Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
F
ffmpeg
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ffmpeg
Commits
867381b8
Commit
867381b8
authored
May 14, 2017
by
Mark Thompson
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
lavc: Add coded bitstream read/write support for H.265
parent
acf06f45
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
2453 additions
and
3 deletions
+2453
-3
configure
configure
+2
-0
Makefile
libavcodec/Makefile
+1
-0
cbs.c
libavcodec/cbs.c
+3
-0
cbs_h2645.c
libavcodec/cbs_h2645.c
+407
-3
cbs_h265.h
libavcodec/cbs_h265.h
+537
-0
cbs_h265_syntax_template.c
libavcodec/cbs_h265_syntax_template.c
+1502
-0
cbs_internal.h
libavcodec/cbs_internal.h
+1
-0
No files found.
configure
View file @
867381b8
...
...
@@ -1741,6 +1741,7 @@ CONFIG_EXTRA="
cabac
cbs
cbs_h264
cbs_h265
dirac_parse
dvprofile
faandct
...
...
@@ -1968,6 +1969,7 @@ threads_if_any="$THREADS_LIST"
# subsystems
cbs_h264_select
=
"cbs golomb"
cbs_h265_select
=
"cbs golomb"
dct_select
=
"rdft"
dirac_parse_select
=
"golomb"
error_resilience_select
=
"me_cmp"
...
...
libavcodec/Makefile
View file @
867381b8
...
...
@@ -55,6 +55,7 @@ OBJS-$(CONFIG_BSWAPDSP) += bswapdsp.o
OBJS-$(CONFIG_CABAC)
+=
cabac.o
OBJS-$(CONFIG_CBS)
+=
cbs.o
OBJS-$(CONFIG_CBS_H264)
+=
cbs_h2645.o
h2645_parse.o
OBJS-$(CONFIG_CBS_H265)
+=
cbs_h2645.o
h2645_parse.o
OBJS-$(CONFIG_DCT)
+=
dct.o
dct32_fixed.o
dct32_float.o
OBJS-$(CONFIG_ERROR_RESILIENCE)
+=
error_resilience.o
OBJS-$(CONFIG_FAANDCT)
+=
faandct.o
...
...
libavcodec/cbs.c
View file @
867381b8
...
...
@@ -31,6 +31,9 @@ static const CodedBitstreamType *cbs_type_table[] = {
#if CONFIG_CBS_H264
&
ff_cbs_type_h264
,
#endif
#if CONFIG_CBS_H265
&
ff_cbs_type_h265
,
#endif
};
int
ff_cbs_init
(
CodedBitstreamContext
*
ctx
,
...
...
libavcodec/cbs_h2645.c
View file @
867381b8
...
...
@@ -23,10 +23,12 @@
#include "cbs.h"
#include "cbs_internal.h"
#include "cbs_h264.h"
#include "cbs_h265.h"
#include "golomb.h"
#include "h264.h"
#include "h264_sei.h"
#include "h2645_parse.h"
#include "hevc.h"
static
int
cbs_read_ue_golomb
(
CodedBitstreamContext
*
ctx
,
BitstreamContext
*
bc
,
...
...
@@ -237,6 +239,7 @@ static int cbs_write_se_golomb(CodedBitstreamContext *ctx, PutBitContext *pbc,
#define FUNC_NAME(rw, codec, name) cbs_ ## codec ## _ ## rw ## _ ## name
#define FUNC_H264(rw, name) FUNC_NAME(rw, h264, name)
#define FUNC_H265(rw, name) FUNC_NAME(rw, h265, name)
#define READ
...
...
@@ -299,6 +302,10 @@ static int cbs_h2645_read_more_rbsp_data(BitstreamContext *bc)
#include "cbs_h264_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H265(READWRITE, name)
#include "cbs_h265_syntax_template.c"
#undef FUNC
#undef READ
#undef READWRITE
#undef RWContext
...
...
@@ -368,6 +375,10 @@ static int cbs_h2645_read_more_rbsp_data(BitstreamContext *bc)
#include "cbs_h264_syntax_template.c"
#undef FUNC
#define FUNC(name) FUNC_H265(READWRITE, name)
#include "cbs_h265_syntax_template.c"
#undef FUNC
#undef WRITE
#undef READWRITE
#undef RWContext
...
...
@@ -428,6 +439,40 @@ static void cbs_h264_free_nal_unit(CodedBitstreamUnit *unit)
av_freep
(
&
unit
->
content
);
}
static
void
cbs_h265_free_nal_unit
(
CodedBitstreamUnit
*
unit
)
{
switch
(
unit
->
type
)
{
case
HEVC_NAL_VPS
:
av_freep
(
&
((
H265RawVPS
*
)
unit
->
content
)
->
extension_data
.
data
);
break
;
case
HEVC_NAL_SPS
:
av_freep
(
&
((
H265RawSPS
*
)
unit
->
content
)
->
extension_data
.
data
);
break
;
case
HEVC_NAL_PPS
:
av_freep
(
&
((
H265RawPPS
*
)
unit
->
content
)
->
extension_data
.
data
);
break
;
case
HEVC_NAL_TRAIL_N
:
case
HEVC_NAL_TRAIL_R
:
case
HEVC_NAL_TSA_N
:
case
HEVC_NAL_TSA_R
:
case
HEVC_NAL_STSA_N
:
case
HEVC_NAL_STSA_R
:
case
HEVC_NAL_RADL_N
:
case
HEVC_NAL_RADL_R
:
case
HEVC_NAL_RASL_N
:
case
HEVC_NAL_RASL_R
:
case
HEVC_NAL_BLA_W_LP
:
case
HEVC_NAL_BLA_W_RADL
:
case
HEVC_NAL_BLA_N_LP
:
case
HEVC_NAL_IDR_W_RADL
:
case
HEVC_NAL_IDR_N_LP
:
case
HEVC_NAL_CRA_NUT
:
av_freep
(
&
((
H265RawSlice
*
)
unit
->
content
)
->
data
);
break
;
}
av_freep
(
&
unit
->
content
);
}
static
int
cbs_h2645_fragment_add_nals
(
CodedBitstreamContext
*
ctx
,
CodedBitstreamFragment
*
frag
,
const
H2645Packet
*
packet
)
...
...
@@ -542,6 +587,58 @@ static int cbs_h2645_split_fragment(CodedBitstreamContext *ctx,
"header.
\n
"
,
bytestream2_get_bytes_left
(
&
gbc
));
}
}
else
if
(
header
&&
frag
->
data
[
0
]
&&
codec_id
==
AV_CODEC_ID_HEVC
)
{
// HVCC header.
size_t
size
,
start
,
end
;
int
i
,
j
,
nb_arrays
,
nal_unit_type
,
nb_nals
,
version
;
priv
->
mp4
=
1
;
bytestream2_init
(
&
gbc
,
frag
->
data
,
frag
->
data_size
);
if
(
bytestream2_get_bytes_left
(
&
gbc
)
<
23
)
return
AVERROR_INVALIDDATA
;
version
=
bytestream2_get_byte
(
&
gbc
);
if
(
version
!=
1
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"Invalid HVCC header: "
"first byte %u."
,
version
);
return
AVERROR_INVALIDDATA
;
}
bytestream2_skip
(
&
gbc
,
20
);
priv
->
nal_length_size
=
(
bytestream2_get_byte
(
&
gbc
)
&
3
)
+
1
;
nb_arrays
=
bytestream2_get_byte
(
&
gbc
);
for
(
i
=
0
;
i
<
nb_arrays
;
i
++
)
{
nal_unit_type
=
bytestream2_get_byte
(
&
gbc
)
&
0x3f
;
nb_nals
=
bytestream2_get_be16
(
&
gbc
);
start
=
bytestream2_tell
(
&
gbc
);
for
(
j
=
0
;
j
<
nb_nals
;
j
++
)
{
if
(
bytestream2_get_bytes_left
(
&
gbc
)
<
2
)
return
AVERROR_INVALIDDATA
;
size
=
bytestream2_get_be16
(
&
gbc
);
if
(
bytestream2_get_bytes_left
(
&
gbc
)
<
size
)
return
AVERROR_INVALIDDATA
;
bytestream2_skip
(
&
gbc
,
size
);
}
end
=
bytestream2_tell
(
&
gbc
);
err
=
ff_h2645_packet_split
(
&
priv
->
read_packet
,
frag
->
data
+
start
,
end
-
start
,
ctx
->
log_ctx
,
1
,
2
,
AV_CODEC_ID_HEVC
);
if
(
err
<
0
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"Failed to split "
"HVCC array %d (%d NAL units of type %d).
\n
"
,
i
,
nb_nals
,
nal_unit_type
);
return
err
;
}
err
=
cbs_h2645_fragment_add_nals
(
ctx
,
frag
,
&
priv
->
read_packet
);
if
(
err
<
0
)
return
err
;
}
}
else
{
// Annex B, or later MP4 with already-known parameters.
...
...
@@ -582,6 +679,9 @@ static int cbs_h26 ## h26n ## _replace_ ## ps_var(CodedBitstreamContext *ctx, \
cbs_h2645_replace_ps
(
4
,
SPS
,
sps
,
seq_parameter_set_id
)
cbs_h2645_replace_ps
(
4
,
PPS
,
pps
,
pic_parameter_set_id
)
cbs_h2645_replace_ps
(
5
,
VPS
,
vps
,
vps_video_parameter_set_id
)
cbs_h2645_replace_ps
(
5
,
SPS
,
sps
,
sps_seq_parameter_set_id
)
cbs_h2645_replace_ps
(
5
,
PPS
,
pps
,
pps_pic_parameter_set_id
)
static
int
cbs_h264_read_nal_unit
(
CodedBitstreamContext
*
ctx
,
CodedBitstreamUnit
*
unit
)
...
...
@@ -730,6 +830,150 @@ static int cbs_h264_read_nal_unit(CodedBitstreamContext *ctx,
return
0
;
}
static
int
cbs_h265_read_nal_unit
(
CodedBitstreamContext
*
ctx
,
CodedBitstreamUnit
*
unit
)
{
BitstreamContext
bc
;
int
err
;
err
=
bitstream_init
(
&
bc
,
unit
->
data
,
8
*
unit
->
data_size
);
if
(
err
<
0
)
return
err
;
switch
(
unit
->
type
)
{
case
HEVC_NAL_VPS
:
{
H265RawVPS
*
vps
;
vps
=
av_mallocz
(
sizeof
(
*
vps
));
if
(
!
vps
)
return
AVERROR
(
ENOMEM
);
err
=
cbs_h265_read_vps
(
ctx
,
&
bc
,
vps
);
if
(
err
>=
0
)
err
=
cbs_h265_replace_vps
(
ctx
,
vps
);
if
(
err
<
0
)
{
av_free
(
vps
);
return
err
;
}
unit
->
content
=
vps
;
}
break
;
case
HEVC_NAL_SPS
:
{
H265RawSPS
*
sps
;
sps
=
av_mallocz
(
sizeof
(
*
sps
));
if
(
!
sps
)
return
AVERROR
(
ENOMEM
);
err
=
cbs_h265_read_sps
(
ctx
,
&
bc
,
sps
);
if
(
err
>=
0
)
err
=
cbs_h265_replace_sps
(
ctx
,
sps
);
if
(
err
<
0
)
{
av_free
(
sps
);
return
err
;
}
unit
->
content
=
sps
;
}
break
;
case
HEVC_NAL_PPS
:
{
H265RawPPS
*
pps
;
pps
=
av_mallocz
(
sizeof
(
*
pps
));
if
(
!
pps
)
return
AVERROR
(
ENOMEM
);
err
=
cbs_h265_read_pps
(
ctx
,
&
bc
,
pps
);
if
(
err
>=
0
)
err
=
cbs_h265_replace_pps
(
ctx
,
pps
);
if
(
err
<
0
)
{
av_free
(
pps
);
return
err
;
}
unit
->
content
=
pps
;
}
break
;
case
HEVC_NAL_TRAIL_N
:
case
HEVC_NAL_TRAIL_R
:
case
HEVC_NAL_TSA_N
:
case
HEVC_NAL_TSA_R
:
case
HEVC_NAL_STSA_N
:
case
HEVC_NAL_STSA_R
:
case
HEVC_NAL_RADL_N
:
case
HEVC_NAL_RADL_R
:
case
HEVC_NAL_RASL_N
:
case
HEVC_NAL_RASL_R
:
case
HEVC_NAL_BLA_W_LP
:
case
HEVC_NAL_BLA_W_RADL
:
case
HEVC_NAL_BLA_N_LP
:
case
HEVC_NAL_IDR_W_RADL
:
case
HEVC_NAL_IDR_N_LP
:
case
HEVC_NAL_CRA_NUT
:
{
H265RawSlice
*
slice
;
int
pos
,
len
;
slice
=
av_mallocz
(
sizeof
(
*
slice
));
if
(
!
slice
)
return
AVERROR
(
ENOMEM
);
err
=
cbs_h265_read_slice_segment_header
(
ctx
,
&
bc
,
&
slice
->
header
);
if
(
err
<
0
)
{
av_free
(
slice
);
return
err
;
}
pos
=
bitstream_tell
(
&
bc
);
len
=
unit
->
data_size
;
if
(
!
unit
->
data
[
len
-
1
])
{
int
z
;
for
(
z
=
0
;
z
<
len
&&
!
unit
->
data
[
len
-
z
-
1
];
z
++
);
av_log
(
ctx
->
log_ctx
,
AV_LOG_DEBUG
,
"Deleted %d trailing zeroes "
"from slice data.
