets, xbr_transition_mode, xbr_band_nbits, xbr_base_ch;
int i, ch1, ch2, ret, header_size, header_pos = get_bits_count(&s->gb);
// XBR sync word
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XBR) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR sync word\n");
return AVERROR_INVALIDDATA;
}
// XBR frame header length
header_size = get_bits(&s->gb, 6) + 1;
// Check XBR frame header CRC
if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XBR frame header checksum\n");
return AVERROR_INVALIDDATA;
}
// Number of channel sets
xbr_nchsets = get_bits(&s->gb, 2) + 1;
// Channel set data byte size
for (i = 0; i < xbr_nchsets; i++)
xbr_frame_size[i] = get_bits(&s->gb, 14) + 1;
// Transition mode flag
xbr_transition_mode = get_bits1(&s->gb);
// Channel set headers
for (i = 0, ch2 = 0; i < xbr_nchsets; i++) {
xbr_nchannels[i] = get_bits(&s->gb, 3) + 1;
xbr_band_nbits = get_bits(&s->gb, 2) + 5;
for (ch1 = 0; ch1 < xbr_nchannels[i]; ch1++, ch2++) {
xbr_nsubbands[ch2] = get_bits(&s->gb, xbr_band_nbits) + 1;
if (xbr_nsubbands[ch2] > DCA_SUBBANDS) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid number of active XBR subbands (%d)\n", xbr_nsubbands[ch2]);
return AVERROR_INVALIDDATA;
}
}
}
// Reserved
// Byte align
// CRC16 of XBR frame header
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR frame header\n");
return AVERROR_INVALIDDATA;
}
// Channel set data
for (i = 0, xbr_base_ch = 0; i < xbr_nchsets; i++) {
header_pos = get_bits_count(&s->gb);
if (xbr_base_ch + xbr_nchannels[i] <= s->nchannels) {
int sf, sub_pos;
for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) {
if ((ret = parse_xbr_subframe(s, xbr_base_ch,
xbr_base_ch + xbr_nchannels[i],
xbr_nsubbands, xbr_transition_mode,
sf, &sub_pos)) < 0)
return ret;
}
}
xbr_base_ch += xbr_nchannels[i];
if (ff_dca_seek_bits(&s->gb, header_pos + xbr_frame_size[i] * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XBR channel set\n");
return AVERROR_INVALIDDATA;
}
}
return 0;
}
// Modified ISO/IEC 9899 linear congruential generator
// Returns pseudorandom integer in range [-2^30, 2^30 - 1]
static int rand_x96(DCACoreDecoder *s)
{
s->x96_rand = 1103515245U * s->x96_rand + 12345U;
return (s->x96_rand & 0x7fffffff) - 0x40000000;
}
static int parse_x96_subframe_audio(DCACoreDecoder *s, int sf, int xch_base, int *sub_pos)
{
int n, ssf, ch, band, ofs;
// Check number of subband samples in this subframe
int nsamples = s->nsubsubframes[sf] * DCA_SUBBAND_SAMPLES;
if (*sub_pos + nsamples > s->npcmblocks) {
av_log(s->avctx, AV_LOG_ERROR, "Subband sample buffer overflow\n");
return AVERROR_INVALIDDATA;
}
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
// VQ encoded or unallocated subbands
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) {
// Get the sample pointer and scale factor
int32_t *samples = s->x96_subband_samples[ch][band] + *sub_pos;
int32_t scale = s->scale_factors[ch][band >> 1][band & 1];
switch (s->bit_allocation[ch][band]) {
case 0: // No bits allocated for subband
if (scale <= 1)
memset(samples, 0, nsamples * sizeof(int32_t));
else for (n = 0; n < nsamples; n++)
// Generate scaled random samples
samples[n] = mul31(rand_x96(s), scale);
break;
case 1: // VQ encoded subband
for (ssf = 0; ssf < (s->nsubsubframes[sf] + 1) / 2; ssf++) {
// Extract the VQ address from the bit stream and look up
// the VQ code book for up to 16 subband samples
const int8_t *vq_samples = ff_dca_high_freq_vq[get_bits(&s->gb, 10)];
// Scale and take the samples
for (n = 0; n < FFMIN(nsamples - ssf * 16, 16); n++)
*samples++ = clip23(vq_samples[n] * scale + (1 << 3) >> 4);
}
break;
}
}
}
// Audio data
for (ssf = 0, ofs = *sub_pos; ssf < s->nsubsubframes[sf]; ssf++) {
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) {
int ret, abits = s->bit_allocation[ch][band] - 1;
int32_t audio[DCA_SUBBAND_SAMPLES], step_size, scale;
// Not VQ encoded or unallocated subbands
if (abits < 1)
continue;
// Extract bits from the bit stream
if ((ret = extract_audio(s, audio, abits, ch)) < 0)
return ret;
// Select quantization step size table and look up quantization
// step size
if (s->bit_rate == 3)
step_size = ff_dca_lossless_quant[abits];
else
step_size = ff_dca_lossy_quant[abits];
// Get the scale factor
scale = s->scale_factors[ch][band >> 1][band & 1];
dequantize(s->x96_subband_samples[ch][band] + ofs,
audio, step_size, scale, 0);
}
}
// DSYNC
if ((ssf == s->nsubsubframes[sf] - 1 || s->sync_ssf) && get_bits(&s->gb, 16) != 0xffff) {
av_log(s->avctx, AV_LOG_ERROR, "X96-DSYNC check failed\n");
return AVERROR_INVALIDDATA;
}
ofs += DCA_SUBBAND_SAMPLES;
}
// Inverse ADPCM
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
inverse_adpcm(s->x96_subband_samples[ch], s->prediction_vq_index[ch],
s->prediction_mode[ch], s->x96_subband_start, s->nsubbands[ch],
*sub_pos, nsamples);
}
// Joint subband coding
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
int src_ch = s->joint_intensity_index[ch] - 1;
if (src_ch >= 0) {
s->dcadsp->decode_joint(s->x96_subband_samples[ch], s->x96_subband_samples[src_ch],
s->joint_scale_factors[ch], s->nsubbands[ch],
s->nsubbands[src_ch], *sub_pos, nsamples);
}
}
// Advance subband sample pointer for the next subframe
*sub_pos = ofs;
return 0;
}
static void erase_x96_adpcm_history(DCACoreDecoder *s)
{
int ch, band;
// Erase ADPCM history from previous frame if
// predictor history switch was disabled
for (ch = 0; ch < DCA_CHANNELS; ch++)
for (band = 0; band < DCA_SUBBANDS_X96; band++)
AV_ZERO128(s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS);
}
static int alloc_x96_sample_buffer(DCACoreDecoder *s)
{
int nchsamples = DCA_ADPCM_COEFFS + s->npcmblocks;
int nframesamples = nchsamples * DCA_CHANNELS * DCA_SUBBANDS_X96;
unsigned int size = s->x96_subband_size;
int ch, band;
// Reallocate subband sample buffer
av_fast_mallocz(&s->x96_subband_buffer, &s->x96_subband_size,
nframesamples * sizeof(int32_t));
if (!s->x96_subband_buffer)
return AVERROR(ENOMEM);
if (size != s->x96_subband_size) {
for (ch = 0; ch < DCA_CHANNELS; ch++)
for (band = 0; band < DCA_SUBBANDS_X96; band++)
s->x96_subband_samples[ch][band] = s->x96_subband_buffer +
(ch * DCA_SUBBANDS_X96 + band) * nchsamples + DCA_ADPCM_COEFFS;
}
if (!s->predictor_history)
erase_x96_adpcm_history(s);
return 0;
}
static int parse_x96_subframe_header(DCACoreDecoder *s, int xch_base)
{
int ch, band, ret;
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
// Prediction mode
for (ch = xch_base; ch < s->x96_nchannels; ch++)
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++)
s->prediction_mode[ch][band] = get_bits1(&s->gb);
// Prediction coefficients VQ address
for (ch = xch_base; ch < s->x96_nchannels; ch++)
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++)
if (s->prediction_mode[ch][band])
s->prediction_vq_index[ch][band] = get_bits(&s->gb, 12);
// Bit allocation index
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
int sel = s->bit_allocation_sel[ch];
int abits = 0;
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) {
// If Huffman code was used, the difference of abits was encoded
if (sel < 7)
abits += get_vlc(&s->gb, &vlc_quant_index[5 + 2 * s->x96_high_res], sel);
else
abits = get_bits(&s->gb, 3 + s->x96_high_res);
if (abits < 0 || abits > 7 + 8 * s->x96_high_res) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 bit allocation index\n");
return AVERROR_INVALIDDATA;
}
s->bit_allocation[ch][band] = abits;
}
}
// Scale factors
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
int sel = s->scale_factor_sel[ch];
int scale_index = 0;
// Extract scales for subbands which are transmitted even for
// unallocated subbands
for (band = s->x96_subband_start; band < s->nsubbands[ch]; band++) {
if ((ret = parse_scale(s, &scale_index, sel)) < 0)
return ret;
s->scale_factors[ch][band >> 1][band & 1] = ret;
}
}
// Joint subband codebook select
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
if (s->joint_intensity_index[ch]) {
s->joint_scale_sel[ch] = get_bits(&s->gb, 3);
if (s->joint_scale_sel[ch] == 7) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint scale factor code book\n");
return AVERROR_INVALIDDATA;
}
}
}
// Scale factors for joint subband coding
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
int src_ch = s->joint_intensity_index[ch] - 1;
if (src_ch >= 0) {
int sel = s->joint_scale_sel[ch];
for (band = s->nsubbands[ch]; band < s->nsubbands[src_ch]; band++) {
if ((ret = parse_joint_scale(s, sel)) < 0)
return ret;
s->joint_scale_factors[ch][band] = ret;
}
}
}
// Side information CRC check word
if (s->crc_present)
skip_bits(&s->gb, 16);
return 0;
}
static int parse_x96_coding_header(DCACoreDecoder *s, int exss, int xch_base)
{
int n, ch, header_size = 0, header_pos = get_bits_count(&s->gb);
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
if (exss) {
// Channel set header length
header_size = get_bits(&s->gb, 7) + 1;
// Check CRC
if (s->x96_crc_present
&& (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, header_pos, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 channel set header checksum\n");
return AVERROR_INVALIDDATA;
}
}
// High resolution flag
s->x96_high_res = get_bits1(&s->gb);
// First encoded subband
if (s->x96_rev_no < 8) {
s->x96_subband_start = get_bits(&s->gb, 5);
if (s->x96_subband_start > 27) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband start index (%d)\n", s->x96_subband_start);
return AVERROR_INVALIDDATA;
}
} else {
s->x96_subband_start = DCA_SUBBANDS;
}
// Subband activity count
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
s->nsubbands[ch] = get_bits(&s->gb, 6) + 1;
if (s->nsubbands[ch] < DCA_SUBBANDS) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 subband activity count (%d)\n", s->nsubbands[ch]);
return AVERROR_INVALIDDATA;
}
}
// Joint intensity coding index
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
if ((n = get_bits(&s->gb, 3)) && xch_base)
n += xch_base - 1;
if (n > s->x96_nchannels) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 joint intensity coding index\n");
return AVERROR_INVALIDDATA;
}
s->joint_intensity_index[ch] = n;
}
// Scale factor code book
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
s->scale_factor_sel[ch] = get_bits(&s->gb, 3);
if (s->scale_factor_sel[ch] >= 6) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 scale factor code book\n");
return AVERROR_INVALIDDATA;
}
}
// Bit allocation quantizer select
for (ch = xch_base; ch < s->x96_nchannels; ch++)
s->bit_allocation_sel[ch] = get_bits(&s->gb, 3);
// Quantization index codebook select
for (n = 0; n < 6 + 4 * s->x96_high_res; n++)
for (ch = xch_base; ch < s->x96_nchannels; ch++)
s->quant_index_sel[ch][n] = get_bits(&s->gb, quant_index_sel_nbits[n]);
if (exss) {
// Reserved
// Byte align
// CRC16 of channel set header
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set header\n");
return AVERROR_INVALIDDATA;
}
} else {
if (s->crc_present)
skip_bits(&s->gb, 16);
}
return 0;
}
static int parse_x96_frame_data(DCACoreDecoder *s, int exss, int xch_base)
{
int sf, ch, ret, band, sub_pos;
if ((ret = parse_x96_coding_header(s, exss, xch_base)) < 0)
return ret;
for (sf = 0, sub_pos = 0; sf < s->nsubframes; sf++) {
if ((ret = parse_x96_subframe_header(s, xch_base)) < 0)
return ret;
if ((ret = parse_x96_subframe_audio(s, sf, xch_base, &sub_pos)) < 0)
return ret;
}
for (ch = xch_base; ch < s->x96_nchannels; ch++) {
// Determine number of active subbands for this channel
int nsubbands = s->nsubbands[ch];
if (s->joint_intensity_index[ch])
nsubbands = FFMAX(nsubbands, s->nsubbands[s->joint_intensity_index[ch] - 1]);
// Update history for ADPCM and clear inactive subbands
for (band = 0; band < DCA_SUBBANDS_X96; band++) {
int32_t *samples = s->x96_subband_samples[ch][band] - DCA_ADPCM_COEFFS;
if (band >= s->x96_subband_start && band < nsubbands)
AV_COPY128(samples, samples + s->npcmblocks);
else
memset(samples, 0, (DCA_ADPCM_COEFFS + s->npcmblocks) * sizeof(int32_t));
}
}
return 0;
}
static int parse_x96_frame(DCACoreDecoder *s)
{
int ret;
// Revision number
s->x96_rev_no = get_bits(&s->gb, 4);
if (s->x96_rev_no < 1 || s->x96_rev_no > 8) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no);
return AVERROR_INVALIDDATA;
}
s->x96_crc_present = 0;
s->x96_nchannels = s->nchannels;
if ((ret = alloc_x96_sample_buffer(s)) < 0)
return ret;
if ((ret = parse_x96_frame_data(s, 0, 0)) < 0)
return ret;
// Seek to the end of core frame
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int parse_x96_frame_exss(DCACoreDecoder *s)
{
int x96_frame_size[DCA_EXSS_CHSETS_MAX];
int x96_nchannels[DCA_EXSS_CHSETS_MAX];
int x96_nchsets, x96_base_ch;
int i, ret, header_size, header_pos = get_bits_count(&s->gb);
// X96 sync word
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_X96) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 sync word\n");
return AVERROR_INVALIDDATA;
}
// X96 frame header length
header_size = get_bits(&s->gb, 6) + 1;
// Check X96 frame header CRC
if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, header_pos + 32, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 frame header checksum\n");
return AVERROR_INVALIDDATA;
}
// Revision number
s->x96_rev_no = get_bits(&s->gb, 4);
if (s->x96_rev_no < 1 || s->x96_rev_no > 8) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid X96 revision (%d)\n", s->x96_rev_no);
return AVERROR_INVALIDDATA;
}
// CRC presence flag for channel set header
s->x96_crc_present = get_bits1(&s->gb);
// Number of channel sets
x96_nchsets = get_bits(&s->gb, 2) + 1;
// Channel set data byte size
for (i = 0; i < x96_nchsets; i++)
x96_frame_size[i] = get_bits(&s->gb, 12) + 1;
// Number of channels in channel set
for (i = 0; i < x96_nchsets; i++)
x96_nchannels[i] = get_bits(&s->gb, 3) + 1;
// Reserved
// Byte align
// CRC16 of X96 frame header
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 frame header\n");
return AVERROR_INVALIDDATA;
}
if ((ret = alloc_x96_sample_buffer(s)) < 0)
return ret;
// Channel set data
for (i = 0, x96_base_ch = 0; i < x96_nchsets; i++) {
header_pos = get_bits_count(&s->gb);
if (x96_base_ch + x96_nchannels[i] <= s->nchannels) {
s->x96_nchannels = x96_base_ch + x96_nchannels[i];
if ((ret = parse_x96_frame_data(s, 1, x96_base_ch)) < 0)
return ret;
}
x96_base_ch += x96_nchannels[i];
if (ff_dca_seek_bits(&s->gb, header_pos + x96_frame_size[i] * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of X96 channel set\n");
return AVERROR_INVALIDDATA;
}
}
return 0;
}
static int parse_aux_data(DCACoreDecoder *s)
{
int aux_pos;
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
// Auxiliary data byte count (can't be trusted)
skip_bits(&s->gb, 6);
// 4-byte align
skip_bits_long(&s->gb, -get_bits_count(&s->gb) & 31);
// Auxiliary data sync word
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_REV1AUX) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data sync word\n");
return AVERROR_INVALIDDATA;
}
aux_pos = get_bits_count(&s->gb);
// Auxiliary decode time stamp flag
if (get_bits1(&s->gb))
skip_bits_long(&s->gb, 47);
// Auxiliary dynamic downmix flag
if (s->prim_dmix_embedded = get_bits1(&s->gb)) {
int i, m, n;
// Auxiliary primary channel downmix type
s->prim_dmix_type = get_bits(&s->gb, 3);
if (s->prim_dmix_type >= DCA_DMIX_TYPE_COUNT) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid primary channel set downmix type\n");
return AVERROR_INVALIDDATA;
}
// Size of downmix coefficients matrix
m = ff_dca_dmix_primary_nch[s->prim_dmix_type];
n = ff_dca_channels[s->audio_mode] + !!s->lfe_present;
// Dynamic downmix code coefficients
for (i = 0; i < m * n; i++) {
int code = get_bits(&s->gb, 9);
int sign = (code >> 8) - 1;
unsigned int index = code & 0xff;
if (index >= FF_DCA_DMIXTABLE_SIZE) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid downmix coefficient index\n");
return AVERROR_INVALIDDATA;
}
s->prim_dmix_coeff[i] = (ff_dca_dmixtable[index] ^ sign) - sign;
}
}
// Byte align
skip_bits(&s->gb, -get_bits_count(&s->gb) & 7);
// CRC16 of auxiliary data
skip_bits(&s->gb, 16);
// Check CRC
if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, aux_pos, get_bits_count(&s->gb))) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid auxiliary data checksum\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int parse_optional_info(DCACoreDecoder *s)
{
DCAContext *dca = s->avctx->priv_data;
int ret = -1;
// Time code stamp
if (s->ts_present)
skip_bits_long(&s->gb, 32);
// Auxiliary data
if (s->aux_present && (ret = parse_aux_data(s)) < 0
&& (s->avctx->err_recognition & AV_EF_EXPLODE))
return ret;
if (ret < 0)
s->prim_dmix_embedded = 0;
// Core extensions
if (s->ext_audio_present && !dca->core_only) {
int sync_pos = FFMIN(s->frame_size / 4, s->gb.size_in_bits / 32) - 1;
int last_pos = get_bits_count(&s->gb) / 32;
int size, dist;
// Search for extension sync words aligned on 4-byte boundary. Search
// must be done backwards from the end of core frame to work around
// sync word aliasing issues.
switch (s->ext_audio_type) {
case EXT_AUDIO_XCH:
if (dca->request_channel_layout)
break;
// The distance between XCH sync word and end of the core frame
// must be equal to XCH frame size. Off by one error is allowed for
// compatibility with legacy bitstreams. Minimum XCH frame size is
// 96 bytes. AMODE and PCHS are further checked to reduce
// probability of alias sync detection.
for (; sync_pos >= last_pos; sync_pos--) {
if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_XCH) {
s->gb.index = (sync_pos + 1) * 32;
size = get_bits(&s->gb, 10) + 1;
dist = s->frame_size - sync_pos * 4;
if (size >= 96
&& (size == dist || size - 1 == dist)
&& get_bits(&s->gb, 7) == 0x08) {
s->xch_pos = get_bits_count(&s->gb);
break;
}
}
}
if (s->avctx->err_recognition & AV_EF_EXPLODE) {
av_log(s->avctx, AV_LOG_ERROR, "XCH sync word not found\n");
return AVERROR_INVALIDDATA;
}
break;
case EXT_AUDIO_X96:
// The distance between X96 sync word and end of the core frame
// must be equal to X96 frame size. Minimum X96 frame size is 96
// bytes.