\n
"
,
z
);
len
-=
z
;
}
slice
->
data_size
=
len
-
pos
/
8
;
slice
->
data
=
av_malloc
(
slice
->
data_size
);
if
(
!
slice
->
data
)
{
av_free
(
slice
);
return
AVERROR
(
ENOMEM
);
}
memcpy
(
slice
->
data
,
unit
->
data
+
pos
/
8
,
slice
->
data_size
);
slice
->
data_bit_start
=
pos
%
8
;
unit
->
content
=
slice
;
}
break
;
case
HEVC_NAL_AUD
:
{
H265RawAUD
*
aud
;
aud
=
av_mallocz
(
sizeof
(
*
aud
));
if
(
!
aud
)
return
AVERROR
(
ENOMEM
);
err
=
cbs_h265_read_aud
(
ctx
,
&
bc
,
aud
);
if
(
err
<
0
)
{
av_free
(
aud
);
return
err
;
}
unit
->
content
=
aud
;
}
break
;
default
:
return
AVERROR
(
ENOSYS
);
}
return
0
;
}
static
int
cbs_h264_write_nal_unit
(
CodedBitstreamContext
*
ctx
,
CodedBitstreamUnit
*
unit
,
PutBitContext
*
pbc
)
...
...
@@ -842,6 +1086,127 @@ static int cbs_h264_write_nal_unit(CodedBitstreamContext *ctx,
return
0
;
}
static
int
cbs_h265_write_nal_unit
(
CodedBitstreamContext
*
ctx
,
CodedBitstreamUnit
*
unit
,
PutBitContext
*
pbc
)
{
int
err
;
switch
(
unit
->
type
)
{
case
HEVC_NAL_VPS
:
{
H265RawVPS
*
vps
=
unit
->
content
;
err
=
cbs_h265_write_vps
(
ctx
,
pbc
,
vps
);
if
(
err
<
0
)
return
err
;
err
=
cbs_h265_replace_vps
(
ctx
,
vps
);
if
(
err
<
0
)
return
err
;
}
break
;
case
HEVC_NAL_SPS
:
{
H265RawSPS
*
sps
=
unit
->
content
;
err
=
cbs_h265_write_sps
(
ctx
,
pbc
,
sps
);
if
(
err
<
0
)
return
err
;
err
=
cbs_h265_replace_sps
(
ctx
,
sps
);
if
(
err
<
0
)
return
err
;
}
break
;
case
HEVC_NAL_PPS
:
{
H265RawPPS
*
pps
=
unit
->
content
;
err
=
cbs_h265_write_pps
(
ctx
,
pbc
,
pps
);
if
(
err
<
0
)
return
err
;
err
=
cbs_h265_replace_pps
(
ctx
,
pps
);
if
(
err
<
0
)
return
err
;
}
break
;
case
HEVC_NAL_TRAIL_N
:
case
HEVC_NAL_TRAIL_R
:
case
HEVC_NAL_TSA_N
:
case
HEVC_NAL_TSA_R
:
case
HEVC_NAL_STSA_N
:
case
HEVC_NAL_STSA_R
:
case
HEVC_NAL_RADL_N
:
case
HEVC_NAL_RADL_R
:
case
HEVC_NAL_RASL_N
:
case
HEVC_NAL_RASL_R
:
case
HEVC_NAL_BLA_W_LP
:
case
HEVC_NAL_BLA_W_RADL
:
case
HEVC_NAL_BLA_N_LP
:
case
HEVC_NAL_IDR_W_RADL
:
case
HEVC_NAL_IDR_N_LP
:
case
HEVC_NAL_CRA_NUT
:
{
H265RawSlice
*
slice
=
unit
->
content
;
BitstreamContext
bc
;
int
bits_left
,
end
,
zeroes
;
err
=
cbs_h265_write_slice_segment_header
(
ctx
,
pbc
,
&
slice
->
header
);
if
(
err
<
0
)
return
err
;
if
(
slice
->
data
)
{
if
(
slice
->
data_size
*
8
+
8
>
put_bits_left
(
pbc
))
return
AVERROR
(
ENOSPC
);
bitstream_init
(
&
bc
,
slice
->
data
,
slice
->
data_size
*
8
);
bitstream_skip
(
&
bc
,
slice
->
data_bit_start
);
// Copy in two-byte blocks, but stop before copying the
// rbsp_stop_one_bit in the final byte.
while
(
bitstream_bits_left
(
&
bc
)
>
23
)
put_bits
(
pbc
,
16
,
bitstream_read
(
&
bc
,
16
));
bits_left
=
bitstream_bits_left
(
&
bc
);
end
=
bitstream_read
(
&
bc
,
bits_left
);
// rbsp_stop_one_bit must be present here.
av_assert0
(
end
);
zeroes
=
ff_ctz
(
end
);
if
(
bits_left
>
zeroes
+
1
)
put_bits
(
pbc
,
bits_left
-
zeroes
-
1
,
end
>>
(
zeroes
+
1
));
put_bits
(
pbc
,
1
,
1
);
while
(
put_bits_count
(
pbc
)
%
8
!=
0
)
put_bits
(
pbc
,
1
,
0
);
}
else
{
// No slice data - that was just the header.
}
}
break
;
case
HEVC_NAL_AUD
:
{
err
=
cbs_h265_write_aud
(
ctx
,
pbc
,
unit
->
content
);
if
(
err
<
0
)
return
err
;
}
break
;
default
:
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"Write unimplemented for "
"NAL unit type %d.
\n
"
,
unit
->
type
);
return
AVERROR_PATCHWELCOME
;
}
return
0
;
}
static
int
cbs_h2645_write_nal_unit
(
CodedBitstreamContext
*
ctx
,
CodedBitstreamUnit
*
unit
)
{
...
...
@@ -866,7 +1231,10 @@ static int cbs_h2645_write_nal_unit(CodedBitstreamContext *ctx,
init_put_bits
(
&
pbc
,
priv
->
write_buffer
,
priv
->
write_buffer_size
);
err
=
cbs_h264_write_nal_unit
(
ctx
,
unit
,
&
pbc
);
if
(
codec_id
==
AV_CODEC_ID_H264
)
err
=
cbs_h264_write_nal_unit
(
ctx
,
unit
,
&
pbc
);
else
err
=
cbs_h265_write_nal_unit
(
ctx
,
unit
,
&
pbc
);
if
(
err
==
AVERROR
(
ENOSPC
))
{
// Overflow.
...
...
@@ -927,8 +1295,13 @@ static int cbs_h2645_assemble_fragment(CodedBitstreamContext *ctx,
frag
->
data_bit_padding
=
unit
->
data_bit_padding
;
}
if
(
unit
->
type
==
H264_NAL_SPS
||
unit
->
type
==
H264_NAL_PPS
||
if
((
ctx
->
codec
->
codec_id
==
AV_CODEC_ID_H264
&&
(
unit
->
type
==
H264_NAL_SPS
||
unit
->
type
==
H264_NAL_PPS
))
||
(
ctx
->
codec
->
codec_id
==
AV_CODEC_ID_HEVC
&&
(
unit
->
type
==
HEVC_NAL_VPS
||
unit
->
type
==
HEVC_NAL_SPS
||
unit
->
type
==
HEVC_NAL_PPS
))
||
i
==
0
/* (Assume this is the start of an access unit.) */
)
{
// zero_byte
data
[
dp
++
]
=
0
;
...
...
@@ -982,6 +1355,23 @@ static void cbs_h264_close(CodedBitstreamContext *ctx)
av_freep
(
&
h264
->
pps
[
i
]);
}
static
void
cbs_h265_close
(
CodedBitstreamContext
*
ctx
)
{
CodedBitstreamH265Context
*
h265
=
ctx
->
priv_data
;
int
i
;
ff_h2645_packet_uninit
(
&
h265
->
common
.
read_packet
);
av_freep
(
&
h265
->
common
.
write_buffer
);
for
(
i
=
0
;
i
<
FF_ARRAY_ELEMS
(
h265
->
vps
);
i
++
)
av_freep
(
&
h265
->
vps
[
i
]);
for
(
i
=
0
;
i
<
FF_ARRAY_ELEMS
(
h265
->
sps
);
i
++
)
av_freep
(
&
h265
->
sps
[
i
]);
for
(
i
=
0
;
i
<
FF_ARRAY_ELEMS
(
h265
->
pps
);
i
++
)
av_freep
(
&
h265
->
pps
[
i
]);
}
const
CodedBitstreamType
ff_cbs_type_h264
=
{
.
codec_id
=
AV_CODEC_ID_H264
,
...
...
@@ -995,3 +1385,17 @@ const CodedBitstreamType ff_cbs_type_h264 = {
.
free_unit
=
&
cbs_h264_free_nal_unit
,
.
close
=
&
cbs_h264_close
,
};
const
CodedBitstreamType
ff_cbs_type_h265
=
{
.
codec_id
=
AV_CODEC_ID_HEVC
,
.
priv_data_size
=
sizeof
(
CodedBitstreamH265Context
),
.
split_fragment
=
&
cbs_h2645_split_fragment
,
.
read_unit
=
&
cbs_h265_read_nal_unit
,
.
write_unit
=
&
cbs_h2645_write_nal_unit
,
.
assemble_fragment
=
&
cbs_h2645_assemble_fragment
,
.
free_unit
=
&
cbs_h265_free_nal_unit
,
.
close
=
&
cbs_h265_close
,
};
libavcodec/cbs_h265.h
0 → 100644
View file @
867381b8
/*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_CBS_H265_H
#define AVCODEC_CBS_H265_H
#include <stddef.h>
#include <stdint.h>
#include "cbs_h2645.h"
#include "hevc.h"
typedef
struct
H265RawNALUnitHeader
{
uint8_t
forbidden_zero_bit
;
uint8_t
nal_unit_type
;
uint8_t
nuh_layer_id
;
uint8_t
nuh_temporal_id_plus1
;
}
H265RawNALUnitHeader
;
typedef
struct
H265RawProfileTierLevel
{
uint8_t
general_profile_space
;
uint8_t
general_tier_flag
;
uint8_t
general_profile_idc
;
uint8_t
general_profile_compatibility_flag
[
32
];
uint8_t
general_progressive_source_flag
;
uint8_t
general_interlaced_source_flag
;
uint8_t
general_non_packed_constraint_flag
;
uint8_t
general_frame_only_constraint_flag
;
uint8_t
general_max_12bit_constraint_flag
;
uint8_t
general_max_10bit_constraint_flag
;
uint8_t
general_max_8bit_constraint_flag
;
uint8_t
general_max_422chroma_constraint_flag
;
uint8_t
general_max_420chroma_constraint_flag
;
uint8_t
general_max_monochrome_constraint_flag
;
uint8_t
general_intra_constraint_flag
;
uint8_t
general_one_picture_only_constraint_flag
;
uint8_t
general_lower_bit_rate_constraint_flag
;
uint8_t
general_max_14bit_constraint_flag
;
uint8_t
general_inbld_flag
;
uint8_t
general_level_idc
;
uint8_t
sub_layer_profile_present_flag
[
HEVC_MAX_SUB_LAYERS
];
uint8_t
sub_layer_level_present_flag
[
HEVC_MAX_SUB_LAYERS
];
// TODO: much of that again for each sub-layer.
}
H265RawProfileTierLevel
;
typedef
struct
H265RawSubLayerHRDParameters
{
uint32_t
bit_rate_value_minus1
[
HEVC_MAX_CPB_CNT
];
uint32_t
cpb_size_value_minus1
[
HEVC_MAX_CPB_CNT
];
uint32_t
cpb_size_du_value_minus1
[
HEVC_MAX_CPB_CNT
];
uint32_t
bit_rate_du_value_minus1
[
HEVC_MAX_CPB_CNT
];
uint8_t
cbr_flag
[
HEVC_MAX_CPB_CNT
];
}
H265RawSubLayerHRDParameters
;
typedef
struct
H265RawHRDParameters
{
uint8_t
nal_hrd_parameters_present_flag
;
uint8_t
vcl_hrd_parameters_present_flag
;
uint8_t
sub_pic_hrd_params_present_flag
;
uint8_t
tick_divisor_minus2
;
uint8_t
du_cpb_removal_delay_increment_length_minus1
;
uint8_t
sub_pic_cpb_params_in_pic_timing_sei_flag
;
uint8_t
dpb_output_delay_du_length_minus1
;
uint8_t
bit_rate_scale
;
uint8_t
cpb_size_scale
;
uint8_t
cpb_size_du_scale
;
uint8_t
initial_cpb_removal_delay_length_minus1
;
uint8_t
au_cpb_removal_delay_length_minus1
;
uint8_t
dpb_output_delay_length_minus1
;
uint8_t
fixed_pic_rate_general_flag
[
HEVC_MAX_SUB_LAYERS
];
uint8_t
fixed_pic_rate_within_cvs_flag
[
HEVC_MAX_SUB_LAYERS
];
uint16_t
elemental_duration_in_tc_minus1
[
HEVC_MAX_SUB_LAYERS
];
uint8_t
low_delay_hrd_flag
[
HEVC_MAX_SUB_LAYERS
];
uint8_t
cpb_cnt_minus1
[
HEVC_MAX_SUB_LAYERS
];
H265RawSubLayerHRDParameters
nal_sub_layer_hrd_parameters
[
HEVC_MAX_SUB_LAYERS
];
H265RawSubLayerHRDParameters
vcl_sub_layer_hrd_parameters
[
HEVC_MAX_SUB_LAYERS
];
}
H265RawHRDParameters
;
typedef
struct
H265RawVUI
{
uint8_t
aspect_ratio_info_present_flag
;
uint8_t
aspect_ratio_idc
;
uint16_t
sar_width
;
uint16_t
sar_height
;
uint8_t
overscan_info_present_flag
;
uint8_t
overscan_appropriate_flag
;
uint8_t
video_signal_type_present_flag
;
uint8_t
video_format
;
uint8_t
video_full_range_flag
;
uint8_t
colour_description_present_flag
;
uint8_t
colour_primaries
;
uint8_t
transfer_characteristics
;
uint8_t
matrix_coefficients
;
uint8_t
chroma_loc_info_present_flag
;
uint8_t
chroma_sample_loc_type_top_field
;
uint8_t
chroma_sample_loc_type_bottom_field
;
uint8_t
neutral_chroma_indication_flag
;
uint8_t
field_seq_flag
;
uint8_t
frame_field_info_present_flag
;
uint8_t
default_display_window_flag
;
uint16_t
def_disp_win_left_offset
;
uint16_t
def_disp_win_right_offset
;
uint16_t
def_disp_win_top_offset
;
uint16_t
def_disp_win_bottom_offset
;
uint8_t
vui_timing_info_present_flag
;
uint32_t
vui_num_units_in_tick
;
uint32_t
vui_time_scale
;
uint8_t
vui_poc_proportional_to_timing_flag
;
uint32_t
vui_num_ticks_poc_diff_one_minus1
;
uint8_t
vui_hrd_parameters_present_flag
;
H265RawHRDParameters
hrd_parameters
;
uint8_t
bitstream_restriction_flag
;
uint8_t
tiles_fixed_structure_flag
;
uint8_t
motion_vectors_over_pic_boundaries_flag
;
uint8_t
restricted_ref_pic_lists_flag
;
uint16_t
min_spatial_segmentation_idc
;
uint8_t
max_bytes_per_pic_denom
;
uint8_t
max_bits_per_min_cu_denom
;
uint8_t
log2_max_mv_length_horizontal
;
uint8_t
log2_max_mv_length_vertical
;
}
H265RawVUI
;
typedef
struct
H265RawPSExtensionData
{
uint8_t
*
data
;
size_t
bit_length
;
}
H265RawPSExtensionData
;
typedef
struct
H265RawVPS
{
H265RawNALUnitHeader
nal_unit_header
;
uint8_t
vps_video_parameter_set_id
;
uint8_t
vps_base_layer_internal_flag
;
uint8_t
vps_base_layer_available_flag
;
uint8_t
vps_max_layers_minus1
;
uint8_t
vps_max_sub_layers_minus1
;
uint8_t
vps_temporal_id_nesting_flag
;
H265RawProfileTierLevel
profile_tier_level
;
uint8_t
vps_sub_layer_ordering_info_present_flag
;
uint8_t
vps_max_dec_pic_buffering_minus1
[
HEVC_MAX_SUB_LAYERS
];
uint8_t
vps_max_num_reorder_pics
[
HEVC_MAX_SUB_LAYERS
];
uint32_t
vps_max_latency_increase_plus1
[
HEVC_MAX_SUB_LAYERS
];
uint8_t
vps_max_layer_id
;
uint16_t
vps_num_layer_sets_minus1
;
uint8_t
layer_id_included_flag
[
HEVC_MAX_LAYER_SETS
][
HEVC_MAX_LAYERS
];
uint8_t
vps_timing_info_present_flag
;
uint32_t
vps_num_units_in_tick
;
uint32_t
vps_time_scale
;
uint8_t
vps_poc_proportional_to_timing_flag
;
uint32_t
vps_num_ticks_poc_diff_one_minus1
;
uint16_t
vps_num_hrd_parameters
;
uint16_t
hrd_layer_set_idx
[
HEVC_MAX_LAYER_SETS
];
uint8_t
cprms_present_flag
[
HEVC_MAX_LAYER_SETS
];
H265RawHRDParameters
hrd_parameters
[
HEVC_MAX_LAYER_SETS
];
uint8_t
vps_extension_flag
;
H265RawPSExtensionData
extension_data
;
}
H265RawVPS
;
typedef
struct
H265RawSTRefPicSet
{
uint8_t
inter_ref_pic_set_prediction_flag
;
uint8_t
delta_idx_minus1
;
uint8_t
delta_rps_sign
;
uint16_t
abs_delta_rps_minus1
;
uint8_t
used_by_curr_pic_flag
[
HEVC_MAX_REFS
];
uint8_t
use_delta_flag
[
HEVC_MAX_REFS
];
uint8_t
num_negative_pics
;
uint8_t
num_positive_pics
;
uint16_t
delta_poc_s0_minus1
[
HEVC_MAX_REFS
];
uint8_t
used_by_curr_pic_s0_flag
[
HEVC_MAX_REFS
];
uint16_t
delta_poc_s1_minus1
[
HEVC_MAX_REFS
];
uint8_t
used_by_curr_pic_s1_flag
[
HEVC_MAX_REFS
];
}
H265RawSTRefPicSet
;
typedef
struct
H265RawScalingList
{
uint8_t
scaling_list_pred_mode_flag
[
4
][
6
];
uint8_t
scaling_list_pred_matrix_id_delta
[
4
][
6
];
int16_t
scaling_list_dc_coef_minus8
[
4
][
6
];
int8_t
scaling_list_delta_coeff
[
4
][
6
][
64
];
}
H265RawScalingList
;
typedef
struct
H265RawSPS
{
H265RawNALUnitHeader
nal_unit_header
;
uint8_t
sps_video_parameter_set_id
;
uint8_t
sps_max_sub_layers_minus1
;
uint8_t
sps_temporal_id_nesting_flag
;
H265RawProfileTierLevel
profile_tier_level
;
uint8_t
sps_seq_parameter_set_id
;
uint8_t
chroma_format_idc
;
uint8_t
separate_colour_plane_flag
;
uint16_t
pic_width_in_luma_samples
;
uint16_t
pic_height_in_luma_samples
;
uint8_t
conformance_window_flag
;
uint16_t
conf_win_left_offset
;
uint16_t
conf_win_right_offset
;
uint16_t
conf_win_top_offset
;
uint16_t
conf_win_bottom_offset
;
uint8_t
bit_depth_luma_minus8
;
uint8_t
bit_depth_chroma_minus8
;
uint8_t
log2_max_pic_order_cnt_lsb_minus4
;
uint8_t
sps_sub_layer_ordering_info_present_flag
;
uint8_t
sps_max_dec_pic_buffering_minus1
[
HEVC_MAX_SUB_LAYERS
];
uint8_t
sps_max_num_reorder_pics
[
HEVC_MAX_SUB_LAYERS
];
uint32_t
sps_max_latency_increase_plus1
[
HEVC_MAX_SUB_LAYERS
];
uint8_t
log2_min_luma_coding_block_size_minus3
;
uint8_t
log2_diff_max_min_luma_coding_block_size
;
uint8_t
log2_min_luma_transform_block_size_minus2
;
uint8_t
log2_diff_max_min_luma_transform_block_size
;
uint8_t
max_transform_hierarchy_depth_inter
;
uint8_t
max_transform_hierarchy_depth_intra
;
uint8_t
scaling_list_enabled_flag
;
uint8_t
sps_scaling_list_data_present_flag
;
H265RawScalingList
scaling_list
;
uint8_t
amp_enabled_flag
;
uint8_t
sample_adaptive_offset_enabled_flag
;
uint8_t
pcm_enabled_flag
;
uint8_t
pcm_sample_bit_depth_luma_minus1
;
uint8_t
pcm_sample_bit_depth_chroma_minus1
;
uint8_t
log2_min_pcm_luma_coding_block_size_minus3
;
uint8_t
log2_diff_max_min_pcm_luma_coding_block_size
;
uint8_t
pcm_loop_filter_disabled_flag
;
uint8_t
num_short_term_ref_pic_sets
;
H265RawSTRefPicSet
st_ref_pic_set
[
HEVC_MAX_SHORT_TERM_REF_PIC_SETS
];
uint8_t
long_term_ref_pics_present_flag
;
uint8_t
num_long_term_ref_pics_sps
;
uint16_t
lt_ref_pic_poc_lsb_sps
[
HEVC_MAX_LONG_TERM_REF_PICS
];
uint8_t
used_by_curr_pic_lt_sps_flag
[
HEVC_MAX_LONG_TERM_REF_PICS
];
uint8_t
sps_temporal_mvp_enabled_flag
;
uint8_t
strong_intra_smoothing_enabled_flag
;
uint8_t
vui_parameters_present_flag
;
H265RawVUI
vui
;
uint8_t
sps_extension_present_flag
;
uint8_t
sps_range_extension_flag
;
uint8_t
sps_multilayer_extension_flag
;
uint8_t
sps_3d_extension_flag
;
uint8_t
sps_scc_extension_flag
;
uint8_t
sps_extension_4bits
;
H265RawPSExtensionData
extension_data
;
// Range extension.
uint8_t
transform_skip_rotation_enabled_flag
;
uint8_t
transform_skip_context_enabled_flag
;
uint8_t
implicit_rdpcm_enabled_flag
;
uint8_t
explicit_rdpcm_enabled_flag
;
uint8_t
extended_precision_processing_flag
;
uint8_t
intra_smoothing_disabled_flag
;
uint8_t
high_precision_offsets_enabled_flag
;
uint8_t
persistent_rice_adaptation_enabled_flag
;
uint8_t
cabac_bypass_alignment_enabled_flag
;
// Screen content coding extension.
uint8_t
sps_curr_pic_ref_enabled_flag
;
uint8_t
palette_mode_enabled_flag
;
uint8_t
palette_max_size
;
uint8_t
delta_palette_max_predictor_size
;
uint8_t
sps_palette_predictor_initializer_present_flag
;
uint8_t
sps_num_palette_predictor_initializer_minus1
;
uint16_t
sps_palette_predictor_initializers
[
3
][
128
];
uint8_t
motion_vector_resolution_control_idc
;
uint8_t
intra_boundary_filtering_disable_flag
;
}
H265RawSPS
;
typedef
struct
H265RawPPS
{
H265RawNALUnitHeader
nal_unit_header
;
uint8_t
pps_pic_parameter_set_id
;
uint8_t
pps_seq_parameter_set_id
;
uint8_t
dependent_slice_segments_enabled_flag
;
uint8_t
output_flag_present_flag
;
uint8_t
num_extra_slice_header_bits
;
uint8_t
sign_data_hiding_enabled_flag
;
uint8_t
cabac_init_present_flag
;
uint8_t
num_ref_idx_l0_default_active_minus1
;
uint8_t
num_ref_idx_l1_default_active_minus1
;
int8_t
init_qp_minus26
;
uint8_t
constrained_intra_pred_flag
;
uint8_t
transform_skip_enabled_flag
;
uint8_t
cu_qp_delta_enabled_flag
;
uint8_t
diff_cu_qp_delta_depth
;
int8_t
pps_cb_qp_offset
;
int8_t
pps_cr_qp_offset
;
uint8_t
pps_slice_chroma_qp_offsets_present_flag
;
uint8_t
weighted_pred_flag
;
uint8_t
weighted_bipred_flag
;
uint8_t
transquant_bypass_enabled_flag
;
uint8_t
tiles_enabled_flag
;
uint8_t
entropy_coding_sync_enabled_flag
;
uint8_t
num_tile_columns_minus1
;
uint8_t
num_tile_rows_minus1
;
uint8_t
uniform_spacing_flag
;
uint16_t
column_width_minus1
[
HEVC_MAX_TILE_COLUMNS
];
uint16_t
row_height_minus1
[
HEVC_MAX_TILE_ROWS
];
uint8_t
loop_filter_across_tiles_enabled_flag
;
uint8_t
pps_loop_filter_across_slices_enabled_flag
;
uint8_t
deblocking_filter_control_present_flag
;
uint8_t
deblocking_filter_override_enabled_flag
;
uint8_t
pps_deblocking_filter_disabled_flag
;
int8_t
pps_beta_offset_div2
;
int8_t
pps_tc_offset_div2
;
uint8_t
pps_scaling_list_data_present_flag
;
H265RawScalingList
scaling_list
;
uint8_t
lists_modification_present_flag
;
uint8_t
log2_parallel_merge_level_minus2
;
uint8_t
slice_segment_header_extension_present_flag
;
uint8_t
pps_extension_present_flag
;
uint8_t
pps_range_extension_flag
;
uint8_t
pps_multilayer_extension_flag
;
uint8_t
pps_3d_extension_flag
;
uint8_t
pps_scc_extension_flag
;
uint8_t
pps_extension_4bits
;
H265RawPSExtensionData
extension_data
;
// Range extension.