for (; sync_pos >= last_pos; sync_pos--) {
if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_X96) {
s->gb.index = (sync_pos + 1) * 32;
size = get_bits(&s->gb, 12) + 1;
dist = s->frame_size - sync_pos * 4;
if (size >= 96 && size == dist) {
s->x96_pos = get_bits_count(&s->gb);
break;
}
}
}
if (s->avctx->err_recognition & AV_EF_EXPLODE) {
av_log(s->avctx, AV_LOG_ERROR, "X96 sync word not found\n");
return AVERROR_INVALIDDATA;
}
break;
case EXT_AUDIO_XXCH:
if (dca->request_channel_layout)
break;
// XXCH frame header CRC must be valid. Minimum XXCH frame header
// size is 11 bytes.
for (; sync_pos >= last_pos; sync_pos--) {
if (AV_RB32(s->gb.buffer + sync_pos * 4) == DCA_SYNCWORD_XXCH) {
s->gb.index = (sync_pos + 1) * 32;
size = get_bits(&s->gb, 6) + 1;
if (size >= 11 &&
!ff_dca_check_crc(&s->gb, (sync_pos + 1) * 32,
sync_pos * 32 + size * 8)) {
s->xxch_pos = sync_pos * 32;
break;
}
}
}
if (s->avctx->err_recognition & AV_EF_EXPLODE) {
av_log(s->avctx, AV_LOG_ERROR, "XXCH sync word not found\n");
return AVERROR_INVALIDDATA;
}
break;
}
}
return 0;
}
int ff_dca_core_parse(DCACoreDecoder *s, uint8_t *data, int size)
{
int ret;
s->ext_audio_mask = 0;
s->xch_pos = s->xxch_pos = s->x96_pos = 0;
if ((ret = init_get_bits8(&s->gb, data, size)) < 0)
return ret;
skip_bits_long(&s->gb, 32);
if ((ret = parse_frame_header(s)) < 0)
return ret;
if ((ret = alloc_sample_buffer(s)) < 0)
return ret;
if ((ret = parse_frame_data(s, HEADER_CORE, 0)) < 0)
return ret;
if ((ret = parse_optional_info(s)) < 0)
return ret;
// Workaround for DTS in WAV
if (s->frame_size > size && s->frame_size < size + 4) {
av_log(s->avctx, AV_LOG_DEBUG, "Working around excessive core frame size (%d > %d)\n", s->frame_size, size);
s->frame_size = size;
}
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of core frame\n");
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
return 0;
}
int ff_dca_core_parse_exss(DCACoreDecoder *s, uint8_t *data, DCAExssAsset *asset)
{
AVCodecContext *avctx = s->avctx;
DCAContext *dca = avctx->priv_data;
GetBitContext gb = s->gb;
int exss_mask = asset ? asset->extension_mask : 0;
int ret = 0, ext = 0;
// Parse (X)XCH unless downmixing
if (!dca->request_channel_layout) {
if (exss_mask & DCA_EXSS_XXCH) {
if ((ret = init_get_bits8(&s->gb, data + asset->xxch_offset, asset->xxch_size)) < 0)
return ret;
ret = parse_xxch_frame(s);
ext = DCA_EXSS_XXCH;
} else if (s->xxch_pos) {
s->gb.index = s->xxch_pos;
ret = parse_xxch_frame(s);
ext = DCA_CSS_XXCH;
} else if (s->xch_pos) {
s->gb.index = s->xch_pos;
ret = parse_xch_frame(s);
ext = DCA_CSS_XCH;
}
// Revert to primary channel set in case (X)XCH parsing fails
if (ret < 0) {
if (avctx->err_recognition & AV_EF_EXPLODE)
return ret;
s->nchannels = ff_dca_channels[s->audio_mode];
s->ch_mask = audio_mode_ch_mask[s->audio_mode];
if (s->lfe_present)
s->ch_mask |= DCA_SPEAKER_MASK_LFE1;
} else {
s->ext_audio_mask |= ext;
}
}
// Parse XBR
if (exss_mask & DCA_EXSS_XBR) {
if ((ret = init_get_bits8(&s->gb, data + asset->xbr_offset, asset->xbr_size)) < 0)
return ret;
if ((ret = parse_xbr_frame(s)) < 0) {
if (avctx->err_recognition & AV_EF_EXPLODE)
return ret;
} else {
s->ext_audio_mask |= DCA_EXSS_XBR;
}
}
// Parse X96 unless decoding XLL
if (!(dca->packet & DCA_PACKET_XLL)) {
if (exss_mask & DCA_EXSS_X96) {
if ((ret = init_get_bits8(&s->gb, data + asset->x96_offset, asset->x96_size)) < 0)
return ret;
if ((ret = parse_x96_frame_exss(s)) < 0) {
if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE))
return ret;
} else {
s->ext_audio_mask |= DCA_EXSS_X96;
}
} else if (s->x96_pos) {
s->gb = gb;
s->gb.index = s->x96_pos;
if ((ret = parse_x96_frame(s)) < 0) {
if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE))
return ret;
} else {
s->ext_audio_mask |= DCA_CSS_X96;
}
}
}
return 0;
}
static int map_prm_ch_to_spkr(DCACoreDecoder *s, int ch)
{
int pos, spkr;
// Try to map this channel to core first
pos = ff_dca_channels[s->audio_mode];
if (ch < pos) {
spkr = prm_ch_to_spkr_map[s->audio_mode][ch];
if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) {
if (s->xxch_core_mask & (1U << spkr))
return spkr;
if (spkr == DCA_SPEAKER_Ls && (s->xxch_core_mask & DCA_SPEAKER_MASK_Lss))
return DCA_SPEAKER_Lss;
if (spkr == DCA_SPEAKER_Rs && (s->xxch_core_mask & DCA_SPEAKER_MASK_Rss))
return DCA_SPEAKER_Rss;
return -1;
}
return spkr;
}
// Then XCH
if ((s->ext_audio_mask & DCA_CSS_XCH) && ch == pos)
return DCA_SPEAKER_Cs;
// Then XXCH
if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH)) {
for (spkr = DCA_SPEAKER_Cs; spkr < s->xxch_mask_nbits; spkr++)
if (s->xxch_spkr_mask & (1U << spkr))
if (pos++ == ch)
return spkr;
}
// No mapping
return -1;
}
static void erase_dsp_history(DCACoreDecoder *s)
{
memset(s->dcadsp_data, 0, sizeof(s->dcadsp_data));
s->output_history_lfe_fixed = 0;
s->output_history_lfe_float = 0;
}
static void set_filter_mode(DCACoreDecoder *s, int mode)
{
if (s->filter_mode != mode) {
erase_dsp_history(s);
s->filter_mode = mode;
}
}
int ff_dca_core_filter_fixed(DCACoreDecoder *s, int x96_synth)
{
int n, ch, spkr, nsamples, x96_nchannels = 0;
const int32_t *filter_coeff;
int32_t *ptr;
// Externally set x96_synth flag implies that X96 synthesis should be
// enabled, yet actual X96 subband data should be discarded. This is a
// special case for lossless residual decoder that ignores X96 data if
// present.
if (!x96_synth && (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96))) {
x96_nchannels = s->x96_nchannels;
x96_synth = 1;
}
if (x96_synth < 0)
x96_synth = 0;
s->output_rate = s->sample_rate << x96_synth;
s->npcmsamples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth;
// Reallocate PCM output buffer
av_fast_malloc(&s->output_buffer, &s->output_size,
nsamples * av_popcount(s->ch_mask) * sizeof(int32_t));
if (!s->output_buffer)
return AVERROR(ENOMEM);
ptr = (int32_t *)s->output_buffer;
for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) {
if (s->ch_mask & (1U << spkr)) {
s->output_samples[spkr] = ptr;
ptr += nsamples;
} else {
s->output_samples[spkr] = NULL;
}
}
// Handle change of filtering mode
set_filter_mode(s, x96_synth | DCA_FILTER_MODE_FIXED);
// Select filter
if (x96_synth)
filter_coeff = ff_dca_fir_64bands_fixed;
else if (s->filter_perfect)
filter_coeff = ff_dca_fir_32bands_perfect_fixed;
else
filter_coeff = ff_dca_fir_32bands_nonperfect_fixed;
// Filter primary channels
for (ch = 0; ch < s->nchannels; ch++) {
// Map this primary channel to speaker
spkr = map_prm_ch_to_spkr(s, ch);
if (spkr < 0)
return AVERROR(EINVAL);
// Filter bank reconstruction
s->dcadsp->sub_qmf_fixed[x96_synth](
&s->synth,
&s->dcadct,
s->output_samples[spkr],
s->subband_samples[ch],
ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL,
s->dcadsp_data[ch].u.fix.hist1,
&s->dcadsp_data[ch].offset,
s->dcadsp_data[ch].u.fix.hist2,
filter_coeff,
s->npcmblocks);
}
// Filter LFE channel
if (s->lfe_present) {
int32_t *samples = s->output_samples[DCA_SPEAKER_LFE1];
int nlfesamples = s->npcmblocks >> 1;
// Check LFF
if (s->lfe_present == LFE_FLAG_128) {
av_log(s->avctx, AV_LOG_ERROR, "Fixed point mode doesn't support LFF=1\n");
return AVERROR(EINVAL);
}
// Offset intermediate buffer for X96
if (x96_synth)
samples += nsamples / 2;
// Interpolate LFE channel
s->dcadsp->lfe_fir_fixed(samples, s->lfe_samples + DCA_LFE_HISTORY,
ff_dca_lfe_fir_64_fixed, s->npcmblocks);
if (x96_synth) {
// Filter 96 kHz oversampled LFE PCM to attenuate high frequency
// (47.6 - 48.0 kHz) components of interpolation image
s->dcadsp->lfe_x96_fixed(s->output_samples[DCA_SPEAKER_LFE1],
samples, &s->output_history_lfe_fixed,
nsamples / 2);
}
// Update LFE history
for (n = DCA_LFE_HISTORY - 1; n >= 0; n--)
s->lfe_samples[n] = s->lfe_samples[nlfesamples + n];
}
return 0;
}
static int filter_frame_fixed(DCACoreDecoder *s, AVFrame *frame)
{
AVCodecContext *avctx = s->avctx;
DCAContext *dca = avctx->priv_data;
int i, n, ch, ret, spkr, nsamples;
// Don't filter twice when falling back from XLL
if (!(dca->packet & DCA_PACKET_XLL) && (ret = ff_dca_core_filter_fixed(s, 0)) < 0)
return ret;
avctx->sample_rate = s->output_rate;
avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
avctx->bits_per_raw_sample = 24;
frame->nb_samples = nsamples = s->npcmsamples;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
// Undo embedded XCH downmix
if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH)
&& s->audio_mode >= AMODE_2F2R) {
s->dcadsp->dmix_sub_xch(s->output_samples[DCA_SPEAKER_Ls],
s->output_samples[DCA_SPEAKER_Rs],
s->output_samples[DCA_SPEAKER_Cs],
nsamples);
}
// Undo embedded XXCH downmix
if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH))
&& s->xxch_dmix_embedded) {
int scale_inv = s->xxch_dmix_scale_inv;
int *coeff_ptr = s->xxch_dmix_coeff;
int xch_base = ff_dca_channels[s->audio_mode];
av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX);
// Undo embedded core downmix pre-scaling
for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) {
if (s->xxch_core_mask & (1U << spkr)) {
s->dcadsp->dmix_scale_inv(s->output_samples[spkr],
scale_inv, nsamples);
}
}
// Undo downmix
for (ch = xch_base; ch < s->nchannels; ch++) {
int src_spkr = map_prm_ch_to_spkr(s, ch);
if (src_spkr < 0)
return AVERROR(EINVAL);
for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) {
if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) {
int coeff = mul16(*coeff_ptr++, scale_inv);
if (coeff) {
s->dcadsp->dmix_sub(s->output_samples[spkr ],
s->output_samples[src_spkr],
coeff, nsamples);
}
}
}
}
}
if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) {
// Front sum/difference decoding
if ((s->sumdiff_front && s->audio_mode > AMODE_MONO)
|| s->audio_mode == AMODE_STEREO_SUMDIFF) {
s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_L],
s->output_samples[DCA_SPEAKER_R],
nsamples);
}
// Surround sum/difference decoding
if (s->sumdiff_surround && s->audio_mode >= AMODE_2F2R) {
s->fixed_dsp->butterflies_fixed(s->output_samples[DCA_SPEAKER_Ls],
s->output_samples[DCA_SPEAKER_Rs],
nsamples);
}
}
// Downmix primary channel set to stereo
if (s->request_mask != s->ch_mask) {
ff_dca_downmix_to_stereo_fixed(s->dcadsp,
s->output_samples,
s->prim_dmix_coeff,
nsamples, s->ch_mask);
}
for (i = 0; i < avctx->channels; i++) {
int32_t *samples = s->output_samples[s->ch_remap[i]];
int32_t *plane = (int32_t *)frame->extended_data[i];
for (n = 0; n < nsamples; n++)
plane[n] = clip23(samples[n]) * (1 << 8);
}
return 0;
}
static int filter_frame_float(DCACoreDecoder *s, AVFrame *frame)
{
AVCodecContext *avctx = s->avctx;
int x96_nchannels = 0, x96_synth = 0;
int i, n, ch, ret, spkr, nsamples, nchannels;
float *output_samples[DCA_SPEAKER_COUNT] = { NULL }, *ptr;
const float *filter_coeff;
if (s->ext_audio_mask & (DCA_CSS_X96 | DCA_EXSS_X96)) {
x96_nchannels = s->x96_nchannels;
x96_synth = 1;
}
avctx->sample_rate = s->sample_rate << x96_synth;
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
avctx->bits_per_raw_sample = 0;
frame->nb_samples = nsamples = (s->npcmblocks * DCA_PCMBLOCK_SAMPLES) << x96_synth;
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
// Build reverse speaker to channel mapping
for (i = 0; i < avctx->channels; i++)
output_samples[s->ch_remap[i]] = (float *)frame->extended_data[i];
// Allocate space for extra channels
nchannels = av_popcount(s->ch_mask) - avctx->channels;
if (nchannels > 0) {
av_fast_malloc(&s->output_buffer, &s->output_size,
nsamples * nchannels * sizeof(float));
if (!s->output_buffer)
return AVERROR(ENOMEM);
ptr = (float *)s->output_buffer;
for (spkr = 0; spkr < DCA_SPEAKER_COUNT; spkr++) {
if (!(s->ch_mask & (1U << spkr)))
continue;
if (output_samples[spkr])
continue;
output_samples[spkr] = ptr;
ptr += nsamples;
}
}
// Handle change of filtering mode
set_filter_mode(s, x96_synth);
// Select filter
if (x96_synth)
filter_coeff = ff_dca_fir_64bands;
else if (s->filter_perfect)
filter_coeff = ff_dca_fir_32bands_perfect;
else
filter_coeff = ff_dca_fir_32bands_nonperfect;
// Filter primary channels
for (ch = 0; ch < s->nchannels; ch++) {
// Map this primary channel to speaker
spkr = map_prm_ch_to_spkr(s, ch);
if (spkr < 0)
return AVERROR(EINVAL);
// Filter bank reconstruction
s->dcadsp->sub_qmf_float[x96_synth](
&s->synth,
&s->imdct[x96_synth],
output_samples[spkr],
s->subband_samples[ch],
ch < x96_nchannels ? s->x96_subband_samples[ch] : NULL,
s->dcadsp_data[ch].u.flt.hist1,
&s->dcadsp_data[ch].offset,
s->dcadsp_data[ch].u.flt.hist2,
filter_coeff,
s->npcmblocks,
1.0f / (1 << (17 - x96_synth)));
}
// Filter LFE channel
if (s->lfe_present) {
int dec_select = (s->lfe_present == LFE_FLAG_128);
float *samples = output_samples[DCA_SPEAKER_LFE1];
int nlfesamples = s->npcmblocks >> (dec_select + 1);
// Offset intermediate buffer for X96
if (x96_synth)
samples += nsamples / 2;
// Select filter
if (dec_select)
filter_coeff = ff_dca_lfe_fir_128;
else
filter_coeff = ff_dca_lfe_fir_64;
// Interpolate LFE channel
s->dcadsp->lfe_fir_float[dec_select](
samples, s->lfe_samples + DCA_LFE_HISTORY,
filter_coeff, s->npcmblocks);
if (x96_synth) {
// Filter 96 kHz oversampled LFE PCM to attenuate high frequency
// (47.6 - 48.0 kHz) components of interpolation image
s->dcadsp->lfe_x96_float(output_samples[DCA_SPEAKER_LFE1],
samples, &s->output_history_lfe_float,
nsamples / 2);
}
// Update LFE history
for (n = DCA_LFE_HISTORY - 1; n >= 0; n--)
s->lfe_samples[n] = s->lfe_samples[nlfesamples + n];
}
// Undo embedded XCH downmix
if (s->es_format && (s->ext_audio_mask & DCA_CSS_XCH)
&& s->audio_mode >= AMODE_2F2R) {
s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Ls],
output_samples[DCA_SPEAKER_Cs],
-M_SQRT1_2, nsamples);
s->float_dsp->vector_fmac_scalar(output_samples[DCA_SPEAKER_Rs],
output_samples[DCA_SPEAKER_Cs],
-M_SQRT1_2, nsamples);
}
// Undo embedded XXCH downmix
if ((s->ext_audio_mask & (DCA_CSS_XXCH | DCA_EXSS_XXCH))
&& s->xxch_dmix_embedded) {
float scale_inv = s->xxch_dmix_scale_inv * (1.0f / (1 << 16));
int *coeff_ptr = s->xxch_dmix_coeff;
int xch_base = ff_dca_channels[s->audio_mode];
av_assert1(s->nchannels - xch_base <= DCA_XXCH_CHANNELS_MAX);
// Undo downmix
for (ch = xch_base; ch < s->nchannels; ch++) {
int src_spkr = map_prm_ch_to_spkr(s, ch);
if (src_spkr < 0)
return AVERROR(EINVAL);
for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) {
if (s->xxch_dmix_mask[ch - xch_base] & (1U << spkr)) {
int coeff = *coeff_ptr++;
if (coeff) {
s->float_dsp->vector_fmac_scalar(output_samples[ spkr],
output_samples[src_spkr],
coeff * (-1.0f / (1 << 15)),
nsamples);
}
}
}
}
// Undo embedded core downmix pre-scaling
for (spkr = 0; spkr < s->xxch_mask_nbits; spkr++) {
if (s->xxch_core_mask & (1U << spkr)) {
s->float_dsp->vector_fmul_scalar(output_samples[spkr],
output_samples[spkr],
scale_inv, nsamples);
}
}
}
if (!(s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH | DCA_EXSS_XXCH))) {
// Front sum/difference decoding
if ((s->sumdiff_front && s->audio_mode > AMODE_MONO)
|| s->audio_mode == AMODE_STEREO_SUMDIFF) {
s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_L],
output_samples[DCA_SPEAKER_R],
nsamples);
}
// Surround sum/difference decoding
if (s->sumdiff_surround && s->audio_mode >= AMODE_2F2R) {
s->float_dsp->butterflies_float(output_samples[DCA_SPEAKER_Ls],
output_samples[DCA_SPEAKER_Rs],
nsamples);
}
}
// Downmix primary channel set to stereo
if (s->request_mask != s->ch_mask) {
ff_dca_downmix_to_stereo_float(s->float_dsp, output_samples,
s->prim_dmix_coeff,
nsamples, s->ch_mask);
}
return 0;
}
int ff_dca_core_filter_frame(DCACoreDecoder *s, AVFrame *frame)
{
AVCodecContext *avctx = s->avctx;
DCAContext *dca = avctx->priv_data;
DCAExssAsset *asset = &dca->exss.assets[0];