uint8_t
log2_max_transform_skip_block_size_minus2
;
uint8_t
cross_component_prediction_enabled_flag
;
uint8_t
chroma_qp_offset_list_enabled_flag
;
uint8_t
diff_cu_chroma_qp_offset_depth
;
uint8_t
chroma_qp_offset_list_len_minus1
;
int8_t
cb_qp_offset_list
[
6
];
int8_t
cr_qp_offset_list
[
6
];
uint8_t
log2_sao_offset_scale_luma
;
uint8_t
log2_sao_offset_scale_chroma
;
// Screen content coding extension.
uint8_t
pps_curr_pic_ref_enabled_flag
;
uint8_t
residual_adaptive_colour_transform_enabled_flag
;
uint8_t
pps_slice_act_qp_offsets_present_flag
;
int8_t
pps_act_y_qp_offset_plus5
;
int8_t
pps_act_cb_qp_offset_plus5
;
int8_t
pps_act_cr_qp_offset_plus3
;
uint8_t
pps_palette_predictor_initializer_present_flag
;
uint8_t
pps_num_palette_predictor_initializer
;
uint8_t
monochrome_palette_flag
;
uint8_t
luma_bit_depth_entry_minus8
;
uint8_t
chroma_bit_depth_entry_minus8
;
uint16_t
pps_palette_predictor_initializers
[
3
][
128
];
}
H265RawPPS
;
typedef
struct
H265RawAUD
{
H265RawNALUnitHeader
nal_unit_header
;
uint8_t
pic_type
;
}
H265RawAUD
;
typedef
struct
H265RawSliceHeader
{
H265RawNALUnitHeader
nal_unit_header
;
uint8_t
first_slice_segment_in_pic_flag
;
uint8_t
no_output_of_prior_pics_flag
;
uint8_t
slice_pic_parameter_set_id
;
uint8_t
dependent_slice_segment_flag
;
uint16_t
slice_segment_address
;
uint8_t
slice_reserved_flag
[
8
];
uint8_t
slice_type
;
uint8_t
pic_output_flag
;
uint8_t
colour_plane_id
;
uint16_t
slice_pic_order_cnt_lsb
;
uint8_t
short_term_ref_pic_set_sps_flag
;
H265RawSTRefPicSet
short_term_ref_pic_set
;
uint8_t
short_term_ref_pic_set_idx
;
uint8_t
num_long_term_sps
;
uint8_t
num_long_term_pics
;
uint8_t
lt_idx_sps
[
HEVC_MAX_REFS
];
uint8_t
poc_lsb_lt
[
HEVC_MAX_REFS
];
uint8_t
used_by_curr_pic_lt_flag
[
HEVC_MAX_REFS
];
uint8_t
delta_poc_msb_present_flag
[
HEVC_MAX_REFS
];
uint32_t
delta_poc_msb_cycle_lt
[
HEVC_MAX_REFS
];
uint8_t
slice_temporal_mvp_enabled_flag
;
uint8_t
slice_sao_luma_flag
;
uint8_t
slice_sao_chroma_flag
;
uint8_t
num_ref_idx_active_override_flag
;
uint8_t
num_ref_idx_l0_active_minus1
;
uint8_t
num_ref_idx_l1_active_minus1
;
uint8_t
ref_pic_list_modification_flag_l0
;
uint8_t
list_entry_l0
[
HEVC_MAX_REFS
];
uint8_t
ref_pic_list_modification_flag_l1
;
uint8_t
list_entry_l1
[
HEVC_MAX_REFS
];
uint8_t
mvd_l1_zero_flag
;
uint8_t
cabac_init_flag
;
uint8_t
collocated_from_l0_flag
;
uint8_t
collocated_ref_idx
;
uint8_t
luma_log2_weight_denom
;
int8_t
delta_chroma_log2_weight_denom
;
uint8_t
luma_weight_l0_flag
[
HEVC_MAX_REFS
];
uint8_t
chroma_weight_l0_flag
[
HEVC_MAX_REFS
];
int8_t
delta_luma_weight_l0
[
HEVC_MAX_REFS
];
int16_t
luma_offset_l0
[
HEVC_MAX_REFS
];
int8_t
delta_chroma_weight_l0
[
HEVC_MAX_REFS
][
2
];
int16_t
chroma_offset_l0
[
HEVC_MAX_REFS
][
2
];
uint8_t
luma_weight_l1_flag
[
HEVC_MAX_REFS
];
uint8_t
chroma_weight_l1_flag
[
HEVC_MAX_REFS
];
int8_t
delta_luma_weight_l1
[
HEVC_MAX_REFS
];
int16_t
luma_offset_l1
[
HEVC_MAX_REFS
];
int8_t
delta_chroma_weight_l1
[
HEVC_MAX_REFS
][
2
];
int16_t
chroma_offset_l1
[
HEVC_MAX_REFS
][
2
];
uint8_t
five_minus_max_num_merge_cand
;
uint8_t
use_integer_mv_flag
;
int8_t
slice_qp_delta
;
int8_t
slice_cb_qp_offset
;
int8_t
slice_cr_qp_offset
;
int8_t
slice_act_y_qp_offset
;
int8_t
slice_act_cb_qp_offset
;
int8_t
slice_act_cr_qp_offset
;
uint8_t
cu_chroma_qp_offset_enabled_flag
;
uint8_t
deblocking_filter_override_flag
;
uint8_t
slice_deblocking_filter_disabled_flag
;
int8_t
slice_beta_offset_div2
;
int8_t
slice_tc_offset_div2
;
uint8_t
slice_loop_filter_across_slices_enabled_flag
;
uint16_t
num_entry_point_offsets
;
uint8_t
offset_len_minus1
;
uint32_t
entry_point_offset_minus1
[
HEVC_MAX_ENTRY_POINT_OFFSETS
];
uint16_t
slice_segment_header_extension_length
;
uint8_t
slice_segment_header_extension_data_byte
[
256
];
}
H265RawSliceHeader
;
typedef
struct
H265RawSlice
{
H265RawSliceHeader
header
;
uint8_t
*
data
;
size_t
data_size
;
int
data_bit_start
;
}
H265RawSlice
;
typedef
struct
CodedBitstreamH265Context
{
// Reader/writer context in common with the H.264 implementation.
CodedBitstreamH2645Context
common
;
// All currently available parameter sets. These are updated when
// any parameter set NAL unit is read/written with this context.
H265RawVPS
*
vps
[
HEVC_MAX_VPS_COUNT
];
H265RawSPS
*
sps
[
HEVC_MAX_SPS_COUNT
];
H265RawPPS
*
pps
[
HEVC_MAX_PPS_COUNT
];
// The currently active parameter sets. These are updated when any
// NAL unit refers to the relevant parameter set. These pointers
// must also be present in the arrays above.
const
H265RawVPS
*
active_vps
;
const
H265RawSPS
*
active_sps
;
const
H265RawPPS
*
active_pps
;
}
CodedBitstreamH265Context
;
#endif
/* AVCODEC_CBS_H265_H */
libavcodec/cbs_h265_syntax_template.c
0 → 100644
View file @
867381b8
/*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
static
int
FUNC
(
rbsp_trailing_bits
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
)
{
int
err
;
av_unused
int
one
=
1
,
zero
=
0
;
xu
(
1
,
rbsp_stop_one_bit
,
one
,
1
,
1
);
while
(
byte_alignment
(
rw
)
!=
0
)
xu
(
1
,
rbsp_alignment_zero_bit
,
zero
,
0
,
0
);
return
0
;
}
static
int
FUNC
(
nal_unit_header
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawNALUnitHeader
*
current
,
int
expected_nal_unit_type
)
{
int
err
;
u
(
1
,
forbidden_zero_bit
,
0
,
0
);
if
(
expected_nal_unit_type
>=
0
)
u
(
6
,
nal_unit_type
,
expected_nal_unit_type
,
expected_nal_unit_type
);
else
u
(
6
,
nal_unit_type
,
0
,
63
);
u
(
6
,
nuh_layer_id
,
0
,
62
);
u
(
3
,
nuh_temporal_id_plus1
,
1
,
7
);
return
0
;
}
static
int
FUNC
(
byte_alignment
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
)
{
int
err
;
av_unused
int
one
=
1
,
zero
=
0
;
xu
(
1
,
alignment_bit_equal_to_one
,
one
,
1
,
1
);
while
(
byte_alignment
(
rw
)
!=
0
)
xu
(
1
,
alignment_bit_equal_to_zero
,
zero
,
0
,
0
);
return
0
;
}
static
int
FUNC
(
extension_data
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawPSExtensionData
*
current
)
{
int
err
;
size_t
k
;
#ifdef READ
BitstreamContext
start
;
uint8_t
bit
;
start
=
*
rw
;
for
(
k
=
0
;
cbs_h2645_read_more_rbsp_data
(
rw
);
k
++
);
current
->
bit_length
=
k
;
if
(
k
>
0
)
{
*
rw
=
start
;
allocate
(
current
->
data
,
(
current
->
bit_length
+
7
)
/
8
);
for
(
k
=
0
;
k
<
current
->
bit_length
;
k
++
)
{
xu
(
1
,
extension_data
,
bit
,
0
,
1
);
current
->
data
[
k
/
8
]
|=
bit
<<
(
7
-
k
%
8
);
}
}
#else
for
(
k
=
0
;
k
<
current
->
bit_length
;
k
++
)
xu
(
1
,
extension_data
,
current
->
data
[
k
/
8
]
>>
(
7
-
k
%
8
),
0
,
1
);
#endif
return
0
;
}
static
int
FUNC
(
profile_tier_level
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawProfileTierLevel
*
current
,
int
profile_present_flag
,
int
max_num_sub_layers_minus1
)
{
av_unused
unsigned
int
zero
=
0
;
int
err
,
i
,
j
;
if
(
profile_present_flag
)
{
u
(
2
,
general_profile_space
,
0
,
0
);
flag
(
general_tier_flag
);
u
(
5
,
general_profile_idc
,
0
,
31
);
for
(
j
=
0
;
j
<
32
;
j
++
)
flag
(
general_profile_compatibility_flag
[
j
]);
flag
(
general_progressive_source_flag
);
flag
(
general_interlaced_source_flag
);
flag
(
general_non_packed_constraint_flag
);
flag
(
general_frame_only_constraint_flag
);
#define profile_compatible(x) (current->general_profile_idc == (x) || \
current->general_profile_compatibility_flag[x])
if
(
profile_compatible
(
4
)
||
profile_compatible
(
5
)
||
profile_compatible
(
6
)
||
profile_compatible
(
7
)
||
profile_compatible
(
8
)
||
profile_compatible
(
9
)
||
profile_compatible
(
10
))
{
flag
(
general_max_12bit_constraint_flag
);
flag
(
general_max_10bit_constraint_flag
);
flag
(
general_max_8bit_constraint_flag
);
flag
(
general_max_422chroma_constraint_flag
);
flag
(
general_max_420chroma_constraint_flag
);
flag
(
general_max_monochrome_constraint_flag
);
flag
(
general_intra_constraint_flag
);
flag
(
general_one_picture_only_constraint_flag
);
flag
(
general_lower_bit_rate_constraint_flag
);
if
(
profile_compatible
(
5
)
||
profile_compatible
(
9
)
||
profile_compatible
(
10
))
{
flag
(
general_max_14bit_constraint_flag
);
xu
(
24
,
general_reserved_zero_33bits
,
zero
,
0
,
0
);
xu
(
9
,
general_reserved_zero_33bits
,
zero
,
0
,
0
);
}
else
{
xu
(
24
,
general_reserved_zero_34bits
,
zero
,
0
,
0
);
xu
(
10
,
general_reserved_zero_34bits
,
zero
,
0
,
0
);
}
}
else
{
xu
(
24
,
general_reserved_zero_43bits
,
zero
,
0
,
0
);
xu
(
19
,
general_reserved_zero_43bits
,
zero
,
0
,
0
);
}
if
(
profile_compatible
(
1
)
||
profile_compatible
(
2
)
||
profile_compatible
(
3
)
||
profile_compatible
(
4
)
||
profile_compatible
(
5
)
||
profile_compatible
(
9
))
{
flag
(
general_inbld_flag
);
}
else
{
xu
(
1
,
general_reserved_zero_bit
,
zero
,
0
,
0
);
}
#undef profile_compatible
}
u
(
8
,
general_level_idc
,
0
,
255
);
for
(
i
=
0
;
i
<
max_num_sub_layers_minus1
;
i
++
)
{
flag
(
sub_layer_profile_present_flag
[
i
]);
flag
(
sub_layer_level_present_flag
[
i
]);
}
if
(
max_num_sub_layers_minus1
>
0
)
{
for
(
i
=
max_num_sub_layers_minus1
;
i
<
8
;
i
++
)
{
av_unused
int
zero
=
0
;
xu
(
2
,
reserved_zero_2bits
,
zero
,
0
,
0
);
}
}
for
(
i
=
0
;
i
<
max_num_sub_layers_minus1
;
i
++
)
{
if
(
current
->
sub_layer_profile_present_flag
[
i
])
return
AVERROR_PATCHWELCOME
;
if
(
current
->
sub_layer_level_present_flag
[
i
])
return
AVERROR_PATCHWELCOME
;
}
return
0
;
}
static
int
FUNC
(
sub_layer_hrd_parameters
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawHRDParameters
*
hrd
,
int
nal
,
int
sub_layer_id
)
{
H265RawSubLayerHRDParameters
*
current
;
int
err
,
i
;
if
(
nal
)
current
=
&
hrd
->
nal_sub_layer_hrd_parameters
[
sub_layer_id
];
else
current
=
&
hrd
->
vcl_sub_layer_hrd_parameters
[
sub_layer_id
];
for
(
i
=
0
;
i
<=
hrd
->
cpb_cnt_minus1
[
sub_layer_id
];
i
++
)
{
ue
(
bit_rate_value_minus1
[
i
],
0
,
UINT32_MAX
-
1
);
ue
(
cpb_size_value_minus1
[
i
],
0
,
UINT32_MAX
-
1
);
if
(
hrd
->
sub_pic_hrd_params_present_flag
)
{
ue
(
cpb_size_du_value_minus1
[
i
],
0
,
UINT32_MAX
-
1
);
ue
(
bit_rate_du_value_minus1
[
i
],
0
,
UINT32_MAX
-
1
);
}
flag
(
cbr_flag
[
i
]);
}
return
0
;
}
static
int
FUNC
(
hrd_parameters
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawHRDParameters
*
current
,
int
common_inf_present_flag
,
int
max_num_sub_layers_minus1
)
{
int
err
,
i
;
if
(
common_inf_present_flag
)
{
flag
(
nal_hrd_parameters_present_flag
);
flag
(
vcl_hrd_parameters_present_flag
);
if
(
current
->
nal_hrd_parameters_present_flag
||
current
->
vcl_hrd_parameters_present_flag
)
{
flag
(
sub_pic_hrd_params_present_flag
);
if
(
current
->
sub_pic_hrd_params_present_flag
)
{
u
(
8
,
tick_divisor_minus2
,
0
,
255
);
u
(
5
,
du_cpb_removal_delay_increment_length_minus1
,
0
,
31
);
flag
(
sub_pic_cpb_params_in_pic_timing_sei_flag
);
u
(
5
,
dpb_output_delay_du_length_minus1
,
0
,
31
);
}
u
(
4
,
bit_rate_scale
,
0
,
15
);
u
(
4
,
cpb_size_scale
,
0
,
15
);
if
(
current
->
sub_pic_hrd_params_present_flag
)
u
(
4
,
cpb_size_du_scale
,
0
,
15
);
u
(
5
,
initial_cpb_removal_delay_length_minus1
,
0
,
31
);
u
(
5
,
au_cpb_removal_delay_length_minus1
,
0
,
31
);
u
(
5
,
dpb_output_delay_length_minus1
,
0
,
31
);
}
else
{
infer
(
sub_pic_hrd_params_present_flag
,
0
);
infer
(
initial_cpb_removal_delay_length_minus1
,
23
);
infer
(
au_cpb_removal_delay_length_minus1
,
23
);
infer
(
dpb_output_delay_length_minus1
,
23
);
}
}
for
(
i
=
0
;
i
<=
max_num_sub_layers_minus1
;
i
++
)
{
flag
(
fixed_pic_rate_general_flag
[
i
]);
if
(
!
current
->
fixed_pic_rate_general_flag
[
i
])
flag
(
fixed_pic_rate_within_cvs_flag
[
i
]);
else
infer
(
fixed_pic_rate_within_cvs_flag
[
i
],
1
);
if
(
current
->
fixed_pic_rate_within_cvs_flag
[
i
])
{
ue
(
elemental_duration_in_tc_minus1
[
i
],
0
,
2047
);
infer
(
low_delay_hrd_flag
[
i
],
0
);
}
else
flag
(
low_delay_hrd_flag
[
i
]);
if
(
!
current
->
low_delay_hrd_flag
[
i
])
ue
(
cpb_cnt_minus1
[
i
],
0
,
31
);
else
infer
(
cpb_cnt_minus1
[
i
],
0
);
if
(
current
->
nal_hrd_parameters_present_flag
)
CHECK
(
FUNC
(
sub_layer_hrd_parameters
)(
ctx
,
rw
,
current
,
0
,
i
));
if
(
current
->
vcl_hrd_parameters_present_flag
)
CHECK
(
FUNC
(
sub_layer_hrd_parameters
)(
ctx
,
rw
,
current
,
1
,
i
));
}
return
0
;
}
static
int
FUNC
(
vui_parameters
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawVUI
*
current
,
const
H265RawSPS
*
sps
)
{
int
err
;
flag
(
aspect_ratio_info_present_flag
);
if
(
current
->
aspect_ratio_info_present_flag
)
{
u
(
8
,
aspect_ratio_idc
,
0
,
255
);
if
(
current
->
aspect_ratio_idc
==
255
)
{
u
(
16
,
sar_width
,
0
,
65535
);
u
(
16
,
sar_height
,
0
,
65535
);
}
}
else
{
infer
(
aspect_ratio_idc
,
0
);
}
flag
(
overscan_info_present_flag
);
if
(
current
->
overscan_info_present_flag
)
flag
(
overscan_appropriate_flag
);
flag
(
video_signal_type_present_flag
);
if
(
current
->
video_signal_type_present_flag
)
{
u
(
3
,
video_format
,
0
,
7
);
flag
(
video_full_range_flag
);
flag
(
colour_description_present_flag
);
if
(
current
->
colour_description_present_flag
)
{
u
(
8
,
colour_primaries
,
0
,
255
);
u
(
8
,
transfer_characteristics
,
0
,
255
);
u
(
8
,
matrix_coefficients
,
0
,
255
);
}
else
{
infer
(
colour_primaries
,
2
);
infer
(
transfer_characteristics
,
2
);
infer
(
matrix_coefficients
,
2
);
}
}
else
{
infer
(
video_format
,
5
);
infer
(
video_full_range_flag
,
0
);
infer
(
colour_primaries
,
2
);
infer
(
transfer_characteristics
,
2
);
infer
(
matrix_coefficients
,
2
);
}
flag
(
chroma_loc_info_present_flag
);
if
(
current
->
chroma_loc_info_present_flag
)
{
ue
(
chroma_sample_loc_type_top_field
,
0
,
5
);
ue
(
chroma_sample_loc_type_bottom_field
,
0
,
5
);
}
else
{
infer
(
chroma_sample_loc_type_top_field
,
0
);
infer
(
chroma_sample_loc_type_bottom_field
,
0
);
}
flag
(
neutral_chroma_indication_flag
);
flag
(
field_seq_flag
);
flag
(
frame_field_info_present_flag
);
flag
(
default_display_window_flag
);
if
(
current
->
default_display_window_flag
)
{
ue
(
def_disp_win_left_offset
,
0
,
16384
);
ue
(
def_disp_win_right_offset
,
0
,
16384
);
ue
(
def_disp_win_top_offset
,
0
,
16384
);
ue
(
def_disp_win_bottom_offset
,
0
,
16384
);
}
flag
(
vui_timing_info_present_flag
);
if
(
current
->
vui_timing_info_present_flag
)
{
u
(
32
,
vui_num_units_in_tick
,
1
,
UINT32_MAX
);
u
(
32
,
vui_time_scale
,
1
,
UINT32_MAX
);
flag
(
vui_poc_proportional_to_timing_flag
);
if
(
current
->
vui_poc_proportional_to_timing_flag
)
ue
(
vui_num_ticks_poc_diff_one_minus1
,
0
,
UINT32_MAX
-
1
);
flag
(
vui_hrd_parameters_present_flag
);
if
(
current
->
vui_hrd_parameters_present_flag
)
{
CHECK
(
FUNC
(
hrd_parameters
)(
ctx
,
rw
,
&
current
->
hrd_parameters
,
1
,
sps
->
sps_max_sub_layers_minus1
));
}
}
flag
(
bitstream_restriction_flag
);
if
(
current
->
bitstream_restriction_flag
)
{
flag
(
tiles_fixed_structure_flag
);
flag
(
motion_vectors_over_pic_boundaries_flag
);
flag
(
restricted_ref_pic_lists_flag
);
ue
(
min_spatial_segmentation_idc
,
0
,
4095
);
ue
(
max_bytes_per_pic_denom
,
0
,
16
);
ue
(
max_bits_per_min_cu_denom
,
0
,
16
);
ue
(
log2_max_mv_length_horizontal
,
0
,
16
);
ue
(
log2_max_mv_length_vertical
,
0
,
16
);
}
else
{
infer
(
tiles_fixed_structure_flag
,
0
);
infer
(
motion_vectors_over_pic_boundaries_flag
,
1
);
infer
(
min_spatial_segmentation_idc
,
0
);
infer
(
max_bytes_per_pic_denom
,
2
);
infer
(
max_bits_per_min_cu_denom
,
1
);
infer
(
log2_max_mv_length_horizontal
,
15
);
infer
(
log2_max_mv_length_vertical
,
15
);
}
return
0
;
}
static
int
FUNC
(
vps
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawVPS
*
current
)
{
int
err
,
i
,
j
;
HEADER
(
"Video Parameter Set"
);
CHECK
(
FUNC
(
nal_unit_header
)(
ctx
,
rw
,
&
current
->
nal_unit_header
,
HEVC_NAL_VPS
));
u
(
4
,
vps_video_parameter_set_id
,
0
,
15
);
flag
(
vps_base_layer_internal_flag
);
flag
(
vps_base_layer_available_flag
);
u
(
6
,
vps_max_layers_minus1
,
0
,
HEVC_MAX_LAYERS
-
1
);
u
(
3
,
vps_max_sub_layers_minus1
,
0
,
HEVC_MAX_SUB_LAYERS
-
1
);
flag
(
vps_temporal_id_nesting_flag
);
if
(
current
->
vps_max_sub_layers_minus1
==
0
&&
current
->
vps_temporal_id_nesting_flag
!=
1
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"Invalid stream: "
"vps_temporal_id_nesting_flag must be 1 if "
"vps_max_sub_layers_minus1 is 0.
\n
"
);
return
AVERROR_INVALIDDATA
;
}
{
av_unused
uint16_t
ffff
=
0xffff
;
xu
(
16
,
vps_reserved_0xffff_16bits
,
ffff
,
0xffff
,
0xffff
);
}
CHECK
(
FUNC
(
profile_tier_level
)(
ctx
,
rw
,
&
current
->
profile_tier_level
,
1
,
current
->
vps_max_sub_layers_minus1
));
flag
(
vps_sub_layer_ordering_info_present_flag
);
for
(
i
=
(
current
->
vps_sub_layer_ordering_info_present_flag
?