enum AVMatrixEncoding matrix_encoding;
int ret;
// Handle downmixing to stereo request
if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO
&& s->audio_mode > AMODE_MONO && s->prim_dmix_embedded
&& (s->prim_dmix_type == DCA_DMIX_TYPE_LoRo ||
s->prim_dmix_type == DCA_DMIX_TYPE_LtRt))
s->request_mask = DCA_SPEAKER_LAYOUT_STEREO;
else
s->request_mask = s->ch_mask;
if (!ff_dca_set_channel_layout(avctx, s->ch_remap, s->request_mask))
return AVERROR(EINVAL);
// Force fixed point mode when falling back from XLL
if ((avctx->flags & AV_CODEC_FLAG_BITEXACT) || ((dca->packet & DCA_PACKET_EXSS)
&& (asset->extension_mask & DCA_EXSS_XLL)))
ret = filter_frame_fixed(s, frame);
else
ret = filter_frame_float(s, frame);
if (ret < 0)
return ret;
// Set profile, bit rate, etc
if (s->ext_audio_mask & DCA_EXSS_MASK)
avctx->profile = FF_PROFILE_DTS_HD_HRA;
else if (s->ext_audio_mask & (DCA_CSS_XXCH | DCA_CSS_XCH))
avctx->profile = FF_PROFILE_DTS_ES;
else if (s->ext_audio_mask & DCA_CSS_X96)
avctx->profile = FF_PROFILE_DTS_96_24;
else
avctx->profile = FF_PROFILE_DTS;
if (s->bit_rate > 3 && !(s->ext_audio_mask & DCA_EXSS_MASK))
avctx->bit_rate = s->bit_rate;
else
avctx->bit_rate = 0;
if (s->audio_mode == AMODE_STEREO_TOTAL || (s->request_mask != s->ch_mask &&
s->prim_dmix_type == DCA_DMIX_TYPE_LtRt))
matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
else
matrix_encoding = AV_MATRIX_ENCODING_NONE;
if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0)
return ret;
return 0;
}
av_cold void ff_dca_core_flush(DCACoreDecoder *s)
{
if (s->subband_buffer) {
erase_adpcm_history(s);
memset(s->lfe_samples, 0, DCA_LFE_HISTORY * sizeof(int32_t));
}
if (s->x96_subband_buffer)
erase_x96_adpcm_history(s);
erase_dsp_history(s);
}
av_cold int ff_dca_core_init(DCACoreDecoder *s)
{
dca_init_vlcs();
if (!(s->float_dsp = avpriv_float_dsp_alloc(0)))
return -1;
if (!(s->fixed_dsp = avpriv_alloc_fixed_dsp(0)))
return -1;
ff_dcadct_init(&s->dcadct);
if (ff_mdct_init(&s->imdct[0], 6, 1, 1.0) < 0)
return -1;
if (ff_mdct_init(&s->imdct[1], 7, 1, 1.0) < 0)
return -1;
ff_synth_filter_init(&s->synth);
s->x96_rand = 1;
return 0;
}
av_cold void ff_dca_core_close(DCACoreDecoder *s)
{
av_freep(&s->float_dsp);
av_freep(&s->fixed_dsp);
ff_mdct_end(&s->imdct[0]);
ff_mdct_end(&s->imdct[1]);
av_freep(&s->subband_buffer);
s->subband_size = 0;
av_freep(&s->x96_subband_buffer);
s->x96_subband_size = 0;
av_freep(&s->output_buffer);
s->output_size = 0;
}
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_DCA_CORE_H
#define AVCODEC_DCA_CORE_H
#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "libavutil/fixed_dsp.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "dca.h"
#include "dca_exss.h"
#include "dcadsp.h"
#include "dcadct.h"
#include "fft.h"
#include "synth_filter.h"
#define DCA_CHANNELS 7
#define DCA_SUBBANDS 32
#define DCA_SUBBANDS_X96 64
#define DCA_SUBFRAMES 16
#define DCA_SUBBAND_SAMPLES 8
#define DCA_PCMBLOCK_SAMPLES 32
#define DCA_ADPCM_COEFFS 4
#define DCA_LFE_HISTORY 8
#define DCA_CODE_BOOKS 10
#define DCA_ABITS_MAX 26
#define DCA_CORE_CHANNELS_MAX 6
#define DCA_DMIX_CHANNELS_MAX 4
#define DCA_XXCH_CHANNELS_MAX 2
#define DCA_EXSS_CHANNELS_MAX 8
#define DCA_EXSS_CHSETS_MAX 4
#define DCA_FILTER_MODE_X96 0x01
#define DCA_FILTER_MODE_FIXED 0x02
typedef struct DCADSPData {
union {
struct {
DECLARE_ALIGNED(32, float, hist1)[1024];
DECLARE_ALIGNED(32, float, hist2)[64];
} flt;
struct {
DECLARE_ALIGNED(32, int32_t, hist1)[1024];
DECLARE_ALIGNED(32, int32_t, hist2)[64];
} fix;
} u;
int offset;
} DCADSPData;
typedef struct DCACoreDecoder {
AVCodecContext *avctx;
GetBitContext gb;
// Bit stream header
int crc_present; ///< CRC present flag
int npcmblocks; ///< Number of PCM sample blocks
int frame_size; ///< Primary frame byte size
int audio_mode; ///< Audio channel arrangement
int sample_rate; ///< Core audio sampling frequency
int bit_rate; ///< Transmission bit rate
int drc_present; ///< Embedded dynamic range flag
int ts_present; ///< Embedded time stamp flag
int aux_present; ///< Auxiliary data flag
int ext_audio_type; ///< Extension audio descriptor flag
int ext_audio_present; ///< Extended coding flag
int sync_ssf; ///< Audio sync word insertion flag
int lfe_present; ///< Low frequency effects flag
int predictor_history; ///< Predictor history flag switch
int filter_perfect; ///< Multirate interpolator switch
int source_pcm_res; ///< Source PCM resolution
int es_format; ///< Extended surround (ES) mastering flag
int sumdiff_front; ///< Front sum/difference flag
int sumdiff_surround; ///< Surround sum/difference flag
// Primary audio coding header
int nsubframes; ///< Number of subframes
int nchannels; ///< Number of primary audio channels (incl. extension channels)
int ch_mask; ///< Speaker layout mask (incl. LFE and extension channels)
int8_t nsubbands[DCA_CHANNELS]; ///< Subband activity count
int8_t subband_vq_start[DCA_CHANNELS]; ///< High frequency VQ start subband
int8_t joint_intensity_index[DCA_CHANNELS]; ///< Joint intensity coding index
int8_t transition_mode_sel[DCA_CHANNELS]; ///< Transient mode code book
int8_t scale_factor_sel[DCA_CHANNELS]; ///< Scale factor code book
int8_t bit_allocation_sel[DCA_CHANNELS]; ///< Bit allocation quantizer select
int8_t quant_index_sel[DCA_CHANNELS][DCA_CODE_BOOKS]; ///< Quantization index codebook select
int32_t scale_factor_adj[DCA_CHANNELS][DCA_CODE_BOOKS]; ///< Scale factor adjustment
// Primary audio coding side information
int8_t nsubsubframes[DCA_SUBFRAMES]; ///< Subsubframe count for each subframe
int8_t prediction_mode[DCA_CHANNELS][DCA_SUBBANDS_X96]; ///< Prediction mode
int16_t prediction_vq_index[DCA_CHANNELS][DCA_SUBBANDS_X96]; ///< Prediction coefficients VQ address
int8_t bit_allocation[DCA_CHANNELS][DCA_SUBBANDS_X96]; ///< Bit allocation index
int8_t transition_mode[DCA_SUBFRAMES][DCA_CHANNELS][DCA_SUBBANDS]; ///< Transition mode
int32_t scale_factors[DCA_CHANNELS][DCA_SUBBANDS][2]; ///< Scale factors (2x for transients and X96)
int8_t joint_scale_sel[DCA_CHANNELS]; ///< Joint subband codebook select
int32_t joint_scale_factors[DCA_CHANNELS][DCA_SUBBANDS_X96]; ///< Scale factors for joint subband coding
// Auxiliary data
int prim_dmix_embedded; ///< Auxiliary dynamic downmix flag
int prim_dmix_type; ///< Auxiliary primary channel downmix type
int prim_dmix_coeff[DCA_DMIX_CHANNELS_MAX * DCA_CORE_CHANNELS_MAX]; ///< Dynamic downmix code coefficients
// Core extensions
int ext_audio_mask; ///< Bit mask of fully decoded core extensions
// XCH extension data
int xch_pos; ///< Bit position of XCH frame in core substream
// XXCH extension data
int xxch_crc_present; ///< CRC presence flag for XXCH channel set header
int xxch_mask_nbits; ///< Number of bits for loudspeaker mask
int xxch_core_mask; ///< Core loudspeaker activity mask
int xxch_spkr_mask; ///< Loudspeaker layout mask
int xxch_dmix_embedded; ///< Downmix already performed by encoder
int xxch_dmix_scale_inv; ///< Downmix scale factor
int xxch_dmix_mask[DCA_XXCH_CHANNELS_MAX]; ///< Downmix channel mapping mask
int xxch_dmix_coeff[DCA_XXCH_CHANNELS_MAX * DCA_CORE_CHANNELS_MAX]; ///< Downmix coefficients
int xxch_pos; ///< Bit position of XXCH frame in core substream
// X96 extension data
int x96_rev_no; ///< X96 revision number
int x96_crc_present; ///< CRC presence flag for X96 channel set header
int x96_nchannels; ///< Number of primary channels in X96 extension
int x96_high_res; ///< X96 high resolution flag
int x96_subband_start; ///< First encoded subband in X96 extension
int x96_rand; ///< Random seed for generating samples for unallocated X96 subbands
int x96_pos; ///< Bit position of X96 frame in core substream
// Sample buffers
unsigned int x96_subband_size;
int32_t *x96_subband_buffer; ///< X96 subband sample buffer base
int32_t *x96_subband_samples[DCA_CHANNELS][DCA_SUBBANDS_X96]; ///< X96 subband samples
unsigned int subband_size;
int32_t *subband_buffer; ///< Subband sample buffer base
int32_t *subband_samples[DCA_CHANNELS][DCA_SUBBANDS]; ///< Subband samples
int32_t *lfe_samples; ///< Decimated LFE samples
// DSP contexts
DCADSPData dcadsp_data[DCA_CHANNELS]; ///< FIR history buffers
DCADSPContext *dcadsp;
DCADCTContext dcadct;
FFTContext imdct[2];
SynthFilterContext synth;
AVFloatDSPContext *float_dsp;
AVFixedDSPContext *fixed_dsp;
// PCM output data
unsigned int output_size;
void *output_buffer; ///< PCM output buffer base
int32_t *output_samples[DCA_SPEAKER_COUNT]; ///< PCM output for fixed point mode
int32_t output_history_lfe_fixed; ///< LFE PCM history for X96 filter
float output_history_lfe_float; ///< LFE PCM history for X96 filter
int ch_remap[DCA_SPEAKER_COUNT]; ///< Channel to speaker map
int request_mask; ///< Requested channel layout (for stereo downmix)
int npcmsamples; ///< Number of PCM samples per channel
int output_rate; ///< Output sample rate (1x or 2x header rate)
int filter_mode; ///< Previous filtering mode for detecting changes
} DCACoreDecoder;
static inline int ff_dca_core_map_spkr(DCACoreDecoder *core, int spkr)
{
if (core->ch_mask & (1U << spkr))
return spkr;
if (spkr == DCA_SPEAKER_Lss && (core->ch_mask & DCA_SPEAKER_MASK_Ls))
return DCA_SPEAKER_Ls;
if (spkr == DCA_SPEAKER_Rss && (core->ch_mask & DCA_SPEAKER_MASK_Rs))
return DCA_SPEAKER_Rs;
return -1;
}
int ff_dca_core_parse(DCACoreDecoder *s, uint8_t *data, int size);
int ff_dca_core_parse_exss(DCACoreDecoder *s, uint8_t *data, DCAExssAsset *asset);
int ff_dca_core_filter_fixed(DCACoreDecoder *s, int x96_synth);
int ff_dca_core_filter_frame(DCACoreDecoder *s, AVFrame *frame);
av_cold void ff_dca_core_flush(DCACoreDecoder *s);
av_cold int ff_dca_core_init(DCACoreDecoder *s);
av_cold void ff_dca_core_close(DCACoreDecoder *s);
#endif
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dcadec.h"
#include "dcadata.h"
static int count_chs_for_mask(int mask)
{
return av_popcount(mask) + av_popcount(mask & 0xae66);
}
static void parse_xll_parameters(DCAExssParser *s, DCAExssAsset *asset)
{
// Size of XLL data in extension substream
asset->xll_size = get_bits(&s->gb, s->exss_size_nbits) + 1;
// XLL sync word present flag
if (asset->xll_sync_present = get_bits1(&s->gb)) {
int xll_delay_nbits;
// Peak bit rate smoothing buffer size
skip_bits(&s->gb, 4);
// Number of bits for XLL decoding delay
xll_delay_nbits = get_bits(&s->gb, 5) + 1;
// Initial XLL decoding delay in frames
asset->xll_delay_nframes = get_bits_long(&s->gb, xll_delay_nbits);
// Number of bytes offset to XLL sync
asset->xll_sync_offset = get_bits(&s->gb, s->exss_size_nbits);
} else {
asset->xll_delay_nframes = 0;
asset->xll_sync_offset = 0;
}
}
static void parse_lbr_parameters(DCAExssParser *s, DCAExssAsset *asset)
{
// Size of LBR component in extension substream
asset->lbr_size = get_bits(&s->gb, 14) + 1;
// LBR sync word present flag
if (get_bits1(&s->gb))
// LBR sync distance
skip_bits(&s->gb, 2);
}
static int parse_descriptor(DCAExssParser *s, DCAExssAsset *asset)
{
int i, j, drc_present, descr_size, descr_pos = get_bits_count(&s->gb);
// Size of audio asset descriptor in bytes
descr_size = get_bits(&s->gb, 9) + 1;
// Audio asset identifier
asset->asset_index = get_bits(&s->gb, 3);
//
// Per stream static metadata
//
if (s->static_fields_present) {
// Asset type descriptor presence
if (get_bits1(&s->gb))
// Asset type descriptor
skip_bits(&s->gb, 4);
// Language descriptor presence
if (get_bits1(&s->gb))
// Language descriptor
skip_bits(&s->gb, 24);
// Additional textual information presence
if (get_bits1(&s->gb)) {
// Byte size of additional text info
int text_size = get_bits(&s->gb, 10) + 1;
// Sanity check available size
if (get_bits_left(&s->gb) < text_size * 8)
return AVERROR_INVALIDDATA;
// Additional textual information string
skip_bits_long(&s->gb, text_size * 8);
}
// PCM bit resolution
asset->pcm_bit_res = get_bits(&s->gb, 5) + 1;
// Maximum sample rate
asset->max_sample_rate = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
// Total number of channels
asset->nchannels_total = get_bits(&s->gb, 8) + 1;
// One to one map channel to speakers
if (asset->one_to_one_map_ch_to_spkr = get_bits1(&s->gb)) {
int spkr_mask_nbits = 0;
int spkr_remap_nsets;
int nspeakers[8];
// Embedded stereo flag
if (asset->nchannels_total > 2)
asset->embedded_stereo = get_bits1(&s->gb);
// Embedded 6 channels flag
if (asset->nchannels_total > 6)
asset->embedded_6ch = get_bits1(&s->gb);
// Speaker mask enabled flag
if (asset->spkr_mask_enabled = get_bits1(&s->gb)) {
// Number of bits for speaker activity mask
spkr_mask_nbits = (get_bits(&s->gb, 2) + 1) << 2;
// Loudspeaker activity mask
asset->spkr_mask = get_bits(&s->gb, spkr_mask_nbits);
}
// Number of speaker remapping sets
if ((spkr_remap_nsets = get_bits(&s->gb, 3)) && !spkr_mask_nbits) {
av_log(s->avctx, AV_LOG_ERROR, "Speaker mask disabled yet there are remapping sets\n");
return AVERROR_INVALIDDATA;
}
// Standard loudspeaker layout mask
for (i = 0; i < spkr_remap_nsets; i++)
nspeakers[i] = count_chs_for_mask(get_bits(&s->gb, spkr_mask_nbits));
for (i = 0; i < spkr_remap_nsets; i++) {
// Number of channels to be decoded for speaker remapping
int nch_for_remaps = get_bits(&s->gb, 5) + 1;
for (j = 0; j < nspeakers[i]; j++) {
// Decoded channels to output speaker mapping mask
int remap_ch_mask = get_bits_long(&s->gb, nch_for_remaps);
// Loudspeaker remapping codes
skip_bits_long(&s->gb, av_popcount(remap_ch_mask) * 5);
}
}
} else {
asset->embedded_stereo = 0;
asset->embedded_6ch = 0;
asset->spkr_mask_enabled = 0;
asset->spkr_mask = 0;
// Representation type
asset->representation_type = get_bits(&s->gb, 3);
}
}
//
// DRC, DNC and mixing metadata
//
// Dynamic range coefficient presence flag
drc_present = get_bits1(&s->gb);
// Code for dynamic range coefficient
if (drc_present)
skip_bits(&s->gb, 8);
// Dialog normalization presence flag
if (get_bits1(&s->gb))
// Dialog normalization code
skip_bits(&s->gb, 5);
// DRC for stereo downmix
if (drc_present && asset->embedded_stereo)
skip_bits(&s->gb, 8);
// Mixing metadata presence flag
if (s->mix_metadata_enabled && get_bits1(&s->gb)) {
int nchannels_dmix;
// External mixing flag
skip_bits1(&s->gb);
// Post mixing / replacement gain adjustment
skip_bits(&s->gb, 6);
// DRC prior to mixing
if (get_bits(&s->gb, 2) == 3)
// Custom code for mixing DRC
skip_bits(&s->gb, 8);
else
// Limit for mixing DRC
skip_bits(&s->gb, 3);
// Scaling type for channels of main audio
// Scaling parameters of main audio
if (get_bits1(&s->gb))
for (i = 0; i < s->nmixoutconfigs; i++)
skip_bits_long(&s->gb, 6 * s->nmixoutchs[i]);
else
skip_bits_long(&s->gb, 6 * s->nmixoutconfigs);
nchannels_dmix = asset->nchannels_total;
if (asset->embedded_6ch)
nchannels_dmix += 6;
if (asset->embedded_stereo)
nchannels_dmix += 2;
for (i = 0; i < s->nmixoutconfigs; i++) {
if (!s->nmixoutchs[i]) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid speaker layout mask for mixing configuration\n");
return AVERROR_INVALIDDATA;
}
for (j = 0; j < nchannels_dmix; j++) {
// Mix output mask
int mix_map_mask = get_bits(&s->gb, s->nmixoutchs[i]);
// Mixing coefficients
skip_bits_long(&s->gb, av_popcount(mix_map_mask) * 6);
}
}
}
//
// Decoder navigation data
//
// Coding mode for the asset
asset->coding_mode = get_bits(&s->gb, 2);
// Coding components used in asset
switch (asset->coding_mode) {
case 0: // Coding mode that may contain multiple coding components
asset->extension_mask = get_bits(&s->gb, 12);
if (asset->extension_mask & DCA_EXSS_CORE) {
// Size of core component in extension substream
asset->core_size = get_bits(&s->gb, 14) + 1;
// Core sync word present flag