0
:
current
->
vps_max_sub_layers_minus1
);
i
<=
current
->
vps_max_sub_layers_minus1
;
i
++
)
{
ue
(
vps_max_dec_pic_buffering_minus1
[
i
],
0
,
HEVC_MAX_DPB_SIZE
-
1
);
ue
(
vps_max_num_reorder_pics
[
i
],
0
,
current
->
vps_max_dec_pic_buffering_minus1
[
i
]);
ue
(
vps_max_latency_increase_plus1
[
i
],
0
,
UINT32_MAX
-
1
);
}
if
(
!
current
->
vps_sub_layer_ordering_info_present_flag
)
{
for
(
i
=
0
;
i
<
current
->
vps_max_sub_layers_minus1
;
i
++
)
{
infer
(
vps_max_dec_pic_buffering_minus1
[
i
],
current
->
vps_max_dec_pic_buffering_minus1
[
current
->
vps_max_sub_layers_minus1
]);
infer
(
vps_max_num_reorder_pics
[
i
],
current
->
vps_max_num_reorder_pics
[
current
->
vps_max_sub_layers_minus1
]);
infer
(
vps_max_latency_increase_plus1
[
i
],
current
->
vps_max_latency_increase_plus1
[
current
->
vps_max_sub_layers_minus1
]);
}
}
u
(
6
,
vps_max_layer_id
,
0
,
HEVC_MAX_LAYERS
-
1
);
ue
(
vps_num_layer_sets_minus1
,
0
,
HEVC_MAX_LAYER_SETS
-
1
);
for
(
i
=
1
;
i
<=
current
->
vps_num_layer_sets_minus1
;
i
++
)
{
for
(
j
=
0
;
j
<=
current
->
vps_max_layer_id
;
j
++
)
flag
(
layer_id_included_flag
[
i
][
j
]);
}
for
(
j
=
0
;
j
<=
current
->
vps_max_layer_id
;
j
++
)
infer
(
layer_id_included_flag
[
0
][
j
],
j
==
0
);
flag
(
vps_timing_info_present_flag
);
if
(
current
->
vps_timing_info_present_flag
)
{
u
(
32
,
vps_num_units_in_tick
,
1
,
UINT32_MAX
);
u
(
32
,
vps_time_scale
,
1
,
UINT32_MAX
);
flag
(
vps_poc_proportional_to_timing_flag
);
if
(
current
->
vps_poc_proportional_to_timing_flag
)
ue
(
vps_num_ticks_poc_diff_one_minus1
,
0
,
UINT32_MAX
-
1
);
ue
(
vps_num_hrd_parameters
,
0
,
current
->
vps_num_layer_sets_minus1
+
1
);
for
(
i
=
0
;
i
<
current
->
vps_num_hrd_parameters
;
i
++
)
{
ue
(
hrd_layer_set_idx
[
i
],
current
->
vps_base_layer_internal_flag
?
0
:
1
,
current
->
vps_num_layer_sets_minus1
);
if
(
i
>
0
)
flag
(
cprms_present_flag
[
i
]);
else
infer
(
cprms_present_flag
[
0
],
1
);
CHECK
(
FUNC
(
hrd_parameters
)(
ctx
,
rw
,
&
current
->
hrd_parameters
[
i
],
current
->
cprms_present_flag
[
i
],
current
->
vps_max_sub_layers_minus1
));
}
}
flag
(
vps_extension_flag
);
if
(
current
->
vps_extension_flag
)
CHECK
(
FUNC
(
extension_data
)(
ctx
,
rw
,
&
current
->
extension_data
));
CHECK
(
FUNC
(
rbsp_trailing_bits
)(
ctx
,
rw
));
return
0
;
}
static
int
FUNC
(
st_ref_pic_set
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawSTRefPicSet
*
current
,
int
st_rps_idx
,
const
H265RawSPS
*
sps
)
{
int
err
,
i
,
j
;
if
(
st_rps_idx
!=
0
)
flag
(
inter_ref_pic_set_prediction_flag
);
else
infer
(
inter_ref_pic_set_prediction_flag
,
0
);
if
(
current
->
inter_ref_pic_set_prediction_flag
)
{
unsigned
int
ref_rps_idx
,
num_delta_pocs
;
const
H265RawSTRefPicSet
*
ref
;
int
delta_rps
,
d_poc
;
int
ref_delta_poc_s0
[
HEVC_MAX_REFS
],
ref_delta_poc_s1
[
HEVC_MAX_REFS
];
int
delta_poc_s0
[
HEVC_MAX_REFS
],
delta_poc_s1
[
HEVC_MAX_REFS
];
uint8_t
used_by_curr_pic_s0
[
HEVC_MAX_REFS
],
used_by_curr_pic_s1
[
HEVC_MAX_REFS
];
if
(
st_rps_idx
==
sps
->
num_short_term_ref_pic_sets
)
ue
(
delta_idx_minus1
,
0
,
st_rps_idx
-
1
);
else
infer
(
delta_idx_minus1
,
0
);
ref_rps_idx
=
st_rps_idx
-
(
current
->
delta_idx_minus1
+
1
);
ref
=
&
sps
->
st_ref_pic_set
[
ref_rps_idx
];
num_delta_pocs
=
ref
->
num_negative_pics
+
ref
->
num_positive_pics
;
flag
(
delta_rps_sign
);
ue
(
abs_delta_rps_minus1
,
0
,
INT16_MAX
);
delta_rps
=
(
1
-
2
*
current
->
delta_rps_sign
)
*
(
current
->
abs_delta_rps_minus1
+
1
);
for
(
j
=
0
;
j
<=
num_delta_pocs
;
j
++
)
{
flag
(
used_by_curr_pic_flag
[
j
]);
if
(
!
current
->
used_by_curr_pic_flag
[
j
])
flag
(
use_delta_flag
[
j
]);
else
infer
(
use_delta_flag
[
j
],
1
);
}
// Since the stored form of an RPS here is actually the delta-step
// form used when inter_ref_pic_set_prediction_flag is not set, we
// need to reconstruct that here in order to be able to refer to
// the RPS later (which is required for parsing, because we don't
// even know what syntax elements appear without it). Therefore,
// this code takes the delta-step form of the reference set, turns
// it into the delta-array form, applies the prediction process of
// 7.4.8, converts the result back to the delta-step form, and
// stores that as the current set for future use. Note that the
// inferences here mean that writers using prediction will need
// to fill in the delta-step values correctly as well - since the
// whole RPS prediction process is somewhat overly sophisticated,
// this hopefully forms a useful check for them to ensure their
// predicted form actually matches what was intended rather than
// an onerous additional requirement.
d_poc
=
0
;
for
(
i
=
0
;
i
<
ref
->
num_negative_pics
;
i
++
)
{
d_poc
-=
ref
->
delta_poc_s0_minus1
[
i
]
+
1
;
ref_delta_poc_s0
[
i
]
=
d_poc
;
}
d_poc
=
0
;
for
(
i
=
0
;
i
<
ref
->
num_positive_pics
;
i
++
)
{
d_poc
+=
ref
->
delta_poc_s1_minus1
[
i
]
+
1
;
ref_delta_poc_s1
[
i
]
=
d_poc
;
}
i
=
0
;
for
(
j
=
ref
->
num_positive_pics
-
1
;
j
>=
0
;
j
--
)
{
d_poc
=
ref_delta_poc_s1
[
j
]
+
delta_rps
;
if
(
d_poc
<
0
&&
current
->
use_delta_flag
[
ref
->
num_negative_pics
+
j
])
{
delta_poc_s0
[
i
]
=
d_poc
;
used_by_curr_pic_s0
[
i
++
]
=
current
->
used_by_curr_pic_flag
[
ref
->
num_negative_pics
+
j
];
}
}
if
(
delta_rps
<
0
&&
current
->
use_delta_flag
[
num_delta_pocs
])
{
delta_poc_s0
[
i
]
=
delta_rps
;
used_by_curr_pic_s0
[
i
++
]
=
current
->
used_by_curr_pic_flag
[
num_delta_pocs
];
}
for
(
j
=
0
;
j
<
ref
->
num_negative_pics
;
j
++
)
{
d_poc
=
ref_delta_poc_s0
[
j
]
+
delta_rps
;
if
(
d_poc
<
0
&&
current
->
use_delta_flag
[
j
])
{
delta_poc_s0
[
i
]
=
d_poc
;
used_by_curr_pic_s0
[
i
++
]
=
current
->
used_by_curr_pic_flag
[
j
];
}
}
infer
(
num_negative_pics
,
i
);
for
(
i
=
0
;
i
<
current
->
num_negative_pics
;
i
++
)
{
infer
(
delta_poc_s0_minus1
[
i
],
-
(
delta_poc_s0
[
i
]
-
(
i
==
0
?
0
:
delta_poc_s0
[
i
-
1
]))
-
1
);
infer
(
used_by_curr_pic_s0_flag
[
i
],
used_by_curr_pic_s0
[
i
]);
}
i
=
0
;
for
(
j
=
ref
->
num_negative_pics
-
1
;
j
>=
0
;
j
--
)
{
d_poc
=
ref_delta_poc_s0
[
j
]
+
delta_rps
;
if
(
d_poc
>
0
&&
current
->
use_delta_flag
[
j
])
{
delta_poc_s1
[
i
]
=
d_poc
;
used_by_curr_pic_s1
[
i
++
]
=
current
->
used_by_curr_pic_flag
[
j
];
}
}
if
(
delta_rps
>
0
&&
current
->
use_delta_flag
[
num_delta_pocs
])
{
delta_poc_s1
[
i
]
=
delta_rps
;
used_by_curr_pic_s1
[
i
++
]
=
current
->
used_by_curr_pic_flag
[
num_delta_pocs
];
}
for
(
j
=
0
;
j
<
ref
->
num_positive_pics
;
j
++
)
{
d_poc
=
ref_delta_poc_s1
[
j
]
+
delta_rps
;
if
(
d_poc
>
0
&&
current
->
use_delta_flag
[
ref
->
num_negative_pics
+
j
])
{
delta_poc_s1
[
i
]
=
d_poc
;
used_by_curr_pic_s1
[
i
++
]
=
current
->
used_by_curr_pic_flag
[
ref
->
num_negative_pics
+
j
];
}
}
infer
(
num_positive_pics
,
i
);
for
(
i
=
0
;
i
<
current
->
num_positive_pics
;
i
++
)
{
infer
(
delta_poc_s1_minus1
[
i
],
delta_poc_s1
[
i
]
-
(
i
==
0
?
0
:
delta_poc_s1
[
i
-
1
])
-
1
);
infer
(
used_by_curr_pic_s1_flag
[
i
],
used_by_curr_pic_s1
[
i
]);
}
}
else
{
ue
(
num_negative_pics
,
0
,
15
);
ue
(
num_positive_pics
,
0
,
15
-
current
->
num_negative_pics
);
for
(
i
=
0
;
i
<
current
->
num_negative_pics
;
i
++
)
{
ue
(
delta_poc_s0_minus1
[
i
],
0
,
INT16_MAX
);
flag
(
used_by_curr_pic_s0_flag
[
i
]);
}
for
(
i
=
0
;
i
<
current
->
num_positive_pics
;
i
++
)
{
ue
(
delta_poc_s1_minus1
[
i
],
0
,
INT16_MAX
);
flag
(
used_by_curr_pic_s1_flag
[
i
]);
}
}
return
0
;
}
static
int
FUNC
(
scaling_list_data
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawScalingList
*
current
)
{
int
sizeId
,
matrixId
;
int
err
,
n
,
i
;
for
(
sizeId
=
0
;
sizeId
<
4
;
sizeId
++
)
{
for
(
matrixId
=
0
;
matrixId
<
6
;
matrixId
+=
(
sizeId
==
3
?
3
:
1
))
{
flag
(
scaling_list_pred_mode_flag
[
sizeId
][
matrixId
]);
if
(
!
current
->
scaling_list_pred_mode_flag
[
sizeId
][
matrixId
])
{
ue
(
scaling_list_pred_matrix_id_delta
[
sizeId
][
matrixId
],
0
,
sizeId
==
3
?
matrixId
/
3
:
matrixId
);
}
else
{
n
=
FFMIN
(
64
,
1
<<
(
4
+
(
sizeId
<<
1
)));
if
(
sizeId
>
1
)
se
(
scaling_list_dc_coef_minus8
[
sizeId
-
2
][
matrixId
],
-
7
,
+
247
);
for
(
i
=
0
;
i
<
n
;
i
++
)
{
xse
(
scaling_list_delta_coeff
,
current
->
scaling_list_delta_coeff
[
sizeId
][
matrixId
][
i
],
-
128
,
+
127
);
}
}
}
}
return
0
;
}
static
int
FUNC
(
sps_range_extension
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawSPS
*
current
)
{
int
err
;
flag
(
transform_skip_rotation_enabled_flag
);
flag
(
transform_skip_context_enabled_flag
);
flag
(
implicit_rdpcm_enabled_flag
);
flag
(
explicit_rdpcm_enabled_flag
);
flag
(
extended_precision_processing_flag
);
flag
(
intra_smoothing_disabled_flag
);
flag
(
high_precision_offsets_enabled_flag
);
flag
(
persistent_rice_adaptation_enabled_flag
);
flag
(
cabac_bypass_alignment_enabled_flag
);
return
0
;
}
static
int
FUNC
(
sps_scc_extension
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawSPS
*
current
)
{
int
err
,
comp
,
i
;
flag
(
sps_curr_pic_ref_enabled_flag
);
flag
(
palette_mode_enabled_flag
);
if
(
current
->
palette_mode_enabled_flag
)
{
ue
(
palette_max_size
,
0
,
64
);
ue
(
delta_palette_max_predictor_size
,
0
,
128
);
flag
(
sps_palette_predictor_initializer_present_flag
);
if
(
current
->
sps_palette_predictor_initializer_present_flag
)
{
ue
(
sps_num_palette_predictor_initializer_minus1
,
0
,
128
);
for
(
comp
=
0
;
comp
<
(
current
->
chroma_format_idc
?