if (get_bits1(&s->gb))
// Core sync distance
skip_bits(&s->gb, 2);
}
if (asset->extension_mask & DCA_EXSS_XBR)
// Size of XBR extension in extension substream
asset->xbr_size = get_bits(&s->gb, 14) + 1;
if (asset->extension_mask & DCA_EXSS_XXCH)
// Size of XXCH extension in extension substream
asset->xxch_size = get_bits(&s->gb, 14) + 1;
if (asset->extension_mask & DCA_EXSS_X96)
// Size of X96 extension in extension substream
asset->x96_size = get_bits(&s->gb, 12) + 1;
if (asset->extension_mask & DCA_EXSS_LBR)
parse_lbr_parameters(s, asset);
if (asset->extension_mask & DCA_EXSS_XLL)
parse_xll_parameters(s, asset);
if (asset->extension_mask & DCA_EXSS_RSV1)
skip_bits(&s->gb, 16);
if (asset->extension_mask & DCA_EXSS_RSV2)
skip_bits(&s->gb, 16);
break;
case 1: // Loss-less coding mode without CBR component
asset->extension_mask = DCA_EXSS_XLL;
parse_xll_parameters(s, asset);
break;
case 2: // Low bit rate mode
asset->extension_mask = DCA_EXSS_LBR;
parse_lbr_parameters(s, asset);
break;
case 3: // Auxiliary coding mode
asset->extension_mask = 0;
// Size of auxiliary coded data
skip_bits(&s->gb, 14);
// Auxiliary codec identification
skip_bits(&s->gb, 8);
// Aux sync word present flag
if (get_bits1(&s->gb))
// Aux sync distance
skip_bits(&s->gb, 3);
break;
}
if (asset->extension_mask & DCA_EXSS_XLL)
// DTS-HD stream ID
asset->hd_stream_id = get_bits(&s->gb, 3);
// One to one mixing flag
// Per channel main audio scaling flag
// Main audio scaling codes
// Decode asset in secondary decoder flag
// Revision 2 DRC metadata
// Reserved
// Zero pad
if (ff_dca_seek_bits(&s->gb, descr_pos + descr_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of EXSS asset descriptor\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int set_exss_offsets(DCAExssAsset *asset)
{
int offs = asset->asset_offset;
int size = asset->asset_size;
if (asset->extension_mask & DCA_EXSS_CORE) {
asset->core_offset = offs;
if (asset->core_size > size)
return AVERROR_INVALIDDATA;
offs += asset->core_size;
size -= asset->core_size;
}
if (asset->extension_mask & DCA_EXSS_XBR) {
asset->xbr_offset = offs;
if (asset->xbr_size > size)
return AVERROR_INVALIDDATA;
offs += asset->xbr_size;
size -= asset->xbr_size;
}
if (asset->extension_mask & DCA_EXSS_XXCH) {
asset->xxch_offset = offs;
if (asset->xxch_size > size)
return AVERROR_INVALIDDATA;
offs += asset->xxch_size;
size -= asset->xxch_size;
}
if (asset->extension_mask & DCA_EXSS_X96) {
asset->x96_offset = offs;
if (asset->x96_size > size)
return AVERROR_INVALIDDATA;
offs += asset->x96_size;
size -= asset->x96_size;
}
if (asset->extension_mask & DCA_EXSS_LBR) {
asset->lbr_offset = offs;
if (asset->lbr_size > size)
return AVERROR_INVALIDDATA;
offs += asset->lbr_size;
size -= asset->lbr_size;
}
if (asset->extension_mask & DCA_EXSS_XLL) {
asset->xll_offset = offs;
if (asset->xll_size > size)
return AVERROR_INVALIDDATA;
offs += asset->xll_size;
size -= asset->xll_size;
}
return 0;
}
int ff_dca_exss_parse(DCAExssParser *s, uint8_t *data, int size)
{
int i, ret, offset, wide_hdr, header_size;
if ((ret = init_get_bits8(&s->gb, data, size)) < 0)
return ret;
// Extension substream sync word
skip_bits_long(&s->gb, 32);
// User defined bits
skip_bits(&s->gb, 8);
// Extension substream index
s->exss_index = get_bits(&s->gb, 2);
// Flag indicating short or long header size
wide_hdr = get_bits1(&s->gb);
// Extension substream header length
header_size = get_bits(&s->gb, 8 + 4 * wide_hdr) + 1;
// Check CRC
if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, 32 + 8, header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid EXSS header checksum\n");
return AVERROR_INVALIDDATA;
}
s->exss_size_nbits = 16 + 4 * wide_hdr;
// Number of bytes of extension substream
s->exss_size = get_bits(&s->gb, s->exss_size_nbits) + 1;
if (s->exss_size > size) {
av_log(s->avctx, AV_LOG_ERROR, "Packet too short for EXSS frame\n");
return AVERROR_INVALIDDATA;
}
// Per stream static fields presence flag
if (s->static_fields_present = get_bits1(&s->gb)) {
int active_exss_mask[8];
// Reference clock code
skip_bits(&s->gb, 2);
// Extension substream frame duration
skip_bits(&s->gb, 3);
// Timecode presence flag
if (get_bits1(&s->gb))
// Timecode data
skip_bits_long(&s->gb, 36);
// Number of defined audio presentations
s->npresents = get_bits(&s->gb, 3) + 1;
if (s->npresents > 1) {
avpriv_request_sample(s->avctx, "%d audio presentations", s->npresents);
return AVERROR_PATCHWELCOME;
}
// Number of audio assets in extension substream
s->nassets = get_bits(&s->gb, 3) + 1;
if (s->nassets > 1) {
avpriv_request_sample(s->avctx, "%d audio assets", s->nassets);
return AVERROR_PATCHWELCOME;
}
// Active extension substream mask for audio presentation
for (i = 0; i < s->npresents; i++)
active_exss_mask[i] = get_bits(&s->gb, s->exss_index + 1);
// Active audio asset mask
for (i = 0; i < s->npresents; i++)
skip_bits_long(&s->gb, av_popcount(active_exss_mask[i]) * 8);
// Mixing metadata enable flag
if (s->mix_metadata_enabled = get_bits1(&s->gb)) {
int spkr_mask_nbits;
// Mixing metadata adjustment level
skip_bits(&s->gb, 2);
// Number of bits for mixer output speaker activity mask
spkr_mask_nbits = (get_bits(&s->gb, 2) + 1) << 2;
// Number of mixing configurations
s->nmixoutconfigs = get_bits(&s->gb, 2) + 1;
// Speaker layout mask for mixer output channels
for (i = 0; i < s->nmixoutconfigs; i++)
s->nmixoutchs[i] = count_chs_for_mask(get_bits(&s->gb, spkr_mask_nbits));
}
} else {
s->npresents = 1;
s->nassets = 1;
}
// Size of encoded asset data in bytes
offset = header_size;
for (i = 0; i < s->nassets; i++) {
s->assets[i].asset_offset = offset;
s->assets[i].asset_size = get_bits(&s->gb, s->exss_size_nbits) + 1;
offset += s->assets[i].asset_size;
if (offset > s->exss_size) {
av_log(s->avctx, AV_LOG_ERROR, "EXSS asset out of bounds\n");
return AVERROR_INVALIDDATA;
}
}
// Audio asset descriptor
for (i = 0; i < s->nassets; i++) {
if ((ret = parse_descriptor(s, &s->assets[i])) < 0)
return ret;
if ((ret = set_exss_offsets(&s->assets[i])) < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid extension size in EXSS asset descriptor\n");
return ret;
}
}
// Backward compatible core present
// Backward compatible core substream index
// Backward compatible core asset index
// Reserved
// Byte align
// CRC16 of extension substream header
if (ff_dca_seek_bits(&s->gb, header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of EXSS header\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_DCA_EXSS_H
#define AVCODEC_DCA_EXSS_H
#include "libavutil/common.h"
#include "avcodec.h"
#include "get_bits.h"
typedef struct DCAExssAsset {
int asset_offset; ///< Offset to asset data from start of substream
int asset_size; ///< Size of encoded asset data
int asset_index; ///< Audio asset identifier
int pcm_bit_res; ///< PCM bit resolution
int max_sample_rate; ///< Maximum sample rate
int nchannels_total; ///< Total number of channels
int one_to_one_map_ch_to_spkr; ///< One to one channel to speaker mapping flag
int embedded_stereo; ///< Embedded stereo flag
int embedded_6ch; ///< Embedded 6 channels flag
int spkr_mask_enabled; ///< Speaker mask enabled flag
int spkr_mask; ///< Loudspeaker activity mask
int representation_type; ///< Representation type
int coding_mode; ///< Coding mode for the asset
int extension_mask; ///< Coding components used in asset
int core_offset; ///< Offset to core component from start of substream
int core_size; ///< Size of core component in extension substream
int xbr_offset; ///< Offset to XBR extension from start of substream
int xbr_size; ///< Size of XBR extension in extension substream
int xxch_offset; ///< Offset to XXCH extension from start of substream
int xxch_size; ///< Size of XXCH extension in extension substream
int x96_offset; ///< Offset to X96 extension from start of substream
int x96_size; ///< Size of X96 extension in extension substream
int lbr_offset; ///< Offset to LBR component from start of substream
int lbr_size; ///< Size of LBR component in extension substream
int xll_offset; ///< Offset to XLL data from start of substream
int xll_size; ///< Size of XLL data in extension substream
int xll_sync_present; ///< XLL sync word present flag
int xll_delay_nframes; ///< Initial XLL decoding delay in frames
int xll_sync_offset; ///< Number of bytes offset to XLL sync
int hd_stream_id; ///< DTS-HD stream ID
} DCAExssAsset;
typedef struct DCAExssParser {
AVCodecContext *avctx;
GetBitContext gb;
int exss_index; ///< Extension substream index
int exss_size_nbits; ///< Number of bits for extension substream size
int exss_size; ///< Number of bytes of extension substream
int static_fields_present; ///< Per stream static fields presence flag
int npresents; ///< Number of defined audio presentations
int nassets; ///< Number of audio assets in extension substream
int mix_metadata_enabled; ///< Mixing metadata enable flag
int nmixoutconfigs; ///< Number of mixing configurations
int nmixoutchs[4]; ///< Speaker layout mask for mixer output channels
DCAExssAsset assets[1]; ///< Audio asset descriptors
} DCAExssParser;
int ff_dca_exss_parse(DCAExssParser *s, uint8_t *data, int size);
#endif
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dcadec.h"
#include "dcadata.h"
#include "dcamath.h"
#include "dca_syncwords.h"
#include "unary.h"
static int get_linear(GetBitContext *gb, int n)
{
unsigned int v = get_bits_long(gb, n);
return (v >> 1) ^ -(v & 1);
}
static int get_rice_un(GetBitContext *gb, int k)
{
unsigned int v = get_unary(gb, 1, 128);
return (v << k) | get_bits_long(gb, k);
}
static int get_rice(GetBitContext *gb, int k)
{
unsigned int v = get_rice_un(gb, k);
return (v >> 1) ^ -(v & 1);
}
static void get_array(GetBitContext *gb, int32_t *array, int size, int n)
{
int i;
for (i = 0; i < size; i++)
array[i] = get_bits(gb, n);
}
static void get_linear_array(GetBitContext *gb, int32_t *array, int size, int n)
{
int i;
if (n == 0)
memset(array, 0, sizeof(*array) * size);
else for (i = 0; i < size; i++)
array[i] = get_linear(gb, n);
}
static void get_rice_array(GetBitContext *gb, int32_t *array, int size, int k)
{
int i;
for (i = 0; i < size; i++)
array[i] = get_rice(gb, k);
}
static int parse_dmix_coeffs(DCAXllDecoder *s, DCAXllChSet *c)
{
// Size of downmix coefficient matrix
int m = c->primary_chset ? ff_dca_dmix_primary_nch[c->dmix_type] : c->hier_ofs;
int i, j, *coeff_ptr = c->dmix_coeff;
for (i = 0; i < m; i++) {
int code, sign, coeff, scale, scale_inv = 0;
unsigned int index;
// Downmix scale (only for non-primary channel sets)
if (!c->primary_chset) {
code = get_bits(&s->gb, 9);
sign = (code >> 8) - 1;
index = (code & 0xff) - FF_DCA_DMIXTABLE_OFFSET;
if (index >= FF_DCA_INV_DMIXTABLE_SIZE) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix scale index\n");
return AVERROR_INVALIDDATA;
}
scale = ff_dca_dmixtable[index + FF_DCA_DMIXTABLE_OFFSET];
scale_inv = ff_dca_inv_dmixtable[index];
c->dmix_scale[i] = (scale ^ sign) - sign;
c->dmix_scale_inv[i] = (scale_inv ^ sign) - sign;
}
// Downmix coefficients
for (j = 0; j < c->nchannels; j++) {
code = get_bits(&s->gb, 9);
sign = (code >> 8) - 1;
index = code & 0xff;
if (index >= FF_DCA_DMIXTABLE_SIZE) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix coefficient index\n");
return AVERROR_INVALIDDATA;
}
coeff = ff_dca_dmixtable[index];
if (!c->primary_chset)
// Multiply by |InvDmixScale| to get |UndoDmixScale|
coeff = mul16(scale_inv, coeff);
*coeff_ptr++ = (coeff ^ sign) - sign;
}
}
return 0;
}
static int chs_parse_header(DCAXllDecoder *s, DCAXllChSet *c, DCAExssAsset *asset)
{
int i, j, k, ret, band, header_size, header_pos = get_bits_count(&s->gb);
DCAXllChSet *p = &s->chset[0];
DCAXllBand *b;
// Size of channel set sub-header
header_size = get_bits(&s->gb, 10) + 1;
// Check CRC
if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, header_pos, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL sub-header checksum\n");
return AVERROR_INVALIDDATA;
}
// Number of channels in the channel set
c->nchannels = get_bits(&s->gb, 4) + 1;
if (c->nchannels > DCA_XLL_CHANNELS_MAX) {
avpriv_request_sample(s->avctx, "%d XLL channels", c->nchannels);
return AVERROR_PATCHWELCOME;
}
// Residual type
c->residual_encode = get_bits(&s->gb, c->nchannels);
// PCM bit resolution
c->pcm_bit_res = get_bits(&s->gb, 5) + 1;
// Storage unit width
c->storage_bit_res = get_bits(&s->gb, 5) + 1;
if (c->storage_bit_res != 16 && c->storage_bit_res != 24) {
avpriv_request_sample(s->avctx, "%d-bit XLL storage resolution", c->storage_bit_res);
return AVERROR_PATCHWELCOME;
}
if (c->pcm_bit_res > c->storage_bit_res) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid PCM bit resolution for XLL channel set (%d > %d)\n", c->pcm_bit_res, c->storage_bit_res);
return AVERROR_INVALIDDATA;
}
// Original sampling frequency
c->freq = ff_dca_sampling_freqs[get_bits(&s->gb, 4)];
if (c->freq > 192000) {
avpriv_request_sample(s->avctx, "%d Hz XLL sampling frequency", c->freq);
return AVERROR_PATCHWELCOME;
}
// Sampling frequency modifier
if (get_bits(&s->gb, 2)) {
avpriv_request_sample(s->avctx, "XLL sampling frequency modifier");
return AVERROR_PATCHWELCOME;
}
// Which replacement set this channel set is member of
if (get_bits(&s->gb, 2)) {
avpriv_request_sample(s->avctx, "XLL replacement set");
return AVERROR_PATCHWELCOME;
}
if (asset->one_to_one_map_ch_to_spkr) {
// Primary channel set flag
c->primary_chset = get_bits1(&s->gb);
if (c->primary_chset != (c == p)) {
av_log(s->avctx, AV_LOG_ERROR, "The first (and only) XLL channel set must be primary\n");
return AVERROR_INVALIDDATA;
}
// Downmix coefficients present in stream
c->dmix_coeffs_present = get_bits1(&s->gb);
// Downmix already performed by encoder
c->dmix_embedded = c->dmix_coeffs_present && get_bits1(&s->gb);
// Downmix type
if (c->dmix_coeffs_present && c->primary_chset) {
c->dmix_type = get_bits(&s->gb, 3);
if (c->dmix_type >= DCA_DMIX_TYPE_COUNT) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL primary channel set downmix type\n");
return AVERROR_INVALIDDATA;
}
}
// Whether the channel set is part of a hierarchy
c->hier_chset = get_bits1(&s->gb);
if (!c->hier_chset && s->nchsets != 1) {
avpriv_request_sample(s->avctx, "XLL channel set outside of hierarchy");
return AVERROR_PATCHWELCOME;
}
// Downmix coefficients
if (c->dmix_coeffs_present && (ret = parse_dmix_coeffs(s, c)) < 0)
return ret;
// Channel mask enabled
if (!get_bits1(&s->gb)) {
avpriv_request_sample(s->avctx, "Disabled XLL channel mask");
return AVERROR_PATCHWELCOME;
}
// Channel mask for set
c->ch_mask = get_bits_long(&s->gb, s->ch_mask_nbits);
if (av_popcount(c->ch_mask) != c->nchannels) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL channel mask\n");
return AVERROR_INVALIDDATA;
}
// Build the channel to speaker map
for (i = 0, j = 0; i < s->ch_mask_nbits; i++)
if (c->ch_mask & (1U << i))
c->ch_remap[j++] = i;
} else {
// Mapping coeffs present flag
if (c->nchannels != 2 || s->nchsets != 1 || get_bits1(&s->gb)) {
avpriv_request_sample(s->avctx, "Custom XLL channel to speaker mapping");
return AVERROR_PATCHWELCOME;
}
// Setup for LtRt decoding
c->primary_chset = 1;
c->dmix_coeffs_present = 0;
c->dmix_embedded = 0;
c->hier_chset = 0;
c->ch_mask = DCA_SPEAKER_LAYOUT_STEREO;
c->ch_remap[0] = DCA_SPEAKER_L;
c->ch_remap[1] = DCA_SPEAKER_R;
}
if (c->freq > 96000) {
// Extra frequency bands flag
if (get_bits1(&s->gb)) {
avpriv_request_sample(s->avctx, "Extra XLL frequency bands");
return AVERROR_PATCHWELCOME;
}
c->nfreqbands = 2;
} else {
c->nfreqbands = 1;
}
// Set the sampling frequency to that of the first frequency band.