3
:
1
);
comp
++
)
{
int
bit_depth
=
comp
==
0
?
current
->
bit_depth_luma_minus8
+
8
:
current
->
bit_depth_chroma_minus8
+
8
;
for
(
i
=
0
;
i
<=
current
->
sps_num_palette_predictor_initializer_minus1
;
i
++
)
u
(
bit_depth
,
sps_palette_predictor_initializers
[
comp
][
i
],
0
,
(
1
<<
bit_depth
)
-
1
);
}
}
}
u
(
2
,
motion_vector_resolution_control_idc
,
0
,
2
);
flag
(
intra_boundary_filtering_disable_flag
);
return
0
;
}
static
int
FUNC
(
sps
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawSPS
*
current
)
{
CodedBitstreamH265Context
*
h265
=
ctx
->
priv_data
;
const
H265RawVPS
*
vps
;
int
err
,
i
;
unsigned
int
min_cb_log2_size_y
,
ctb_log2_size_y
,
min_cb_size_y
,
min_tb_log2_size_y
;
HEADER
(
"Sequence Parameter Set"
);
CHECK
(
FUNC
(
nal_unit_header
)(
ctx
,
rw
,
&
current
->
nal_unit_header
,
HEVC_NAL_SPS
));
u
(
4
,
sps_video_parameter_set_id
,
0
,
15
);
h265
->
active_vps
=
vps
=
h265
->
vps
[
current
->
sps_video_parameter_set_id
];
u
(
3
,
sps_max_sub_layers_minus1
,
0
,
HEVC_MAX_SUB_LAYERS
-
1
);
flag
(
sps_temporal_id_nesting_flag
);
if
(
vps
)
{
if
(
vps
->
vps_max_sub_layers_minus1
>
current
->
sps_max_sub_layers_minus1
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"Invalid stream: "
"sps_max_sub_layers_minus1 (%d) must be less than or equal to "
"vps_max_sub_layers_minus1 (%d).
\n
"
,
vps
->
vps_max_sub_layers_minus1
,
current
->
sps_max_sub_layers_minus1
);
return
AVERROR_INVALIDDATA
;
}
if
(
vps
->
vps_temporal_id_nesting_flag
&&
!
current
->
sps_temporal_id_nesting_flag
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"Invalid stream: "
"sps_temporal_id_nesting_flag must be 1 if "
"vps_temporal_id_nesting_flag is 1.
\n
"
);
return
AVERROR_INVALIDDATA
;
}
}
CHECK
(
FUNC
(
profile_tier_level
)(
ctx
,
rw
,
&
current
->
profile_tier_level
,
1
,
current
->
sps_max_sub_layers_minus1
));
ue
(
sps_seq_parameter_set_id
,
0
,
15
);
ue
(
chroma_format_idc
,
0
,
3
);
if
(
current
->
chroma_format_idc
==
3
)
flag
(
separate_colour_plane_flag
);
else
infer
(
separate_colour_plane_flag
,
0
);
ue
(
pic_width_in_luma_samples
,
1
,
HEVC_MAX_WIDTH
);
ue
(
pic_height_in_luma_samples
,
1
,
HEVC_MAX_HEIGHT
);
flag
(
conformance_window_flag
);
if
(
current
->
conformance_window_flag
)
{
ue
(
conf_win_left_offset
,
0
,
current
->
pic_width_in_luma_samples
);
ue
(
conf_win_right_offset
,
0
,
current
->
pic_width_in_luma_samples
);
ue
(
conf_win_top_offset
,
0
,
current
->
pic_height_in_luma_samples
);
ue
(
conf_win_bottom_offset
,
0
,
current
->
pic_height_in_luma_samples
);
}
else
{
infer
(
conf_win_left_offset
,
0
);
infer
(
conf_win_right_offset
,
0
);
infer
(
conf_win_top_offset
,
0
);
infer
(
conf_win_bottom_offset
,
0
);
}
ue
(
bit_depth_luma_minus8
,
0
,
8
);
ue
(
bit_depth_chroma_minus8
,
0
,
8
);
ue
(
log2_max_pic_order_cnt_lsb_minus4
,
0
,
12
);
flag
(
sps_sub_layer_ordering_info_present_flag
);
for
(
i
=
(
current
->
sps_sub_layer_ordering_info_present_flag
?
0
:
current
->
sps_max_sub_layers_minus1
);
i
<=
current
->
sps_max_sub_layers_minus1
;
i
++
)
{
ue
(
sps_max_dec_pic_buffering_minus1
[
i
],
0
,
HEVC_MAX_DPB_SIZE
-
1
);
ue
(
sps_max_num_reorder_pics
[
i
],
0
,
current
->
sps_max_dec_pic_buffering_minus1
[
i
]);
ue
(
sps_max_latency_increase_plus1
[
i
],
0
,
UINT32_MAX
-
1
);
}
if
(
!
current
->
sps_sub_layer_ordering_info_present_flag
)
{
for
(
i
=
0
;
i
<
current
->
sps_max_sub_layers_minus1
;
i
++
)
{
infer
(
sps_max_dec_pic_buffering_minus1
[
i
],
current
->
sps_max_dec_pic_buffering_minus1
[
current
->
sps_max_sub_layers_minus1
]);
infer
(
sps_max_num_reorder_pics
[
i
],
current
->
sps_max_num_reorder_pics
[
current
->
sps_max_sub_layers_minus1
]);
infer
(
sps_max_latency_increase_plus1
[
i
],
current
->
sps_max_latency_increase_plus1
[
current
->
sps_max_sub_layers_minus1
]);
}
}
ue
(
log2_min_luma_coding_block_size_minus3
,
0
,
3
);
min_cb_log2_size_y
=
current
->
log2_min_luma_coding_block_size_minus3
+
3
;
ue
(
log2_diff_max_min_luma_coding_block_size
,
0
,
3
);
ctb_log2_size_y
=
min_cb_log2_size_y
+
current
->
log2_diff_max_min_luma_coding_block_size
;
min_cb_size_y
=
1
<<
min_cb_log2_size_y
;
if
(
current
->
pic_width_in_luma_samples
%
min_cb_size_y
||
current
->
pic_height_in_luma_samples
%
min_cb_size_y
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"Invalid dimensions: %ux%u not divisible "
"by MinCbSizeY = %u.
\n
"
,
current
->
pic_width_in_luma_samples
,
current
->
pic_height_in_luma_samples
,
min_cb_size_y
);
return
AVERROR_INVALIDDATA
;
}
ue
(
log2_min_luma_transform_block_size_minus2
,
0
,
min_cb_log2_size_y
-
3
);
min_tb_log2_size_y
=
current
->
log2_min_luma_transform_block_size_minus2
+
2
;
ue
(
log2_diff_max_min_luma_transform_block_size
,
0
,
FFMIN
(
ctb_log2_size_y
,
5
)
-
min_tb_log2_size_y
);
ue
(
max_transform_hierarchy_depth_inter
,
0
,
ctb_log2_size_y
-
min_tb_log2_size_y
);
ue
(
max_transform_hierarchy_depth_intra
,
0
,
ctb_log2_size_y
-
min_tb_log2_size_y
);
flag
(
scaling_list_enabled_flag
);
if
(
current
->
scaling_list_enabled_flag
)
{
flag
(
sps_scaling_list_data_present_flag
);
if
(
current
->
sps_scaling_list_data_present_flag
)
CHECK
(
FUNC
(
scaling_list_data
)(
ctx
,
rw
,
&
current
->
scaling_list
));
}
else
{
infer
(
sps_scaling_list_data_present_flag
,
0
);
}
flag
(
amp_enabled_flag
);
flag
(
sample_adaptive_offset_enabled_flag
);
flag
(
pcm_enabled_flag
);
if
(
current
->
pcm_enabled_flag
)
{
u
(
4
,
pcm_sample_bit_depth_luma_minus1
,
0
,
current
->
bit_depth_luma_minus8
+
8
-
1
);
u
(
4
,
pcm_sample_bit_depth_chroma_minus1
,
0
,
current
->
bit_depth_chroma_minus8
+
8
-
1
);
ue
(
log2_min_pcm_luma_coding_block_size_minus3
,
FFMIN
(
min_cb_log2_size_y
,
5
)
-
3
,
FFMIN
(
ctb_log2_size_y
,
5
)
-
3
);
ue
(
log2_diff_max_min_pcm_luma_coding_block_size
,
0
,
FFMIN
(
ctb_log2_size_y
,
5
)
-
(
current
->
log2_min_pcm_luma_coding_block_size_minus3
+
3
));
flag
(
pcm_loop_filter_disabled_flag
);
}
ue
(
num_short_term_ref_pic_sets
,
0
,
HEVC_MAX_SHORT_TERM_REF_PIC_SETS
);
for
(
i
=
0
;
i
<
current
->
num_short_term_ref_pic_sets
;
i
++
)
CHECK
(
FUNC
(
st_ref_pic_set
)(
ctx
,
rw
,
&
current
->
st_ref_pic_set
[
i
],
i
,
current
));
flag
(
long_term_ref_pics_present_flag
);
if
(
current
->
long_term_ref_pics_present_flag
)
{
ue
(
num_long_term_ref_pics_sps
,
0
,
HEVC_MAX_LONG_TERM_REF_PICS
);
for
(
i
=
0
;
i
<
current
->
num_long_term_ref_pics_sps
;
i
++
)
{
u
(
current
->
log2_max_pic_order_cnt_lsb_minus4
+
4
,
lt_ref_pic_poc_lsb_sps
[
i
],
0
,
(
1
<<
(
current
->
log2_max_pic_order_cnt_lsb_minus4
+
4
))
-
1
);
flag
(
used_by_curr_pic_lt_sps_flag
[
i
]);
}
}
flag
(
sps_temporal_mvp_enabled_flag
);
flag
(
strong_intra_smoothing_enabled_flag
);
flag
(
vui_parameters_present_flag
);
if
(
current
->
vui_parameters_present_flag
)
CHECK
(
FUNC
(
vui_parameters
)(
ctx
,
rw
,
&
current
->
vui
,
current
));
flag
(
sps_extension_present_flag
);
if
(
current
->
sps_extension_present_flag
)
{
flag
(
sps_range_extension_flag
);
flag
(
sps_multilayer_extension_flag
);
flag
(
sps_3d_extension_flag
);
flag
(
sps_scc_extension_flag
);
u
(
4
,
sps_extension_4bits
,
0
,
(
1
<<
4
)
-
1
);
}
if
(
current
->
sps_range_extension_flag
)
CHECK
(
FUNC
(
sps_range_extension
)(
ctx
,
rw
,
current
));
if
(
current
->
sps_multilayer_extension_flag
)
return
AVERROR_PATCHWELCOME
;
if
(
current
->
sps_3d_extension_flag
)
return
AVERROR_PATCHWELCOME
;
if
(
current
->
sps_scc_extension_flag
)
CHECK
(
FUNC
(
sps_scc_extension
)(
ctx
,
rw
,
current
));
if
(
current
->
sps_extension_4bits
)
CHECK
(
FUNC
(
extension_data
)(
ctx
,
rw
,
&
current
->
extension_data
));
CHECK
(
FUNC
(
rbsp_trailing_bits
)(
ctx
,
rw
));
return
0
;
}
static
int
FUNC
(
pps_range_extension
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawPPS
*
current
)
{
CodedBitstreamH265Context
*
h265
=
ctx
->
priv_data
;
const
H265RawSPS
*
sps
=
h265
->
active_sps
;
int
err
,
i
;
if
(
current
->
transform_skip_enabled_flag
)
ue
(
log2_max_transform_skip_block_size_minus2
,
0
,
4
);
flag
(
cross_component_prediction_enabled_flag
);
flag
(
chroma_qp_offset_list_enabled_flag
);
if
(
current
->
chroma_qp_offset_list_enabled_flag
)
{
ue
(
diff_cu_chroma_qp_offset_depth
,
0
,
sps
->
log2_diff_max_min_luma_coding_block_size
);
ue
(
chroma_qp_offset_list_len_minus1
,
0
,
5
);
for
(
i
=
0
;
i
<=
current
->
chroma_qp_offset_list_len_minus1
;
i
++
)
{
se
(
cb_qp_offset_list
[
i
],
-
12
,
+
12
);
se
(
cr_qp_offset_list
[
i
],
-
12
,
+
12
);
}
}
ue
(
log2_sao_offset_scale_luma
,
0
,
FFMAX
(
0
,
sps
->
bit_depth_luma_minus8
-
2
));
ue
(
log2_sao_offset_scale_chroma
,
0
,
FFMAX
(
0
,
sps
->
bit_depth_chroma_minus8
-
2
));
return
0
;
}
static
int
FUNC
(
pps_scc_extension
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawPPS
*
current
)
{
int
err
,
comp
,
i
;
flag
(
pps_curr_pic_ref_enabled_flag
);
flag
(
residual_adaptive_colour_transform_enabled_flag
);
if
(
current
->
residual_adaptive_colour_transform_enabled_flag
)
{
flag
(
pps_slice_act_qp_offsets_present_flag
);
se
(
pps_act_y_qp_offset_plus5
,
-
7
,
+
17
);
se
(
pps_act_cb_qp_offset_plus5
,
-
7
,
+
17
);
se
(
pps_act_cr_qp_offset_plus3
,
-
9
,
+
15
);
}
else
{
infer
(
pps_slice_act_qp_offsets_present_flag
,
0
);
infer
(
pps_act_y_qp_offset_plus5
,
0
);
infer
(
pps_act_cb_qp_offset_plus5
,
0
);
infer
(
pps_act_cr_qp_offset_plus3
,
0
);
}
flag
(
pps_palette_predictor_initializer_present_flag
);
if
(
current
->
pps_palette_predictor_initializer_present_flag
)
{
ue
(
pps_num_palette_predictor_initializer
,
0
,
128
);
if
(
current
->
pps_num_palette_predictor_initializer
>
0
)
{
flag
(
monochrome_palette_flag
);
ue
(
luma_bit_depth_entry_minus8
,
0
,
8
);
if
(
!
current
->
monochrome_palette_flag
)
ue
(
chroma_bit_depth_entry_minus8
,
0
,
8
);
for
(
comp
=
0
;
comp
<
(
current
->
monochrome_palette_flag
?
1
:
3
);
comp
++
)
{
int
bit_depth
=
comp
==
0
?
current
->
luma_bit_depth_entry_minus8
+
8
:
current
->
chroma_bit_depth_entry_minus8
+
8
;
for
(
i
=
0
;
i
<
current
->
pps_num_palette_predictor_initializer
;
i
++
)
u
(
bit_depth
,
pps_palette_predictor_initializers
[
comp
][
i
],
0
,
(
1
<<
bit_depth
)
-
1
);
}
}
}
return
0
;
}
static
int
FUNC
(
pps
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawPPS
*
current
)
{
CodedBitstreamH265Context
*
h265
=
ctx
->
priv_data
;
const
H265RawSPS
*
sps
;
int
err
,
i
;
HEADER
(
"Picture Parameter Set"
);
CHECK
(
FUNC
(
nal_unit_header
)(
ctx
,
rw
,
&
current
->
nal_unit_header
,
HEVC_NAL_PPS
));
ue
(
pps_pic_parameter_set_id
,
0
,
63
);
ue
(
pps_seq_parameter_set_id
,
0
,
15
);
sps
=
h265
->
sps
[
current
->
pps_seq_parameter_set_id
];
if
(
!
sps
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"SPS id %d not available.
\n
"
,
current
->
pps_seq_parameter_set_id
);
return
AVERROR_INVALIDDATA
;
}
h265
->
active_sps
=
sps
;
flag
(
dependent_slice_segments_enabled_flag
);
flag
(
output_flag_present_flag
);
u
(
3
,
num_extra_slice_header_bits
,
0
,
7
);
flag
(
sign_data_hiding_enabled_flag
);
flag
(
cabac_init_present_flag
);
ue
(
num_ref_idx_l0_default_active_minus1
,
0
,
14
);
ue
(
num_ref_idx_l1_default_active_minus1
,
0
,
14
);
se
(
init_qp_minus26
,
-
(
26
+
6
*
sps
->
bit_depth_luma_minus8
),
+
25
);
flag
(
constrained_intra_pred_flag
);
flag
(
transform_skip_enabled_flag
);
flag
(
cu_qp_delta_enabled_flag
);
if
(
current
->
cu_qp_delta_enabled_flag
)
ue
(
diff_cu_qp_delta_depth
,
0
,
sps
->
log2_diff_max_min_luma_coding_block_size
);
else
infer
(
diff_cu_qp_delta_depth
,
0
);
se
(
pps_cb_qp_offset
,
-
12
,
+
12
);
se
(
pps_cr_qp_offset
,
-
12
,
+
12
);
flag
(
pps_slice_chroma_qp_offsets_present_flag
);
flag
(
weighted_pred_flag
);
flag
(
weighted_bipred_flag
);
flag
(
transquant_bypass_enabled_flag
);
flag
(
tiles_enabled_flag
);
flag
(
entropy_coding_sync_enabled_flag
);
if
(
current
->
tiles_enabled_flag
)
{
ue
(
num_tile_columns_minus1
,
0
,
HEVC_MAX_TILE_COLUMNS
);
ue
(
num_tile_rows_minus1
,
0
,
HEVC_MAX_TILE_ROWS
);
flag
(
uniform_spacing_flag
);
if
(
!
current
->
uniform_spacing_flag
)
{
for
(
i
=
0
;
i
<
current
->
num_tile_columns_minus1
;
i
++
)
ue
(
column_width_minus1
[
i
],
0
,
sps
->
pic_width_in_luma_samples
);
for
(
i
=
0
;
i
<
current
->
num_tile_rows_minus1
;
i
++
)
ue
(
row_height_minus1
[
i
],
0
,
sps
->
pic_height_in_luma_samples
);
}
flag
(
loop_filter_across_tiles_enabled_flag
);
}
else
{
infer
(
num_tile_columns_minus1
,
0
);
infer
(
num_tile_rows_minus1
,
0
);
}
flag
(
pps_loop_filter_across_slices_enabled_flag
);
flag
(
deblocking_filter_control_present_flag
);
if
(
current
->
deblocking_filter_control_present_flag
)
{
flag
(
deblocking_filter_override_enabled_flag
);
flag
(
pps_deblocking_filter_disabled_flag
);
if
(
!
current
->
pps_deblocking_filter_disabled_flag
)
{
se
(
pps_beta_offset_div2
,
-
6
,
+
6
);
se
(
pps_tc_offset_div2
,
-
6
,
+
6
);
}
else
{
infer
(
pps_beta_offset_div2
,
0
);
infer
(
pps_tc_offset_div2
,
0
);
}
}
else
{
infer
(
deblocking_filter_override_enabled_flag
,
0
);
infer
(
pps_deblocking_filter_disabled_flag
,
0
);
infer
(
pps_beta_offset_div2
,
0
);
infer
(
pps_tc_offset_div2
,
0
);
}
flag
(
pps_scaling_list_data_present_flag
);
if
(
current
->
pps_scaling_list_data_present_flag
)
CHECK
(
FUNC
(
scaling_list_data
)(
ctx
,
rw
,
&
current
->
scaling_list
));
flag
(
lists_modification_present_flag
);
ue
(
log2_parallel_merge_level_minus2
,
0
,
(
sps
->
log2_min_luma_coding_block_size_minus3
+
3
+
sps
->
log2_diff_max_min_luma_coding_block_size
-
2
));
flag
(
slice_segment_header_extension_present_flag
);
flag
(
pps_extension_present_flag
);
if
(
current
->
pps_extension_present_flag
)
{
flag
(
pps_range_extension_flag
);
flag
(
pps_multilayer_extension_flag
);
flag
(
pps_3d_extension_flag
);
flag
(
pps_scc_extension_flag
);
u
(
4
,
pps_extension_4bits
,
0
,
(
1
<<
4
)
-
1
);
}
if
(
current
->
pps_range_extension_flag
)
CHECK
(
FUNC
(
pps_range_extension
)(
ctx
,
rw
,
current
));
if
(
current
->
pps_multilayer_extension_flag
)
return
AVERROR_PATCHWELCOME
;
if
(
current
->
pps_3d_extension_flag
)
return
AVERROR_PATCHWELCOME
;
if
(
current
->
pps_scc_extension_flag
)
CHECK
(
FUNC
(
pps_scc_extension
)(
ctx
,
rw
,
current
));
if
(
current
->
pps_extension_4bits
)
CHECK
(
FUNC
(
extension_data
)(
ctx
,
rw
,
&
current
->
extension_data
));
CHECK
(
FUNC
(
rbsp_trailing_bits
)(
ctx
,
rw
));
return
0
;
}
static
int
FUNC
(
aud
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawAUD
*
current
)
{
int
err
;
HEADER
(
"Access Unit Delimiter"
);
CHECK
(
FUNC
(
nal_unit_header
)(
ctx
,
rw
,
&
current
->
nal_unit_header
,
HEVC_NAL_AUD
));
u
(
3
,
pic_type
,
0
,
2
);
CHECK
(
FUNC
(
rbsp_trailing_bits
)(
ctx
,
rw
));
return
0
;
}
static
int
FUNC
(
ref_pic_lists_modification
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawSliceHeader
*
current
,
unsigned
int
num_pic_total_curr
)
{
unsigned
int
entry_size
;
int
err
,
i
;
entry_size
=
av_log2
(
num_pic_total_curr
-
1
)
+
1
;
flag
(
ref_pic_list_modification_flag_l0
);
if
(
current
->
ref_pic_list_modification_flag_l0
)
{
for
(
i
=
0
;
i
<=
current
->
num_ref_idx_l0_active_minus1
;
i
++
)
u
(
entry_size
,
list_entry_l0
[
i
],
0
,
num_pic_total_curr
-
1
);
}
if
(
current
->
slice_type
==
HEVC_SLICE_B
)
{
flag
(
ref_pic_list_modification_flag_l1
);
if
(
current
->
ref_pic_list_modification_flag_l1
)
{
for
(
i
=
0
;
i
<=
current
->
num_ref_idx_l1_active_minus1
;
i
++
)
u
(
entry_size
,
list_entry_l1
[
i
],
0
,
num_pic_total_curr
-
1
);
}
}
return
0
;
}
static
int
FUNC
(
pred_weight_table
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawSliceHeader
*
current
)
{
CodedBitstreamH265Context
*
h265
=
ctx
->
priv_data
;
const
H265RawSPS
*
sps
=
h265
->
active_sps
;
int
err
,
i
,
j
;
int
chroma
=
!
sps
->
separate_colour_plane_flag
&&
sps
->
chroma_format_idc
!=
0
;
ue
(
luma_log2_weight_denom
,
0
,
7
);
if
(
chroma
)
se
(
delta_chroma_log2_weight_denom
,
-
7
,
7
);
else
infer
(
delta_chroma_log2_weight_denom
,
0
);
for
(
i
=
0
;
i
<=
current
->
num_ref_idx_l0_active_minus1
;
i
++
)
{
if
(
1
/* is not same POC and same layer_id */
)
flag
(
luma_weight_l0_flag
[
i
]);
else
infer
(
luma_weight_l0_flag
[
i
],
0
);
}
if
(
chroma
)
{
for
(
i
=
0
;
i
<=
current
->
num_ref_idx_l0_active_minus1
;
i
++
)
{
if
(
1
/* is not same POC and same layer_id */
)
flag
(
chroma_weight_l0_flag
[
i
]);
else
infer
(
chroma_weight_l0_flag
[
i
],
0
);
}
}
for
(
i
=
0
;
i
<=
current
->
num_ref_idx_l0_active_minus1
;
i
++
)
{
if
(
current
->
luma_weight_l0_flag
[
i
])
{
se
(
delta_luma_weight_l0
[
i
],
-
128
,
+
127
);
se
(
luma_offset_l0
[
i
],
-
(
1
<<
(
sps
->
bit_depth_luma_minus8
+
8
-
1
)),
+
(
1
<<
(
sps
->
bit_depth_luma_minus8
+
8
-
1
)
-
1
));
}
else
{
infer
(
delta_luma_weight_l0
[
i
],
0
);
infer
(
luma_offset_l0
[
i
],
0
);
}
if
(
current
->
chroma_weight_l0_flag
[
i
])
{
for
(
j
=
0
;
j
<
2
;
j
++
)
{
se
(
delta_chroma_weight_l0
[
i
][
j
],
-
128
,
+
127
);
se
(
chroma_offset_l0
[
i
][
j
],
-
(
4
<<
(
sps
->
bit_depth_chroma_minus8
+
8
-
1
)),
+
(
4
<<
(
sps
->
bit_depth_chroma_minus8
+
8
-
1
)
-
1
));
}
}
else
{
for
(
j
=
0
;
j
<
2
;
j
++
)
{
infer
(
delta_chroma_weight_l0
[
i
][
j
],
0
);
infer
(
chroma_offset_l0
[
i
][
j
],
0
);
}
}
}
if
(
current
->
slice_type
==
HEVC_SLICE_B
)
{
for
(
i
=
0
;
i
<=
current
->
num_ref_idx_l1_active_minus1
;
i
++
)
{
if
(
1
/* RefPicList1[i] is not CurrPic, nor is it in a different layer */
)
flag
(
luma_weight_l1_flag
[
i
]);
else
infer
(
luma_weight_l1_flag
[
i
],
0
);
}
if
(
chroma
)
{
for
(
i
=
0
;
i
<=
current
->
num_ref_idx_l1_active_minus1
;
i
++
)
{
if
(
1
/* RefPicList1[i] is not CurrPic, nor is it in a different layer */
)
flag
(
chroma_weight_l1_flag
[
i
]);
else
infer
(
chroma_weight_l1_flag
[
i
],
0
);
}
}
for
(
i
=
0
;
i
<=