// Frequency will be doubled again after bands assembly.
c->freq >>= c->nfreqbands - 1;
// Verify that all channel sets have the same audio characteristics
if (c != p && (c->nfreqbands != p->nfreqbands || c->freq != p->freq
|| c->pcm_bit_res != p->pcm_bit_res
|| c->storage_bit_res != p->storage_bit_res)) {
avpriv_request_sample(s->avctx, "Different XLL audio characteristics");
return AVERROR_PATCHWELCOME;
}
// Determine number of bits to read bit allocation coding parameter
if (c->storage_bit_res > 16)
c->nabits = 5;
else if (c->storage_bit_res > 8)
c->nabits = 4;
else
c->nabits = 3;
// Account for embedded downmix and decimator saturation
if ((s->nchsets > 1 || c->nfreqbands > 1) && c->nabits < 5)
c->nabits++;
for (band = 0, b = c->bands; band < c->nfreqbands; band++, b++) {
// Pairwise channel decorrelation
if ((b->decor_enabled = get_bits1(&s->gb)) && c->nchannels > 1) {
int ch_nbits = av_ceil_log2(c->nchannels);
// Original channel order
for (i = 0; i < c->nchannels; i++) {
b->orig_order[i] = get_bits(&s->gb, ch_nbits);
if (b->orig_order[i] >= c->nchannels) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL original channel order\n");
return AVERROR_INVALIDDATA;
}
}
// Pairwise channel coefficients
for (i = 0; i < c->nchannels / 2; i++)
b->decor_coeff[i] = get_bits1(&s->gb) ? get_linear(&s->gb, 7) : 0;
} else {
for (i = 0; i < c->nchannels; i++)
b->orig_order[i] = i;
for (i = 0; i < c->nchannels / 2; i++)
b->decor_coeff[i] = 0;
}
// Adaptive predictor order
b->highest_pred_order = 0;
for (i = 0; i < c->nchannels; i++) {
b->adapt_pred_order[i] = get_bits(&s->gb, 4);
if (b->adapt_pred_order[i] > b->highest_pred_order)
b->highest_pred_order = b->adapt_pred_order[i];
}
if (b->highest_pred_order > s->nsegsamples) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL adaptive predicition order\n");
return AVERROR_INVALIDDATA;
}
// Fixed predictor order
for (i = 0; i < c->nchannels; i++)
b->fixed_pred_order[i] = b->adapt_pred_order[i] ? 0 : get_bits(&s->gb, 2);
// Adaptive predictor quantized reflection coefficients
for (i = 0; i < c->nchannels; i++) {
for (j = 0; j < b->adapt_pred_order[i]; j++) {
k = get_linear(&s->gb, 8);
if (k == -128) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL reflection coefficient index\n");
return AVERROR_INVALIDDATA;
}
if (k < 0)
b->adapt_refl_coeff[i][j] = -(int)ff_dca_xll_refl_coeff[-k];
else
b->adapt_refl_coeff[i][j] = (int)ff_dca_xll_refl_coeff[ k];
}
}
// Downmix performed by encoder in extension frequency band
b->dmix_embedded = c->dmix_embedded && (band == 0 || get_bits1(&s->gb));
// MSB/LSB split flag in extension frequency band
if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
// Size of LSB section in any segment
b->lsb_section_size = get_bits_long(&s->gb, s->seg_size_nbits);
if (b->lsb_section_size < 0 || b->lsb_section_size > s->frame_size) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid LSB section size\n");
return AVERROR_INVALIDDATA;
}
// Account for optional CRC bytes after LSB section
if (b->lsb_section_size && (s->band_crc_present > 2 ||
(band == 0 && s->band_crc_present > 1)))
b->lsb_section_size += 2;
// Number of bits to represent the samples in LSB part
for (i = 0; i < c->nchannels; i++) {
b->nscalablelsbs[i] = get_bits(&s->gb, 4);
if (b->nscalablelsbs[i] && !b->lsb_section_size) {
av_log(s->avctx, AV_LOG_ERROR, "LSB section missing with non-zero LSB width\n");
return AVERROR_INVALIDDATA;
}
}
} else {
b->lsb_section_size = 0;
for (i = 0; i < c->nchannels; i++)
b->nscalablelsbs[i] = 0;
}
// Scalable resolution flag in extension frequency band
if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) {
// Number of bits discarded by authoring
for (i = 0; i < c->nchannels; i++)
b->bit_width_adjust[i] = get_bits(&s->gb, 4);
} else {
for (i = 0; i < c->nchannels; i++)
b->bit_width_adjust[i] = 0;
}
}
// Reserved
// Byte align
// CRC16 of channel set sub-header
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL sub-header\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int chs_alloc_msb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
{
int ndecisamples = c->nfreqbands > 1 ? DCA_XLL_DECI_HISTORY_MAX : 0;
int nchsamples = s->nframesamples + ndecisamples;
int i, j, nsamples = nchsamples * c->nchannels * c->nfreqbands;
int32_t *ptr;
// Reallocate MSB sample buffer
av_fast_malloc(&c->sample_buffer[0], &c->sample_size[0], nsamples * sizeof(int32_t));
if (!c->sample_buffer[0])
return AVERROR(ENOMEM);
ptr = c->sample_buffer[0] + ndecisamples;
for (i = 0; i < c->nfreqbands; i++) {
for (j = 0; j < c->nchannels; j++) {
c->bands[i].msb_sample_buffer[j] = ptr;
ptr += nchsamples;
}
}
return 0;
}
static int chs_alloc_lsb_band_data(DCAXllDecoder *s, DCAXllChSet *c)
{
int i, j, nsamples = 0;
int32_t *ptr;
// Determine number of frequency bands that have MSB/LSB split
for (i = 0; i < c->nfreqbands; i++)
if (c->bands[i].lsb_section_size)
nsamples += s->nframesamples * c->nchannels;
if (!nsamples)
return 0;
// Reallocate LSB sample buffer
av_fast_malloc(&c->sample_buffer[1], &c->sample_size[1], nsamples * sizeof(int32_t));
if (!c->sample_buffer[1])
return AVERROR(ENOMEM);
ptr = c->sample_buffer[1];
for (i = 0; i < c->nfreqbands; i++) {
if (c->bands[i].lsb_section_size) {
for (j = 0; j < c->nchannels; j++) {
c->bands[i].lsb_sample_buffer[j] = ptr;
ptr += s->nframesamples;
}
} else {
for (j = 0; j < c->nchannels; j++)
c->bands[i].lsb_sample_buffer[j] = NULL;
}
}
return 0;
}
static int chs_parse_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg, int band_data_end)
{
DCAXllBand *b = &c->bands[band];
int i, j, k;
// Start unpacking MSB portion of the segment
if (!(seg && get_bits1(&s->gb))) {
// Unpack segment type
// 0 - distinct coding parameters for each channel
// 1 - common coding parameters for all channels
c->seg_common = get_bits1(&s->gb);
// Determine number of coding parameters encoded in segment
k = c->seg_common ? 1 : c->nchannels;
// Unpack Rice coding parameters
for (i = 0; i < k; i++) {
// Unpack Rice coding flag
// 0 - linear code, 1 - Rice code
c->rice_code_flag[i] = get_bits1(&s->gb);
if (!c->seg_common && c->rice_code_flag[i]) {
// Unpack Hybrid Rice coding flag
// 0 - Rice code, 1 - Hybrid Rice code
if (get_bits1(&s->gb))
// Unpack binary code length for isolated samples
c->bitalloc_hybrid_linear[i] = get_bits(&s->gb, c->nabits) + 1;
else
// 0 indicates no Hybrid Rice coding
c->bitalloc_hybrid_linear[i] = 0;
} else {
// 0 indicates no Hybrid Rice coding
c->bitalloc_hybrid_linear[i] = 0;
}
}
// Unpack coding parameters
for (i = 0; i < k; i++) {
if (seg == 0) {
// Unpack coding parameter for part A of segment 0
c->bitalloc_part_a[i] = get_bits(&s->gb, c->nabits);
// Adjust for the linear code
if (!c->rice_code_flag[i] && c->bitalloc_part_a[i])
c->bitalloc_part_a[i]++;
if (!c->seg_common)
c->nsamples_part_a[i] = b->adapt_pred_order[i];
else
c->nsamples_part_a[i] = b->highest_pred_order;
} else {
c->bitalloc_part_a[i] = 0;
c->nsamples_part_a[i] = 0;
}
// Unpack coding parameter for part B of segment
c->bitalloc_part_b[i] = get_bits(&s->gb, c->nabits);
// Adjust for the linear code
if (!c->rice_code_flag[i] && c->bitalloc_part_b[i])
c->bitalloc_part_b[i]++;
}
}
// Unpack entropy codes
for (i = 0; i < c->nchannels; i++) {
int32_t *part_a, *part_b;
int nsamples_part_b;
// Select index of coding parameters
k = c->seg_common ? 0 : i;
// Slice the segment into parts A and B
part_a = b->msb_sample_buffer[i] + seg * s->nsegsamples;
part_b = part_a + c->nsamples_part_a[k];
nsamples_part_b = s->nsegsamples - c->nsamples_part_a[k];
if (get_bits_left(&s->gb) < 0)
return AVERROR_INVALIDDATA;
if (!c->rice_code_flag[k]) {
// Linear codes
// Unpack all residuals of part A of segment 0
get_linear_array(&s->gb, part_a, c->nsamples_part_a[k],
c->bitalloc_part_a[k]);
// Unpack all residuals of part B of segment 0 and others
get_linear_array(&s->gb, part_b, nsamples_part_b,
c->bitalloc_part_b[k]);
} else {
// Rice codes
// Unpack all residuals of part A of segment 0
get_rice_array(&s->gb, part_a, c->nsamples_part_a[k],
c->bitalloc_part_a[k]);
if (c->bitalloc_hybrid_linear[k]) {
// Hybrid Rice codes
// Unpack the number of isolated samples
int nisosamples = get_bits(&s->gb, s->nsegsamples_log2);
// Set all locations to 0
memset(part_b, 0, sizeof(*part_b) * nsamples_part_b);
// Extract the locations of isolated samples and flag by -1
for (j = 0; j < nisosamples; j++) {
int loc = get_bits(&s->gb, s->nsegsamples_log2);
if (loc >= nsamples_part_b) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid isolated sample location\n");
return AVERROR_INVALIDDATA;
}
part_b[loc] = -1;
}
// Unpack all residuals of part B of segment 0 and others
for (j = 0; j < nsamples_part_b; j++) {
if (part_b[j])
part_b[j] = get_linear(&s->gb, c->bitalloc_hybrid_linear[k]);
else
part_b[j] = get_rice(&s->gb, c->bitalloc_part_b[k]);
}
} else {
// Rice codes
// Unpack all residuals of part B of segment 0 and others
get_rice_array(&s->gb, part_b, nsamples_part_b, c->bitalloc_part_b[k]);
}
}
}
// Unpack decimator history for frequency band 1
if (seg == 0 && band == 1) {
int nbits = get_bits(&s->gb, 5) + 1;
for (i = 0; i < c->nchannels; i++)
for (j = 1; j < DCA_XLL_DECI_HISTORY_MAX; j++)
c->deci_history[i][j] = get_sbits_long(&s->gb, nbits);
}
// Start unpacking LSB portion of the segment
if (b->lsb_section_size) {
// Skip to the start of LSB portion
if (ff_dca_seek_bits(&s->gb, band_data_end - b->lsb_section_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
return AVERROR_INVALIDDATA;
}
// Unpack all LSB parts of residuals of this segment
for (i = 0; i < c->nchannels; i++) {
if (b->nscalablelsbs[i]) {
get_array(&s->gb,
b->lsb_sample_buffer[i] + seg * s->nsegsamples,
s->nsegsamples, b->nscalablelsbs[i]);
}
}
}
// Skip to the end of band data
if (ff_dca_seek_bits(&s->gb, band_data_end)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static void av_cold chs_clear_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg)
{
DCAXllBand *b = &c->bands[band];
int i, offset, nsamples;
if (seg < 0) {
offset = 0;
nsamples = s->nframesamples;
} else {
offset = seg * s->nsegsamples;
nsamples = s->nsegsamples;
}
for (i = 0; i < c->nchannels; i++) {
memset(b->msb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
if (b->lsb_section_size)
memset(b->lsb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t));
}
if (seg <= 0 && band)
memset(c->deci_history, 0, sizeof(c->deci_history));
if (seg < 0) {
memset(b->nscalablelsbs, 0, sizeof(b->nscalablelsbs));
memset(b->bit_width_adjust, 0, sizeof(b->bit_width_adjust));
}
}
static void chs_filter_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band)
{
DCAXllBand *b = &c->bands[band];
int nsamples = s->nframesamples;
int i, j, k;
// Inverse adaptive or fixed prediction
for (i = 0; i < c->nchannels; i++) {
int32_t *buf = b->msb_sample_buffer[i];
int order = b->adapt_pred_order[i];
if (order > 0) {
int coeff[DCA_XLL_ADAPT_PRED_ORDER_MAX];
// Conversion from reflection coefficients to direct form coefficients
for (j = 0; j < order; j++) {
int rc = b->adapt_refl_coeff[i][j];
for (k = 0; k < (j + 1) / 2; k++) {
int tmp1 = coeff[ k ];
int tmp2 = coeff[j - k - 1];
coeff[ k ] = tmp1 + mul16(rc, tmp2);
coeff[j - k - 1] = tmp2 + mul16(rc, tmp1);
}
coeff[j] = rc;
}
// Inverse adaptive prediction
for (j = 0; j < nsamples - order; j++) {
int64_t err = 0;
for (k = 0; k < order; k++)
err += (int64_t)buf[j + k] * coeff[order - k - 1];
buf[j + k] -= clip23(norm16(err));
}
} else {
// Inverse fixed coefficient prediction
for (j = 0; j < b->fixed_pred_order[i]; j++)
for (k = 1; k < nsamples; k++)
buf[k] += buf[k - 1];
}
}
// Inverse pairwise channel decorrellation
if (b->decor_enabled) {
int32_t *tmp[DCA_XLL_CHANNELS_MAX];
for (i = 0; i < c->nchannels / 2; i++) {
int coeff = b->decor_coeff[i];
if (coeff) {
s->dcadsp->decor(b->msb_sample_buffer[i * 2 + 1],
b->msb_sample_buffer[i * 2 ],
coeff, nsamples);
}
}
// Reorder channel pointers to the original order
for (i = 0; i < c->nchannels; i++)
tmp[i] = b->msb_sample_buffer[i];
for (i = 0; i < c->nchannels; i++)
b->msb_sample_buffer[b->orig_order[i]] = tmp[i];
}
// Map output channel pointers for frequency band 0
if (c->nfreqbands == 1)
for (i = 0; i < c->nchannels; i++)
s->output_samples[c->ch_remap[i]] = b->msb_sample_buffer[i];
}
static int chs_get_lsb_width(DCAXllDecoder *s, DCAXllChSet *c, int band, int ch)
{
int adj = c->bands[band].bit_width_adjust[ch];
int shift = c->bands[band].nscalablelsbs[ch];
if (s->fixed_lsb_width)
shift = s->fixed_lsb_width;
else if (shift && adj)
shift += adj - 1;
else
shift += adj;
return shift;
}
static void chs_assemble_msbs_lsbs(DCAXllDecoder *s, DCAXllChSet *c, int band)
{
DCAXllBand *b = &c->bands[band];
int n, ch, nsamples = s->nframesamples;
for (ch = 0; ch < c->nchannels; ch++) {
int shift = chs_get_lsb_width(s, c, band, ch);
if (shift) {
int32_t *msb = b->msb_sample_buffer[ch];
if (b->nscalablelsbs[ch]) {
int32_t *lsb = b->lsb_sample_buffer[ch];
int adj = b->bit_width_adjust[ch];
for (n = 0; n < nsamples; n++)
msb[n] = msb[n] * (1 << shift) + (lsb[n] << adj);
} else {
for (n = 0; n < nsamples; n++)
msb[n] = msb[n] * (1 << shift);
}
}
}
}
static int chs_assemble_freq_bands(DCAXllDecoder *s, DCAXllChSet *c)
{
int ch, nsamples = s->nframesamples;
int32_t *ptr;
av_assert1(c->nfreqbands > 1);
// Reallocate frequency band assembly buffer
av_fast_malloc(&c->sample_buffer[2], &c->sample_size[2],
2 * nsamples * c->nchannels * sizeof(int32_t));
if (!c->sample_buffer[2])
return AVERROR(ENOMEM);
// Assemble frequency bands 0 and 1
ptr = c->sample_buffer[2];
for (ch = 0; ch < c->nchannels; ch++) {
int32_t *band0 = c->bands[0].msb_sample_buffer[ch];
int32_t *band1 = c->bands[1].msb_sample_buffer[ch];
// Copy decimator history
memcpy(band0 - DCA_XLL_DECI_HISTORY_MAX,
c->deci_history[ch], sizeof(c->deci_history[0]));
// Filter
s->dcadsp->assemble_freq_bands(ptr, band0, band1,
ff_dca_xll_band_coeff,
nsamples);
// Remap output channel pointer to assembly buffer
s->output_samples[c->ch_remap[ch]] = ptr;
ptr += nsamples * 2;
}
return 0;
}
static int parse_common_header(DCAXllDecoder *s)
{
int stream_ver, header_size, frame_size_nbits, nframesegs_log2;
// XLL extension sync word
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XLL) {
av_log(s->avctx, AV_LOG_VERBOSE, "Invalid XLL sync word\n");
return AVERROR(EAGAIN);
}
// Version number
stream_ver = get_bits(&s->gb, 4) + 1;
if (stream_ver > 1) {
avpriv_request_sample(s->avctx, "XLL stream version %d", stream_ver);
return AVERROR_PATCHWELCOME;
}
// Lossless frame header length
header_size = get_bits(&s->gb, 8) + 1;
// Check CRC
if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, 32, header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL common header checksum\n");
return AVERROR_INVALIDDATA;
}
// Number of bits used to read frame size
frame_size_nbits = get_bits(&s->gb, 5) + 1;
// Number of bytes in a lossless frame
s->frame_size = get_bits_long(&s->gb, frame_size_nbits);
if (s->frame_size < 0 || s->frame_size >= DCA_XLL_PBR_BUFFER_MAX) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL frame size (%d bytes)\n", s->frame_size);
return AVERROR_INVALIDDATA;
}
s->frame_size++;
// Number of channels sets per frame
s->nchsets = get_bits(&s->gb, 4) + 1;
if (s->nchsets > DCA_XLL_CHSETS_MAX) {
avpriv_request_sample(s->avctx, "%d XLL channel sets", s->nchsets);
return AVERROR_PATCHWELCOME;
}
// Number of segments per frame
nframesegs_log2 = get_bits(&s->gb, 4);
s->nframesegs = 1 << nframesegs_log2;
if (s->nframesegs > 1024) {
av_log(s->avctx, AV_LOG_ERROR, "Too many segments per XLL frame\n");
return AVERROR_INVALIDDATA;
}
// Samples in segment per one frequency band for the first channel set
// Maximum value is 256 for sampling frequencies <= 48 kHz
// Maximum value is 512 for sampling frequencies > 48 kHz
s->nsegsamples_log2 = get_bits(&s->gb, 4);
if (!s->nsegsamples_log2) {
av_log(s->avctx, AV_LOG_ERROR, "Too few samples per XLL segment\n");
return AVERROR_INVALIDDATA;
}
s->nsegsamples = 1 << s->nsegsamples_log2;
if (s->nsegsamples > 512) {
av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL segment\n");
return AVERROR_INVALIDDATA;
}
// Samples in frame per one frequency band for the first channel set
s->nframesamples_log2 = s->nsegsamples_log2 + nframesegs_log2;
s->nframesamples = 1 << s->nframesamples_log2;
if (s->nframesamples > 65536) {
av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL frame\n");
return AVERROR_INVALIDDATA;
}
// Number of bits used to read segment size
s->seg_size_nbits = get_bits(&s->gb, 5) + 1;
// Presence of CRC16 within each frequency band
// 0 - No CRC16 within band
// 1 - CRC16 placed at the end of MSB0
// 2 - CRC16 placed at the end of MSB0 and LSB0
// 3 - CRC16 placed at the end of MSB0 and LSB0 and other frequency bands
s->band_crc_present = get_bits(&s->gb, 2);
// MSB/LSB split flag
s->scalable_lsbs = get_bits1(&s->gb);
// Channel position mask
s->ch_mask_nbits = get_bits(&s->gb, 5) + 1;
// Fixed LSB width
if (s->scalable_lsbs)
s->fixed_lsb_width = get_bits(&s->gb, 4);
else
s->fixed_lsb_width = 0;
// Reserved
// Byte align
// Header CRC16 protection
if (ff_dca_seek_bits(&s->gb, header_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL common header\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int is_hier_dmix_chset(DCAXllChSet *c)
{
return !c->primary_chset && c->dmix_embedded && c->hier_chset;
}
static DCAXllChSet *find_next_hier_dmix_chset(DCAXllDecoder *s, DCAXllChSet *c)
{
if (c->hier_chset)
while (++c < &s->chset[s->nchsets])
if (is_hier_dmix_chset(c))
return c;
return NULL;
}
static void prescale_down_mix(DCAXllChSet *c, DCAXllChSet *o)
{
int i, j, *coeff_ptr = c->dmix_coeff;
for (i = 0; i < c->hier_ofs; i++) {
int scale = o->dmix_scale[i];
int scale_inv = o->dmix_scale_inv[i];
c->dmix_scale[i] = mul15(c->dmix_scale[i], scale);
c->dmix_scale_inv[i] = mul16(c->dmix_scale_inv[i], scale_inv);
for (j = 0; j < c->nchannels; j++) {
int coeff = mul16(*coeff_ptr, scale_inv);
*coeff_ptr++ = mul15(coeff, o->dmix_scale[c->hier_ofs + j]);
}
}
}
static int parse_sub_headers(DCAXllDecoder *s, DCAExssAsset *asset)
{
DCAContext *dca = s->avctx->priv_data;
DCAXllChSet *c;
int i, ret;
// Parse channel set headers
s->nfreqbands = 0;
s->nchannels = 0;
s->nreschsets = 0;
for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
c->hier_ofs = s->nchannels;
if ((ret = chs_parse_header(s, c, asset)) < 0)
return ret;
if (c->nfreqbands > s->nfreqbands)
s->nfreqbands = c->nfreqbands;
if (c->hier_chset)
s->nchannels += c->nchannels;
if (c->residual_encode != (1 << c->nchannels) - 1)
s->nreschsets++;
}
// Pre-scale downmixing coefficients for all non-primary channel sets
for (i = s->nchsets - 1, c = &s->chset[i]; i > 0; i--, c--) {
if (is_hier_dmix_chset(c)) {
DCAXllChSet *o = find_next_hier_dmix_chset(s, c);
if (o)
prescale_down_mix(c, o);
}
}
// Determine number of active channel sets to decode
switch (dca->request_channel_layout) {
case DCA_SPEAKER_LAYOUT_STEREO:
s->nactivechsets = 1;
break;
case DCA_SPEAKER_LAYOUT_5POINT0:
case DCA_SPEAKER_LAYOUT_5POINT1:
s->nactivechsets = (s->chset[0].nchannels < 5 && s->nchsets > 1) ? 2 : 1;
break;
default:
s->nactivechsets = s->nchsets;
break;
}
return 0;
}
static int parse_navi_table(DCAXllDecoder *s)
{
int chs, seg, band, navi_nb, navi_pos, *navi_ptr;
DCAXllChSet *c;
// Determine size of NAVI table
navi_nb = s->nfreqbands * s->nframesegs * s->nchsets;
if (navi_nb > 1024) {
av_log(s->avctx, AV_LOG_ERROR, "Too many NAVI entries (%d)\n", navi_nb);
return AVERROR_INVALIDDATA;
}
// Reallocate NAVI table
av_fast_malloc(&s->navi, &s->navi_size, navi_nb * sizeof(*s->navi));
if (!s->navi)
return AVERROR(ENOMEM);
// Parse NAVI
navi_pos = get_bits_count(&s->gb);
navi_ptr = s->navi;
for (band = 0; band < s->nfreqbands; band++) {
for (seg = 0; seg < s->nframesegs; seg++) {
for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
int size = 0;
if (c->nfreqbands > band) {
size = get_bits_long(&s->gb, s->seg_size_nbits);
if (size < 0 || size >= s->frame_size) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI segment size (%d bytes)\n", size);
return AVERROR_INVALIDDATA;
}
size++;
}
*navi_ptr++ = size;
}
}
}
// Byte align
// CRC16
skip_bits(&s->gb, -get_bits_count(&s->gb) & 7);
skip_bits(&s->gb, 16);
// Check CRC
if ((s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL))
&& ff_dca_check_crc(&s->gb, navi_pos, get_bits_count(&s->gb))) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI checksum\n");
return AVERROR_INVALIDDATA;
}
return 0;
}
static int parse_band_data(DCAXllDecoder *s)
{
int ret, chs, seg, band, navi_pos, *navi_ptr;
DCAXllChSet *c;
for (chs = 0, c = s->chset; chs < s->nactivechsets; chs++, c++) {
if ((ret = chs_alloc_msb_band_data(s, c)) < 0)
return ret;
if ((ret = chs_alloc_lsb_band_data(s, c)) < 0)
return ret;
}
navi_pos = get_bits_count(&s->gb);
navi_ptr = s->navi;
for (band = 0; band < s->nfreqbands; band++) {
for (seg = 0; seg < s->nframesegs; seg++) {
for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) {
if (c->nfreqbands > band) {
navi_pos += *navi_ptr * 8;
if (navi_pos > s->gb.size_in_bits) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI position\n");
return AVERROR_INVALIDDATA;
}
if (chs < s->nactivechsets &&
(ret = chs_parse_band_data(s, c, band, seg, navi_pos)) < 0) {
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
chs_clear_band_data(s, c, band, seg);
}
s->gb.index = navi_pos;
}
navi_ptr++;
}
}
}
return 0;
}
static int parse_frame(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
{
int ret;
if ((ret = init_get_bits8(&s->gb, data, size)) < 0)
return ret;
if ((ret = parse_common_header(s)) < 0)
return ret;
if ((ret = parse_sub_headers(s, asset)) < 0)
return ret;
if ((ret = parse_navi_table(s)) < 0)
return ret;
if ((ret = parse_band_data(s)) < 0)
return ret;
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) {
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL frame\n");
return AVERROR_INVALIDDATA;
}
return ret;
}
static void clear_pbr(DCAXllDecoder *s)
{
s->pbr_length = 0;
s->pbr_delay = 0;
}
static int copy_to_pbr(DCAXllDecoder *s, uint8_t *data, int size, int delay)
{
if (size > DCA_XLL_PBR_BUFFER_MAX)
return AVERROR(ENOSPC);
if (!s->pbr_buffer && !(s->pbr_buffer = av_malloc(DCA_XLL_PBR_BUFFER_MAX + DCA_BUFFER_PADDING_SIZE)))
return AVERROR(ENOMEM);
memcpy(s->pbr_buffer, data, size);
s->pbr_length = size;
s->pbr_delay = delay;
return 0;
}
static int parse_frame_no_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
{
int ret = parse_frame(s, data, size, asset);
// If XLL packet data didn't start with a sync word, we must have jumped
// right into the middle of PBR smoothing period
if (ret == AVERROR(EAGAIN) && asset->xll_sync_present && asset->xll_sync_offset < size) {
// Skip to the next sync word in this packet
data += asset->xll_sync_offset;
size -= asset->xll_sync_offset;
// If decoding delay is set, put the frame into PBR buffer and return
// failure code. Higher level decoder is expected to switch to lossy
// core decoding or mute its output until decoding delay expires.
if (asset->xll_delay_nframes > 0) {
if ((ret = copy_to_pbr(s, data, size, asset->xll_delay_nframes)) < 0)
return ret;
return AVERROR(EAGAIN);
}
// No decoding delay, just parse the frame in place
ret = parse_frame(s, data, size, asset);
}
if (ret < 0)
return ret;
if (s->frame_size > size)
return AVERROR(EINVAL);
// If the XLL decoder didn't consume full packet, start PBR smoothing period
if (s->frame_size < size)
if ((ret = copy_to_pbr(s, data + s->frame_size, size - s->frame_size, 0)) < 0)
return ret;
return 0;
}
static int parse_frame_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset)
{
int ret;
if (size > DCA_XLL_PBR_BUFFER_MAX - s->pbr_length) {
ret = AVERROR(ENOSPC);
goto fail;
}
memcpy(s->pbr_buffer + s->pbr_length, data, size);
s->pbr_length += size;
// Respect decoding delay after synchronization error
if (s->pbr_delay > 0 && --s->pbr_delay)
return AVERROR(EAGAIN);
if ((ret = parse_frame(s, s->pbr_buffer, s->pbr_length, asset)) < 0)
goto fail;
if (s->frame_size > s->pbr_length) {
ret = AVERROR(EINVAL);
goto fail;
}
if (s->frame_size == s->pbr_length) {
// End of PBR smoothing period
clear_pbr(s);
} else {
s->pbr_length -= s->frame_size;
memmove(s->pbr_buffer, s->pbr_buffer + s->frame_size, s->pbr_length);
}
return 0;
fail:
// For now, throw out all PBR state on failure.
// Perhaps we can be smarter and try to resync somehow.
clear_pbr(s);
return ret;
}
int ff_dca_xll_parse(DCAXllDecoder *s, uint8_t *data, DCAExssAsset *asset)
{
int ret;
if (s->hd_stream_id != asset->hd_stream_id) {
clear_pbr(s);
s->hd_stream_id = asset->hd_stream_id;
}
if (s->pbr_length)
ret = parse_frame_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
else
ret = parse_frame_no_pbr(s, data + asset->xll_offset, asset->xll_size, asset);
return ret;
}
static void undo_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
{
int i, j, k, nchannels = 0, *coeff_ptr = o->dmix_coeff;
DCAXllChSet *c;
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
if (!c->hier_chset)
continue;
av_assert1(band < c->nfreqbands);
for (j = 0; j < c->nchannels; j++) {
for (k = 0; k < o->nchannels; k++) {
int coeff = *coeff_ptr++;
if (coeff) {
s->dcadsp->dmix_sub(c->bands[band].msb_sample_buffer[j],
o->bands[band].msb_sample_buffer[k],
coeff, s->nframesamples);
if (band)
s->dcadsp->dmix_sub(c->deci_history[j],
o->deci_history[k],
coeff, DCA_XLL_DECI_HISTORY_MAX);
}
}
}
nchannels += c->nchannels;
if (nchannels >= o->hier_ofs)
break;
}
}
static void scale_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band)
{
int i, j, nchannels = 0;
DCAXllChSet *c;
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
if (!c->hier_chset)
continue;
av_assert1(band < c->nfreqbands);
for (j = 0; j < c->nchannels; j++) {
int scale = o->dmix_scale[nchannels++];
if (scale != (1 << 15)) {
s->dcadsp->dmix_scale(c->bands[band].msb_sample_buffer[j],
scale, s->nframesamples);
if (band)
s->dcadsp->dmix_scale(c->deci_history[j],
scale, DCA_XLL_DECI_HISTORY_MAX);
}
}
if (nchannels >= o->hier_ofs)
break;
}
}
// Clear all band data and replace non-residual encoded channels with lossy
// counterparts
static void av_cold force_lossy_output(DCAXllDecoder *s, DCAXllChSet *c)
{
DCAContext *dca = s->avctx->priv_data;
int band, ch;
for (band = 0; band < c->nfreqbands; band++)
chs_clear_band_data(s, c, band, -1);
for (ch = 0; ch < c->nchannels; ch++) {
if (!(c->residual_encode & (1 << ch)))
continue;
if (ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]) < 0)
continue;
c->residual_encode &= ~(1 << ch);
}
}
static int combine_residual_frame(DCAXllDecoder *s, DCAXllChSet *c)
{
DCAContext *dca = s->avctx->priv_data;
int ch, nsamples = s->nframesamples;
DCAXllChSet *o;
// Verify that core is compatible
if (!(dca->packet & DCA_PACKET_CORE)) {
av_log(s->avctx, AV_LOG_ERROR, "Residual encoded channels are present without core\n");
return AVERROR(EINVAL);
}
if (c->freq != dca->core.output_rate) {
av_log(s->avctx, AV_LOG_WARNING, "Sample rate mismatch between core (%d Hz) and XLL (%d Hz)\n", dca->core.output_rate, c->freq);
return AVERROR_INVALIDDATA;
}
if (nsamples != dca->core.npcmsamples) {
av_log(s->avctx, AV_LOG_WARNING, "Number of samples per frame mismatch between core (%d) and XLL (%d)\n", dca->core.npcmsamples, nsamples);
return AVERROR_INVALIDDATA;
}
// See if this channel set is downmixed and find the next channel set in
// hierarchy. If downmixed, undo core pre-scaling before combining with
// residual (residual is not scaled).
o = find_next_hier_dmix_chset(s, c);
// Reduce core bit width and combine with residual
for (ch = 0; ch < c->nchannels; ch++) {
int n, spkr, shift, round;
int32_t *src, *dst;
if (c->residual_encode & (1 << ch))
continue;
// Map this channel to core speaker
spkr = ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]);
if (spkr < 0) {
av_log(s->avctx, AV_LOG_WARNING, "Residual encoded channel (%d) references unavailable core channel\n", c->ch_remap[ch]);
return AVERROR_INVALIDDATA;
}
// Account for LSB width
shift = 24 - c->pcm_bit_res + chs_get_lsb_width(s, c, 0, ch);
if (shift > 24) {
av_log(s->avctx, AV_LOG_WARNING, "Invalid core shift (%d bits)\n", shift);
return AVERROR_INVALIDDATA;
}
round = shift > 0 ? 1 << (shift - 1) : 0;
src = dca->core.output_samples[spkr];
dst = c->bands[0].msb_sample_buffer[ch];
if (o) {
// Undo embedded core downmix pre-scaling
int scale_inv = o->dmix_scale_inv[c->hier_ofs + ch];
for (n = 0; n < nsamples; n++)
dst[n] += clip23((mul16(src[n], scale_inv) + round) >> shift);
} else {
// No downmix scaling
for (n = 0; n < nsamples; n++)
dst[n] += (src[n] + round) >> shift;
}
}
return 0;
}
int ff_dca_xll_filter_frame(DCAXllDecoder *s, AVFrame *frame)
{
AVCodecContext *avctx = s->avctx;
DCAContext *dca = avctx->priv_data;
DCAExssAsset *asset = &dca->exss.assets[0];
DCAXllChSet *p = &s->chset[0], *c;
enum AVMatrixEncoding matrix_encoding = AV_MATRIX_ENCODING_NONE;
int i, j, k, ret, shift, nsamples, request_mask;
int ch_remap[DCA_SPEAKER_COUNT];
// Force lossy downmixed output during recovery
if (dca->packet & DCA_PACKET_RECOVERY) {
for (i = 0, c = s->chset; i < s->nchsets; i++, c++) {
if (i < s->nactivechsets)
force_lossy_output(s, c);
if (!c->primary_chset)
c->dmix_embedded = 0;
}
s->scalable_lsbs = 0;
s->fixed_lsb_width = 0;
}
// Filter frequency bands for active channel sets
s->output_mask = 0;
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) {
chs_filter_band_data(s, c, 0);
if (c->residual_encode != (1 << c->nchannels) - 1
&& (ret = combine_residual_frame(s, c)) < 0)
return ret;
if (s->scalable_lsbs)
chs_assemble_msbs_lsbs(s, c, 0);
if (c->nfreqbands > 1) {
chs_filter_band_data(s, c, 1);
chs_assemble_msbs_lsbs(s, c, 1);
}
s->output_mask |= c->ch_mask;
}
// Undo hierarchial downmix and/or apply scaling
for (i = 1, c = &s->chset[1]; i < s->nchsets; i++, c++) {
if (!is_hier_dmix_chset(c))
continue;
if (i >= s->nactivechsets) {
for (j = 0; j < c->nfreqbands; j++)
if (c->bands[j].dmix_embedded)
scale_down_mix(s, c, j);
break;
}
for (j = 0; j < c->nfreqbands; j++)
if (c->bands[j].dmix_embedded)
undo_down_mix(s, c, j);
}
// Assemble frequency bands for active channel sets
if (s->nfreqbands > 1) {
for (i = 0; i < s->nactivechsets; i++)
if ((ret = chs_assemble_freq_bands(s, &s->chset[i])) < 0)
return ret;
}
// Normalize to regular 5.1 layout if downmixing
if (dca->request_channel_layout) {
if (s->output_mask & DCA_SPEAKER_MASK_Lss) {
s->output_samples[DCA_SPEAKER_Ls] = s->output_samples[DCA_SPEAKER_Lss];
s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Lss) | DCA_SPEAKER_MASK_Ls;
}
if (s->output_mask & DCA_SPEAKER_MASK_Rss) {
s->output_samples[DCA_SPEAKER_Rs] = s->output_samples[DCA_SPEAKER_Rss];
s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Rss) | DCA_SPEAKER_MASK_Rs;
}
}
// Handle downmixing to stereo request
if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO
&& DCA_HAS_STEREO(s->output_mask) && p->dmix_embedded
&& (p->dmix_type == DCA_DMIX_TYPE_LoRo ||
p->dmix_type == DCA_DMIX_TYPE_LtRt))
request_mask = DCA_SPEAKER_LAYOUT_STEREO;
else
request_mask = s->output_mask;
if (!ff_dca_set_channel_layout(avctx, ch_remap, request_mask))
return AVERROR(EINVAL);
avctx->sample_rate = p->freq << (s->nfreqbands - 1);
switch (p->storage_bit_res) {
case 16:
avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
break;
case 24:
avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
break;
default:
return AVERROR(EINVAL);
}
avctx->bits_per_raw_sample = p->storage_bit_res;
avctx->profile = FF_PROFILE_DTS_HD_MA;
avctx->bit_rate = 0;
frame->nb_samples = nsamples = s->nframesamples << (s->nfreqbands - 1);
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
return ret;
// Downmix primary channel set to stereo
if (request_mask != s->output_mask) {
ff_dca_downmix_to_stereo_fixed(s->dcadsp, s->output_samples,
p->dmix_coeff, nsamples,
s->output_mask);
}
shift = p->storage_bit_res - p->pcm_bit_res;
for (i = 0; i < avctx->channels; i++) {
int32_t *samples = s->output_samples[ch_remap[i]];
if (frame->format == AV_SAMPLE_FMT_S16P) {
int16_t *plane = (int16_t *)frame->extended_data[i];
for (k = 0; k < nsamples; k++)
plane[k] = av_clip_int16(samples[k] * (1 << shift));
} else {
int32_t *plane = (int32_t *)frame->extended_data[i];
for (k = 0; k < nsamples; k++)
plane[k] = clip23(samples[k] * (1 << shift)) * (1 << 8);
}
}
if (!asset->one_to_one_map_ch_to_spkr) {
if (asset->representation_type == DCA_REPR_TYPE_LtRt)
matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
else if (asset->representation_type == DCA_REPR_TYPE_LhRh)
matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE;
} else if (request_mask != s->output_mask && p->dmix_type == DCA_DMIX_TYPE_LtRt) {
matrix_encoding = AV_MATRIX_ENCODING_DOLBY;
}
if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0)
return ret;
return 0;
}
av_cold void ff_dca_xll_flush(DCAXllDecoder *s)
{
clear_pbr(s);
}
av_cold void ff_dca_xll_close(DCAXllDecoder *s)
{
DCAXllChSet *c;
int i, j;
for (i = 0, c = s->chset; i < DCA_XLL_CHSETS_MAX; i++, c++) {
for (j = 0; j < DCA_XLL_SAMPLE_BUFFERS_MAX; j++) {
av_freep(&c->sample_buffer[j]);
c->sample_size[j] = 0;
}
}
av_freep(&s->navi);
s->navi_size = 0;
av_freep(&s->pbr_buffer);
clear_pbr(s);
}
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_DCA_XLL_H
#define AVCODEC_DCA_XLL_H
#include "libavutil/common.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "internal.h"
#include "get_bits.h"
#include "dca.h"
#include "dcadsp.h"
#include "dca_exss.h"
#define DCA_XLL_CHSETS_MAX 3
#define DCA_XLL_CHANNELS_MAX 8
#define DCA_XLL_BANDS_MAX 2
#define DCA_XLL_ADAPT_PRED_ORDER_MAX 16
#define DCA_XLL_DECI_HISTORY_MAX 8
#define DCA_XLL_DMIX_SCALES_MAX ((DCA_XLL_CHSETS_MAX - 1) * DCA_XLL_CHANNELS_MAX)
#define DCA_XLL_DMIX_COEFFS_MAX (DCA_XLL_DMIX_SCALES_MAX * DCA_XLL_CHANNELS_MAX)
#define DCA_XLL_PBR_BUFFER_MAX (240 << 10)
#define DCA_XLL_SAMPLE_BUFFERS_MAX 3
typedef struct DCAXllBand {
int decor_enabled; ///< Pairwise channel decorrelation flag
int orig_order[DCA_XLL_CHANNELS_MAX]; ///< Original channel order
int decor_coeff[DCA_XLL_CHANNELS_MAX / 2]; ///< Pairwise channel coefficients
int adapt_pred_order[DCA_XLL_CHANNELS_MAX]; ///< Adaptive predictor order
int highest_pred_order; ///< Highest adaptive predictor order
int fixed_pred_order[DCA_XLL_CHANNELS_MAX]; ///< Fixed predictor order
int adapt_refl_coeff[DCA_XLL_CHANNELS_MAX][DCA_XLL_ADAPT_PRED_ORDER_MAX]; ///< Adaptive predictor reflection coefficients
int dmix_embedded; ///< Downmix performed by encoder in frequency band
int lsb_section_size; ///< Size of LSB section in any segment
int nscalablelsbs[DCA_XLL_CHANNELS_MAX]; ///< Number of bits to represent the samples in LSB part
int bit_width_adjust[DCA_XLL_CHANNELS_MAX]; ///< Number of bits discarded by authoring
int32_t *msb_sample_buffer[DCA_XLL_CHANNELS_MAX]; ///< MSB sample buffer pointers
int32_t *lsb_sample_buffer[DCA_XLL_CHANNELS_MAX]; ///< LSB sample buffer pointers or NULL
} DCAXllBand;
typedef struct DCAXllChSet {
// Channel set header
int nchannels; ///< Number of channels in the channel set (N)
int residual_encode; ///< Residual encoding mask (0 - residual, 1 - full channel)
int pcm_bit_res; ///< PCM bit resolution (variable)
int storage_bit_res; ///< Storage bit resolution (16 or 24)
int freq; ///< Original sampling frequency (max. 96000 Hz)
int primary_chset; ///< Primary channel set flag
int dmix_coeffs_present; ///< Downmix coefficients present in stream
int dmix_embedded; ///< Downmix already performed by encoder
int dmix_type; ///< Primary channel set downmix type
int hier_chset; ///< Whether the channel set is part of a hierarchy
int hier_ofs; ///< Number of preceding channels in a hierarchy (M)
int dmix_coeff[DCA_XLL_DMIX_COEFFS_MAX]; ///< Downmixing coefficients
int dmix_scale[DCA_XLL_DMIX_SCALES_MAX]; ///< Downmixing scales
int dmix_scale_inv[DCA_XLL_DMIX_SCALES_MAX]; ///< Inverse downmixing scales
int ch_mask; ///< Channel mask for set
int ch_remap[DCA_XLL_CHANNELS_MAX]; ///< Channel to speaker map
int nfreqbands; ///< Number of frequency bands (1 or 2)
int nabits; ///< Number of bits to read bit allocation coding parameter
DCAXllBand bands[DCA_XLL_BANDS_MAX]; ///< Frequency bands
// Frequency band coding parameters
int seg_common; ///< Segment type
int rice_code_flag[DCA_XLL_CHANNELS_MAX]; ///< Rice coding flag
int bitalloc_hybrid_linear[DCA_XLL_CHANNELS_MAX]; ///< Binary code length for isolated samples
int bitalloc_part_a[DCA_XLL_CHANNELS_MAX]; ///< Coding parameter for part A of segment
int bitalloc_part_b[DCA_XLL_CHANNELS_MAX]; ///< Coding parameter for part B of segment
int nsamples_part_a[DCA_XLL_CHANNELS_MAX]; ///< Number of samples in part A of segment
// Decimator history
DECLARE_ALIGNED(32, int32_t, deci_history)[DCA_XLL_CHANNELS_MAX][DCA_XLL_DECI_HISTORY_MAX]; ///< Decimator history for frequency band 1
// Sample buffers
unsigned int sample_size[DCA_XLL_SAMPLE_BUFFERS_MAX];
int32_t *sample_buffer[DCA_XLL_SAMPLE_BUFFERS_MAX];
} DCAXllChSet;
typedef struct DCAXllDecoder {
AVCodecContext *avctx;
GetBitContext gb;
int frame_size; ///< Number of bytes in a lossless frame
int nchsets; ///< Number of channels sets per frame
int nframesegs; ///< Number of segments per frame
int nsegsamples_log2; ///< log2(nsegsamples)
int nsegsamples; ///< Samples in segment per one frequency band
int nframesamples_log2; ///< log2(nframesamples)
int nframesamples; ///< Samples in frame per one frequency band
int seg_size_nbits; ///< Number of bits used to read segment size
int band_crc_present; ///< Presence of CRC16 within each frequency band
int scalable_lsbs; ///< MSB/LSB split flag
int ch_mask_nbits; ///< Number of bits used to read channel mask
int fixed_lsb_width; ///< Fixed LSB width
DCAXllChSet chset[DCA_XLL_CHSETS_MAX]; ///< Channel sets
int *navi; ///< NAVI table
unsigned int navi_size;
int nfreqbands; ///< Highest number of frequency bands
int nchannels; ///< Total number of channels in a hierarchy
int nreschsets; ///< Number of channel sets that have residual encoded channels
int nactivechsets; ///< Number of active channel sets to decode
int hd_stream_id; ///< Previous DTS-HD stream ID for detecting changes
uint8_t *pbr_buffer; ///< Peak bit rate (PBR) smoothing buffer
int pbr_length; ///< Length in bytes of data currently buffered
int pbr_delay; ///< Delay in frames before decoding buffered data
DCADSPContext *dcadsp;
int output_mask;
int32_t *output_samples[DCA_SPEAKER_COUNT];
} DCAXllDecoder;
int ff_dca_xll_parse(DCAXllDecoder *s, uint8_t *data, DCAExssAsset *asset);
int ff_dca_xll_filter_frame(DCAXllDecoder *s, AVFrame *frame);
av_cold void ff_dca_xll_flush(DCAXllDecoder *s);
av_cold void ff_dca_xll_close(DCAXllDecoder *s);
#endif
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "libavutil/channel_layout.h"
#include "dcadec.h"
#include "dcamath.h"
#include "dca_syncwords.h"
#include "profiles.h"
#define MIN_PACKET_SIZE 16
#define MAX_PACKET_SIZE 0x104000
int ff_dca_set_channel_layout(AVCodecContext *avctx, int *ch_remap, int dca_mask)
{
static const uint8_t dca2wav_norm[28] = {
2, 0, 1, 9, 10, 3, 8, 4, 5, 9, 10, 6, 7, 12,
13, 14, 3, 6, 7, 11, 12, 14, 16, 15, 17, 8, 4, 5,
};
static const uint8_t dca2wav_wide[28] = {
2, 0, 1, 4, 5, 3, 8, 4, 5, 9, 10, 6, 7, 12,
13, 14, 3, 9, 10, 11, 12, 14, 16, 15, 17, 8, 4, 5,
};
int dca_ch, wav_ch, nchannels = 0;
if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
for (dca_ch = 0; dca_ch < DCA_SPEAKER_COUNT; dca_ch++)
if (dca_mask & (1U << dca_ch))
ch_remap[nchannels++] = dca_ch;
avctx->channel_layout = dca_mask;
} else {
int wav_mask = 0;
int wav_map[18];
const uint8_t *dca2wav;
if (dca_mask == DCA_SPEAKER_LAYOUT_7POINT0_WIDE ||
dca_mask == DCA_SPEAKER_LAYOUT_7POINT1_WIDE)
dca2wav = dca2wav_wide;
else
dca2wav = dca2wav_norm;
for (dca_ch = 0; dca_ch < 28; dca_ch++) {
if (dca_mask & (1 << dca_ch)) {
wav_ch = dca2wav[dca_ch];
if (!(wav_mask & (1 << wav_ch))) {
wav_map[wav_ch] = dca_ch;
wav_mask |= 1 << wav_ch;
}
}
}
for (wav_ch = 0; wav_ch < 18; wav_ch++)
if (wav_mask & (1 << wav_ch))
ch_remap[nchannels++] = wav_map[wav_ch];
avctx->channel_layout = wav_mask;
}
avctx->channels = nchannels;
return nchannels;
}
static uint16_t crc16(const uint8_t *data, int size)
{
static const uint16_t crctab[16] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
};
uint16_t res = 0xffff;
int i;
for (i = 0; i < size; i++) {
res = (res << 4) ^ crctab[(data[i] >> 4) ^ (res >> 12)];
res = (res << 4) ^ crctab[(data[i] & 15) ^ (res >> 12)];
}
return res;
}
int ff_dca_check_crc(GetBitContext *s, int p1, int p2)
{
if (((p1 | p2) & 7) || p1 < 0 || p2 > s->size_in_bits || p2 - p1 < 16)
return -1;
if (crc16(s->buffer + p1 / 8, (p2 - p1) / 8))
return -1;
return 0;
}
void ff_dca_downmix_to_stereo_fixed(DCADSPContext *dcadsp, int32_t **samples,
int *coeff_l, int nsamples, int ch_mask)
{
int pos, spkr, max_spkr = av_log2(ch_mask);
int *coeff_r = coeff_l + av_popcount(ch_mask);
av_assert0(DCA_HAS_STEREO(ch_mask));
// Scale left and right channels
pos = (ch_mask & DCA_SPEAKER_MASK_C);
dcadsp->dmix_scale(samples[DCA_SPEAKER_L], coeff_l[pos ], nsamples);
dcadsp->dmix_scale(samples[DCA_SPEAKER_R], coeff_r[pos + 1], nsamples);
// Downmix remaining channels
for (spkr = 0; spkr <= max_spkr; spkr++) {
if (!(ch_mask & (1U << spkr)))
continue;
if (*coeff_l && spkr != DCA_SPEAKER_L)
dcadsp->dmix_add(samples[DCA_SPEAKER_L], samples[spkr],
*coeff_l, nsamples);
if (*coeff_r && spkr != DCA_SPEAKER_R)
dcadsp->dmix_add(samples[DCA_SPEAKER_R], samples[spkr],
*coeff_r, nsamples);
coeff_l++;
coeff_r++;
}
}
void ff_dca_downmix_to_stereo_float(AVFloatDSPContext *fdsp, float **samples,
int *coeff_l, int nsamples, int ch_mask)
{
int pos, spkr, max_spkr = av_log2(ch_mask);
int *coeff_r = coeff_l + av_popcount(ch_mask);
const float scale = 1.0f / (1 << 15);
av_assert0(DCA_HAS_STEREO(ch_mask));
// Scale left and right channels
pos = (ch_mask & DCA_SPEAKER_MASK_C);
fdsp->vector_fmul_scalar(samples[DCA_SPEAKER_L], samples[DCA_SPEAKER_L],
coeff_l[pos ] * scale, nsamples);
fdsp->vector_fmul_scalar(samples[DCA_SPEAKER_R], samples[DCA_SPEAKER_R],
coeff_r[pos + 1] * scale, nsamples);
// Downmix remaining channels
for (spkr = 0; spkr <= max_spkr; spkr++) {
if (!(ch_mask & (1U << spkr)))
continue;
if (*coeff_l && spkr != DCA_SPEAKER_L)
fdsp->vector_fmac_scalar(samples[DCA_SPEAKER_L], samples[spkr],
*coeff_l * scale, nsamples);
if (*coeff_r && spkr != DCA_SPEAKER_R)
fdsp->vector_fmac_scalar(samples[DCA_SPEAKER_R], samples[spkr],
*coeff_r * scale, nsamples);
coeff_l++;
coeff_r++;
}
}
static int convert_bitstream(const uint8_t *src, int src_size, uint8_t *dst, int max_size)
{
switch (AV_RB32(src)) {
case DCA_SYNCWORD_CORE_BE:
case DCA_SYNCWORD_SUBSTREAM:
memcpy(dst, src, src_size);
return src_size;
case DCA_SYNCWORD_CORE_LE:
case DCA_SYNCWORD_CORE_14B_BE:
case DCA_SYNCWORD_CORE_14B_LE:
return avpriv_dca_convert_bitstream(src, src_size, dst, max_size);
default:
return AVERROR_INVALIDDATA;
}
}
static int dcadec_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt)
{
DCAContext *s = avctx->priv_data;
AVFrame *frame = data;
uint8_t *input = avpkt->data;
int input_size = avpkt->size;
int i, ret, prev_packet = s->packet;
if (input_size < MIN_PACKET_SIZE || input_size > MAX_PACKET_SIZE) {
av_log(avctx, AV_LOG_ERROR, "Invalid packet size\n");
return AVERROR_INVALIDDATA;
}
av_fast_malloc(&s->buffer, &s->buffer_size,
FFALIGN(input_size, 4096) + DCA_BUFFER_PADDING_SIZE);
if (!s->buffer)
return AVERROR(ENOMEM);
for (i = 0, ret = AVERROR_INVALIDDATA; i < input_size - MIN_PACKET_SIZE + 1 && ret < 0; i++)
ret = convert_bitstream(input + i, input_size - i, s->buffer, s->buffer_size);
if (ret < 0)
return ret;
input = s->buffer;
input_size = ret;
s->packet = 0;
// Parse backward compatible core sub-stream
if (AV_RB32(input) == DCA_SYNCWORD_CORE_BE) {
int frame_size;
if ((ret = ff_dca_core_parse(&s->core, input, input_size)) < 0) {
s->core_residual_valid = 0;
return ret;
}
s->packet |= DCA_PACKET_CORE;
// EXXS data must be aligned on 4-byte boundary
frame_size = FFALIGN(s->core.frame_size, 4);
if (input_size - 4 > frame_size) {
input += frame_size;
input_size -= frame_size;
}
}
if (!s->core_only) {
DCAExssAsset *asset = NULL;
// Parse extension sub-stream (EXSS)
if (AV_RB32(input) == DCA_SYNCWORD_SUBSTREAM) {
if ((ret = ff_dca_exss_parse(&s->exss, input, input_size)) < 0) {
if (avctx->err_recognition & AV_EF_EXPLODE)
return ret;
} else {
s->packet |= DCA_PACKET_EXSS;
asset = &s->exss.assets[0];
}
}
// Parse XLL component in EXSS
if (asset && (asset->extension_mask & DCA_EXSS_XLL)) {
if ((ret = ff_dca_xll_parse(&s->xll, input, asset)) < 0) {
// Conceal XLL synchronization error
if (ret == AVERROR(EAGAIN)
&& (prev_packet & DCA_PACKET_XLL)
&& (s->packet & DCA_PACKET_CORE))
s->packet |= DCA_PACKET_XLL | DCA_PACKET_RECOVERY;
else if (ret == AVERROR(ENOMEM) || (avctx->err_recognition & AV_EF_EXPLODE))
return ret;
} else {
s->packet |= DCA_PACKET_XLL;
}
}
// Parse core extensions in EXSS or backward compatible core sub-stream
if ((s->packet & DCA_PACKET_CORE)
&& (ret = ff_dca_core_parse_exss(&s->core, input, asset)) < 0)
return ret;
}
// Filter the frame
if (s->packet & DCA_PACKET_XLL) {
if (s->packet & DCA_PACKET_CORE) {
int x96_synth = -1;
// Enable X96 synthesis if needed
if (s->xll.chset[0].freq == 96000 && s->core.sample_rate == 48000)
x96_synth = 1;
if ((ret = ff_dca_core_filter_fixed(&s->core, x96_synth)) < 0) {
s->core_residual_valid = 0;
return ret;
}
// Force lossy downmixed output on the first core frame filtered.
// This prevents audible clicks when seeking and is consistent with
// what reference decoder does when there are multiple channel sets.
if (!s->core_residual_valid) {
if (s->xll.nreschsets > 0 && s->xll.nchsets > 1)
s->packet |= DCA_PACKET_RECOVERY;
s->core_residual_valid = 1;
}
}
if ((ret = ff_dca_xll_filter_frame(&s->xll, frame)) < 0) {
// Fall back to core unless hard error
if (!(s->packet & DCA_PACKET_CORE))
return ret;
if (ret != AVERROR_INVALIDDATA || (avctx->err_recognition & AV_EF_EXPLODE))
return ret;
if ((ret = ff_dca_core_filter_frame(&s->core, frame)) < 0) {
s->core_residual_valid = 0;
return ret;
}
}
} else if (s->packet & DCA_PACKET_CORE) {
if ((ret = ff_dca_core_filter_frame(&s->core, frame)) < 0) {
s->core_residual_valid = 0;
return ret;
}
s->core_residual_valid = !!(s->core.filter_mode & DCA_FILTER_MODE_FIXED);
} else {
return AVERROR_INVALIDDATA;
}
*got_frame_ptr = 1;
return avpkt->size;
}
static av_cold void dcadec_flush(AVCodecContext *avctx)
{
DCAContext *s = avctx->priv_data;
ff_dca_core_flush(&s->core);
ff_dca_xll_flush(&s->xll);
s->core_residual_valid = 0;
}
static av_cold int dcadec_close(AVCodecContext *avctx)
{
DCAContext *s = avctx->priv_data;
ff_dca_core_close(&s->core);
ff_dca_xll_close(&s->xll);
av_freep(&s->buffer);
s->buffer_size = 0;
return 0;
}
static av_cold int dcadec_init(AVCodecContext *avctx)
{
DCAContext *s = avctx->priv_data;
s->avctx = avctx;
s->core.avctx = avctx;
s->exss.avctx = avctx;
s->xll.avctx = avctx;
if (ff_dca_core_init(&s->core) < 0)
return AVERROR(ENOMEM);
ff_dcadsp_init(&s->dcadsp);
s->core.dcadsp = &s->dcadsp;
s->xll.dcadsp = &s->dcadsp;
switch (avctx->request_channel_layout & ~AV_CH_LAYOUT_NATIVE) {
case 0:
s->request_channel_layout = 0;
break;
case AV_CH_LAYOUT_STEREO:
case AV_CH_LAYOUT_STEREO_DOWNMIX:
s->request_channel_layout = DCA_SPEAKER_LAYOUT_STEREO;
break;
case AV_CH_LAYOUT_5POINT0:
s->request_channel_layout = DCA_SPEAKER_LAYOUT_5POINT0;
break;
case AV_CH_LAYOUT_5POINT1:
s->request_channel_layout = DCA_SPEAKER_LAYOUT_5POINT1;
break;
default:
av_log(avctx, AV_LOG_WARNING, "Invalid request_channel_layout\n");
break;
}
avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
avctx->bits_per_raw_sample = 24;
return 0;
}
#define OFFSET(x) offsetof(DCAContext, x)
#define PARAM AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
static const AVOption dcadec_options[] = {
{ "core_only", "Decode core only without extensions", OFFSET(core_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, PARAM },
{ NULL }
};
static const AVClass dcadec_class = {
.class_name = "DCA decoder",
.item_name = av_default_item_name,
.option = dcadec_options,
.version = LIBAVUTIL_VERSION_INT,
.category = AV_CLASS_CATEGORY_DECODER,
};
AVCodec ff_dca_decoder = {
.name = "dca",
.long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
.type = AVMEDIA_TYPE_AUDIO,
.id = AV_CODEC_ID_DTS,
.priv_data_size = sizeof(DCAContext),
.init = dcadec_init,
.decode = dcadec_decode_frame,
.close = dcadec_close,
.flush = dcadec_flush,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P,
AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE },
.priv_class = &dcadec_class,
.profiles = NULL_IF_CONFIG_SMALL(ff_dca_profiles),
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_DCADEC_H
#define AVCODEC_DCADEC_H
#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "avcodec.h"
#include "get_bits.h"
#include "dca.h"
#include "dcadsp.h"
#include "dca_core.h"
#include "dca_exss.h"
#include "dca_xll.h"
#define DCA_BUFFER_PADDING_SIZE 1024
#define DCA_PACKET_CORE 0x01
#define DCA_PACKET_EXSS 0x02
#define DCA_PACKET_XLL 0x04
#define DCA_PACKET_RECOVERY 0x08
typedef struct DCAContext {
const AVClass *class; ///< class for AVOptions
AVCodecContext *avctx;
DCACoreDecoder core; ///< Core decoder context
DCAExssParser exss; ///< EXSS parser context
DCAXllDecoder xll; ///< XLL decoder context
DCADSPContext dcadsp;
uint8_t *buffer; ///< Packet buffer
unsigned int buffer_size;
int packet; ///< Packet flags
int core_residual_valid; ///< Core valid for residual decoding
int request_channel_layout; ///< Converted from avctx.request_channel_layout
int core_only; ///< Core only decoding flag
} DCAContext;
int ff_dca_set_channel_layout(AVCodecContext *avctx, int *ch_remap, int dca_mask);
int ff_dca_check_crc(GetBitContext *s, int p1, int p2);
void ff_dca_downmix_to_stereo_fixed(DCADSPContext *dcadsp, int32_t **samples,
int *coeff_l, int nsamples, int ch_mask);
void ff_dca_downmix_to_stereo_float(AVFloatDSPContext *fdsp, float **samples,
int *coeff_l, int nsamples, int ch_mask);
static inline int ff_dca_seek_bits(GetBitContext *s, int p)
{
if (p < s->index || p > s->size_in_bits)
return -1;
s->index = p;
return 0;
}
#endif
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/mem.h"
#include "dcadsp.h"
#include "dcamath.h"
static void decode_hf_c(int32_t **dst,
const int32_t *vq_index,
const int8_t hf_vq[1024][32],
int32_t scale_factors[32][2],
intptr_t sb_start, intptr_t sb_end,
intptr_t ofs, intptr_t len)
{
int i, j;
for (i = sb_start; i < sb_end; i++) {
const int8_t *coeff = hf_vq[vq_index[i]];
int32_t scale = scale_factors[i][0];
for (j = 0; j < len; j++)
dst[i][j + ofs] = clip23(coeff[j] * scale + (1 << 3) >> 4);
}
}
static void decode_joint_c(int32_t **dst, int32_t **src,
const int32_t *scale_factors,
intptr_t sb_start, intptr_t sb_end,
intptr_t ofs, intptr_t len)
{
int i, j;
for (i = sb_start; i < sb_end; i++) {
int32_t scale = scale_factors[i];
for (j = 0; j < len; j++)
dst[i][j + ofs] = clip23(mul17(src[i][j + ofs], scale));
}
}
static void lfe_fir_float_c(float *pcm_samples, int32_t *lfe_samples,
const float *filter_coeff, intptr_t npcmblocks,
int dec_select)
{
// Select decimation factor
int factor = 64 << dec_select;
int ncoeffs = 8 >> dec_select;
int nlfesamples = npcmblocks >> (dec_select + 1);
int i, j, k;
for (i = 0; i < nlfesamples; i++) {
// One decimated sample generates 64 or 128 interpolated ones
for (j = 0; j < factor / 2; j++) {
float a = 0;
float b = 0;
for (k = 0; k < ncoeffs; k++) {
a += filter_coeff[ j * ncoeffs + k] * lfe_samples[-k];
b += filter_coeff[255 - j * ncoeffs - k] * lfe_samples[-k];
}
pcm_samples[ j] = a;
pcm_samples[factor / 2 + j] = b;
}
lfe_samples++;
pcm_samples += factor;
}
}
static void lfe_fir1_float_c(float *pcm_samples, int32_t *lfe_samples,
const float *filter_coeff, intptr_t npcmblocks)
{
lfe_fir_float_c(pcm_samples, lfe_samples, filter_coeff, npcmblocks, 0);
}
static void lfe_fir2_float_c(float *pcm_samples, int32_t *lfe_samples,
const float *filter_coeff, intptr_t npcmblocks)
{
lfe_fir_float_c(pcm_samples, lfe_samples, filter_coeff, npcmblocks, 1);
}
static void lfe_x96_float_c(float *dst, const float *src,
float *hist, intptr_t len)
{
float prev = *hist;
int i;
for (i = 0; i < len; i++) {
float a = 0.25f * src[i] + 0.75f * prev;
float b = 0.75f * src[i] + 0.25f * prev;
prev = src[i];
*dst++ = a;
*dst++ = b;
}
*hist = prev;
}
static void sub_qmf32_float_c(SynthFilterContext *synth,
FFTContext *imdct,
float *pcm_samples,
int32_t **subband_samples_lo,
int32_t **subband_samples_hi,
float *hist1, int *offset, float *hist2,
const float *filter_coeff, intptr_t npcmblocks,
float scale)
{
LOCAL_ALIGNED(32, float, input, [32]);
int i, j;
for (j = 0; j < npcmblocks; j++) {
// Load in one sample from each subband
for (i = 0; i < 32; i++) {
if ((i - 1) & 2)
input[i] = -subband_samples_lo[i][j];
else
input[i] = subband_samples_lo[i][j];
}
// One subband sample generates 32 interpolated ones
synth->synth_filter_float(imdct, hist1, offset,
hist2, filter_coeff,
pcm_samples, input, scale);
pcm_samples += 32;
}
}
static void sub_qmf64_float_c(SynthFilterContext *synth,
FFTContext *imdct,
float *pcm_samples,
int32_t **subband_samples_lo,
int32_t **subband_samples_hi,
float *hist1, int *offset, float *hist2,
const float *filter_coeff, intptr_t npcmblocks,
float scale)
{
LOCAL_ALIGNED(32, float, input, [64]);
int i, j;
if (!subband_samples_hi)
memset(&input[32], 0, sizeof(input[0]) * 32);
for (j = 0; j < npcmblocks; j++) {
// Load in one sample from each subband
if (subband_samples_hi) {
// Full 64 subbands, first 32 are residual coded
for (i = 0; i < 32; i++) {
if ((i - 1) & 2)
input[i] = -subband_samples_lo[i][j] - subband_samples_hi[i][j];
else
input[i] = subband_samples_lo[i][j] + subband_samples_hi[i][j];
}
for (i = 32; i < 64; i++) {
if ((i - 1) & 2)
input[i] = -subband_samples_hi[i][j];
else
input[i] = subband_samples_hi[i][j];
}
} else {
// Only first 32 subbands
for (i = 0; i < 32; i++) {
if ((i - 1) & 2)
input[i] = -subband_samples_lo[i][j];
else
input[i] = subband_samples_lo[i][j];
}
}
// One subband sample generates 64 interpolated ones
synth->synth_filter_float_64(imdct, hist1, offset,
hist2, filter_coeff,
pcm_samples, input, scale);
pcm_samples += 64;
}
}
static void lfe_fir_fixed_c(int32_t *pcm_samples, int32_t *lfe_samples,
const int32_t *filter_coeff, intptr_t npcmblocks)
{
// Select decimation factor
int nlfesamples = npcmblocks >> 1;
int i, j, k;
for (i = 0; i < nlfesamples; i++) {
// One decimated sample generates 64 interpolated ones
for (j = 0; j < 32; j++) {
int64_t a = 0;
int64_t b = 0;
for (k = 0; k < 8; k++) {
a += (int64_t)filter_coeff[ j * 8 + k] * lfe_samples[-k];
b += (int64_t)filter_coeff[255 - j * 8 - k] * lfe_samples[-k];
}
pcm_samples[ j] = clip23(norm23(a));
pcm_samples[32 + j] = clip23(norm23(b));
}
lfe_samples++;
pcm_samples += 64;
}
}
static void lfe_x96_fixed_c(int32_t *dst, const int32_t *src,
int32_t *hist, intptr_t len)
{
int32_t prev = *hist;
int i;
for (i = 0; i < len; i++) {
int64_t a = INT64_C(2097471) * src[i] + INT64_C(6291137) * prev;
int64_t b = INT64_C(6291137) * src[i] + INT64_C(2097471) * prev;
prev = src[i];
*dst++ = clip23(norm23(a));
*dst++ = clip23(norm23(b));
}
*hist = prev;
}
static void sub_qmf32_fixed_c(SynthFilterContext *synth,
DCADCTContext *imdct,
int32_t *pcm_samples,
int32_t **subband_samples_lo,
int32_t **subband_samples_hi,
int32_t *hist1, int *offset, int32_t *hist2,
const int32_t *filter_coeff, intptr_t npcmblocks)
{
LOCAL_ALIGNED(32, int32_t, input, [32]);
int i, j;
for (j = 0; j < npcmblocks; j++) {
// Load in one sample from each subband
for (i = 0; i < 32; i++)
input[i] = subband_samples_lo[i][j];
// One subband sample generates 32 interpolated ones
synth->synth_filter_fixed(imdct, hist1, offset,
hist2, filter_coeff,
pcm_samples, input);
pcm_samples += 32;
}
}
static void sub_qmf64_fixed_c(SynthFilterContext *synth,
DCADCTContext *imdct,
int32_t *pcm_samples,
int32_t **subband_samples_lo,
int32_t **subband_samples_hi,
int32_t *hist1, int *offset, int32_t *hist2,
const int32_t *filter_coeff, intptr_t npcmblocks)
{
LOCAL_ALIGNED(32, int32_t, input, [64]);
int i, j;
if (!subband_samples_hi)
memset(&input[32], 0, sizeof(input[0]) * 32);
for (j = 0; j < npcmblocks; j++) {
// Load in one sample from each subband
if (subband_samples_hi) {
// Full 64 subbands, first 32 are residual coded
for (i = 0; i < 32; i++)
input[i] = subband_samples_lo[i][j] + subband_samples_hi[i][j];
for (i = 32; i < 64; i++)
input[i] = subband_samples_hi[i][j];
} else {
// Only first 32 subbands
for (i = 0; i < 32; i++)
input[i] = subband_samples_lo[i][j];
}
// One subband sample generates 64 interpolated ones
synth->synth_filter_fixed_64(imdct, hist1, offset,
hist2, filter_coeff,
pcm_samples, input);
pcm_samples += 64;
}
}
static void decor_c(int32_t *dst, const int32_t *src, intptr_t coeff, intptr_t len)
{
int i;
for (i = 0; i < len; i++)
dst[i] += src[i] * coeff + (1 << 2) >> 3;
}
static void dmix_sub_xch_c(int32_t *dst1, int32_t *dst2,
const int32_t *src, intptr_t len)
{
int i;
for (i = 0; i < len; i++) {
int32_t cs = mul23(src[i], 5931520 /* M_SQRT1_2 * (1 << 23) */);
dst1[i] -= cs;
dst2[i] -= cs;
}
}
static void dmix_sub_c(int32_t *dst, const int32_t *src, intptr_t coeff, intptr_t len)
{
int i;
for (i = 0; i < len; i++)
dst[i] -= mul15(src[i], coeff);
}
static void dmix_add_c(int32_t *dst, const int32_t *src, intptr_t coeff, intptr_t len)
{
int i;
for (i = 0; i < len; i++)
dst[i] += mul15(src[i], coeff);
}
static void dmix_scale_c(int32_t *dst, intptr_t scale, intptr_t len)
{
int i;
for (i = 0; i < len; i++)
dst[i] = mul15(dst[i], scale);
}
static void dmix_scale_inv_c(int32_t *dst, intptr_t scale_inv, intptr_t len)
{
int i;
for (i = 0; i < len; i++)
dst[i] = mul16(dst[i], scale_inv);
}
static void filter0(int32_t *dst, const int32_t *src, int32_t coeff, intptr_t len)
{
int i;
for (i = 0; i < len; i++)
dst[i] -= mul22(src[i], coeff);
}
static void filter1(int32_t *dst, const int32_t *src, int32_t coeff, intptr_t len)
{
int i;
for (i = 0; i < len; i++)
dst[i] -= mul23(src[i], coeff);
}
static void assemble_freq_bands_c(int32_t *dst, int32_t *src0, int32_t *src1,
const int32_t *coeff, intptr_t len)
{
int i;
filter0(src0, src1, coeff[0], len);
filter0(src1, src0, coeff[1], len);
filter0(src0, src1, coeff[2], len);
filter0(src1, src0, coeff[3], len);
for (i = 0; i < 8; i++, src0--) {
filter1(src0, src1, coeff[i + 4], len);
filter1(src1, src0, coeff[i + 12], len);
filter1(src0, src1, coeff[i + 4], len);
}
for (i = 0; i < len; i++) {
*dst++ = *src1++;
*dst++ = *++src0;
}
}
av_cold void ff_dcadsp_init(DCADSPContext *s)
{
s->decode_hf = decode_hf_c;
s->decode_joint = decode_joint_c;
s->lfe_fir_float[0] = lfe_fir1_float_c;
s->lfe_fir_float[1] = lfe_fir2_float_c;
s->lfe_x96_float = lfe_x96_float_c;
s->sub_qmf_float[0] = sub_qmf32_float_c;
s->sub_qmf_float[1] = sub_qmf64_float_c;
s->lfe_fir_fixed = lfe_fir_fixed_c;
s->lfe_x96_fixed = lfe_x96_fixed_c;
s->sub_qmf_fixed[0] = sub_qmf32_fixed_c;
s->sub_qmf_fixed[1] = sub_qmf64_fixed_c;
s->decor = decor_c;
s->dmix_sub_xch = dmix_sub_xch_c;
s->dmix_sub = dmix_sub_c;
s->dmix_add = dmix_add_c;
s->dmix_scale = dmix_scale_c;
s->dmix_scale_inv = dmix_scale_inv_c;
s->assemble_freq_bands = assemble_freq_bands_c;
}
/*
* Copyright (C) 2016 foo86
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_DCADSP_H
#define AVCODEC_DCADSP_H
#include "libavutil/common.h"
#include "fft.h"
#include "dcadct.h"
#include "synth_filter.h"
typedef struct DCADSPContext {
void (*decode_hf)(int32_t **dst,
const int32_t *vq_index,
const int8_t hf_vq[1024][32],
int32_t scale_factors[32][2],
intptr_t sb_start, intptr_t sb_end,
intptr_t ofs, intptr_t len);
void (*decode_joint)(int32_t **dst, int32_t **src,
const int32_t *scale_factors,
intptr_t sb_start, intptr_t sb_end,
intptr_t ofs, intptr_t len);
void (*lfe_fir_float[2])(float *pcm_samples, int32_t *lfe_samples,
const float *filter_coeff, intptr_t npcmblocks);
void (*lfe_x96_float)(float *dst, const float *src,
float *hist, intptr_t len);
void (*sub_qmf_float[2])(SynthFilterContext *synth,
FFTContext *imdct,
float *pcm_samples,
int32_t **subband_samples_lo,
int32_t **subband_samples_hi,
float *hist1, int *offset, float *hist2,
const float *filter_coeff, intptr_t npcmblocks,
float scale);
void (*lfe_fir_fixed)(int32_t *pcm_samples, int32_t *lfe_samples,
const int32_t *filter_coeff, intptr_t npcmblocks);
void (*lfe_x96_fixed)(int32_t *dst, const int32_t *src,
int32_t *hist, intptr_t len);
void (*sub_qmf_fixed[2])(SynthFilterContext *synth,
DCADCTContext *imdct,
int32_t *pcm_samples,
int32_t **subband_samples_lo,
int32_t **subband_samples_hi,
int32_t *hist1, int *offset, int32_t *hist2,
const int32_t *filter_coeff, intptr_t npcmblocks);
void (*decor)(int32_t *dst, const int32_t *src, intptr_t coeff, intptr_t len);
void (*dmix_sub_xch)(int32_t *dst1, int32_t *dst2,
const int32_t *src, intptr_t len);
void (*dmix_sub)(int32_t *dst, const int32_t *src, intptr_t coeff, intptr_t len);
void (*dmix_add)(int32_t *dst, const int32_t *src, intptr_t coeff, intptr_t len);
void (*dmix_scale)(int32_t *dst, intptr_t scale, intptr_t len);
void (*dmix_scale_inv)(int32_t *dst, intptr_t scale_inv, intptr_t len);
void (*assemble_freq_bands)(int32_t *dst, int32_t *src0, int32_t *src1,
const int32_t *coeff, intptr_t len);
} DCADSPContext;
av_cold void ff_dcadsp_init(DCADSPContext *s);
#endif
......@@ -30,7 +30,7 @@
#define LIBAVCODEC_VERSION_MAJOR 57
#define LIBAVCODEC_VERSION_MINOR 24
#define LIBAVCODEC_VERSION_MICRO 100
#define LIBAVCODEC_VERSION_MICRO 101
#define LIBAVCODEC_VERSION_INT AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \
LIBAVCODEC_VERSION_MINOR, \
......
......@@ -44,7 +44,7 @@ OBJS-$(CONFIG_ADPCM_G722_ENCODER) += x86/g722dsp_init.o
OBJS-$(CONFIG_ALAC_DECODER) += x86/alacdsp_init.o
OBJS-$(CONFIG_APNG_DECODER) += x86/pngdsp_init.o
OBJS-$(CONFIG_CAVS_DECODER) += x86/cavsdsp.o
#OBJS-$(CONFIG_DCA_DECODER) += x86/synth_filter_init.o
OBJS-$(CONFIG_DCA_DECODER) += x86/synth_filter_init.o
OBJS-$(CONFIG_DNXHD_ENCODER) += x86/dnxhdenc_init.o
OBJS-$(CONFIG_HEVC_DECODER) += x86/hevcdsp_init.o
OBJS-$(CONFIG_JPEG2000_DECODER) += x86/jpeg2000dsp_init.o
......@@ -132,7 +132,7 @@ YASM-OBJS-$(CONFIG_ADPCM_G722_DECODER) += x86/g722dsp.o
YASM-OBJS-$(CONFIG_ADPCM_G722_ENCODER) += x86/g722dsp.o
YASM-OBJS-$(CONFIG_ALAC_DECODER) += x86/alacdsp.o
YASM-OBJS-$(CONFIG_APNG_DECODER) += x86/pngdsp.o
#YASM-OBJS-$(CONFIG_DCA_DECODER) += x86/synth_filter.o
YASM-OBJS-$(CONFIG_DCA_DECODER) += x86/synth_filter.o
YASM-OBJS-$(CONFIG_DIRAC_DECODER) += x86/diracdsp_mmx.o x86/diracdsp_yasm.o \
x86/dwt_yasm.o
YASM-OBJS-$(CONFIG_DNXHD_ENCODER) += x86/dnxhdenc.o
......
# libavcodec tests
AVCODECOBJS-$(CONFIG_ALAC_DECODER) += alacdsp.o
AVCODECOBJS-$(CONFIG_BSWAPDSP) += bswapdsp.o
#AVCODECOBJS-$(CONFIG_DCA_DECODER) += synth_filter.o
AVCODECOBJS-$(CONFIG_DCA_DECODER) += synth_filter.o
AVCODECOBJS-$(CONFIG_FLACDSP) += flacdsp.o
AVCODECOBJS-$(CONFIG_FMTCONVERT) += fmtconvert.o
AVCODECOBJS-$(CONFIG_H264PRED) += h264pred.o
......
......@@ -71,9 +71,9 @@ static const struct {
#if CONFIG_BSWAPDSP
{ "bswapdsp", checkasm_check_bswapdsp },
#endif
/* #if CONFIG_DCA_DECODER
#if CONFIG_DCA_DECODER
{ "synth_filter", checkasm_check_synth_filter },
#endif*/
#endif
#if CONFIG_FLACDSP
{ "flacdsp", checkasm_check_flacdsp },
#endif
......
......@@ -99,14 +99,14 @@ FATE_ACODEC-$(call ENCDEC, ALAC, MOV) += fate-acodec-alac
fate-acodec-alac: FMT = mov
fate-acodec-alac: CODEC = alac -compression_level 1
#FATE_ACODEC-$(call ENCDEC, DCA, DTS) += fate-acodec-dca
FATE_ACODEC-$(call ENCDEC, DCA, DTS) += fate-acodec-dca
fate-acodec-dca: tests/data/asynth-44100-2.wav
fate-acodec-dca: SRC = tests/data/asynth-44100-2.wav
fate-acodec-dca: CMD = md5 -i $(TARGET_PATH)/$(SRC) -c:a dca -strict -2 -f dts -flags +bitexact
fate-acodec-dca: CMP = oneline
fate-acodec-dca: REF = 7ffdefdf47069289990755c79387cc90
#FATE_ACODEC-$(call ENCDEC, DCA, WAV) += fate-acodec-dca2
FATE_ACODEC-$(call ENCDEC, DCA, WAV) += fate-acodec-dca2
fate-acodec-dca2: CMD = enc_dec_pcm dts wav s16le $(SRC) -c:a dca -strict -2 -flags +bitexact
fate-acodec-dca2: REF = $(SRC)
fate-acodec-dca2: CMP = stddev
......
......@@ -21,7 +21,7 @@ fate-dca-core: CMD = pcm -i $(TARGET_SAMPLES)/dts/dts.ts
fate-dca-core: CMP = oneoff
fate-dca-core: REF = $(SAMPLES)/dts/dts.pcm
#FATE_SAMPLES_AUDIO-$(CONFIG_DCA_DECODER) += $(FATE_DCA-yes)
FATE_SAMPLES_AUDIO-$(CONFIG_DCA_DECODER) += $(FATE_DCA-yes)
fate-dca: $(FATE_DCA-yes)
FATE_SAMPLES_AUDIO-$(call DEMDEC, DSICIN, DSICINAUDIO) += fate-delphine-cin-audio
......@@ -31,7 +31,7 @@ FATE_SAMPLES_AUDIO-$(call DEMDEC, DSS, DSS_SP) += fate-dss-lp fate-dss-sp
fate-dss-lp: CMD = framecrc -i $(TARGET_SAMPLES)/dss/lp.dss -frames 30
fate-dss-sp: CMD = framecrc -i $(TARGET_SAMPLES)/dss/sp.dss -frames 30
#FATE_SAMPLES_AUDIO-$(call DEMDEC, DTS, DCA) += fate-dts_es
FATE_SAMPLES_AUDIO-$(call DEMDEC, DTS, DCA) += fate-dts_es
fate-dts_es: CMD = pcm -i $(TARGET_SAMPLES)/dts/dts_es.dts
fate-dts_es: CMP = oneoff
fate-dts_es: REF = $(SAMPLES)/dts/dts_es_2.pcm
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment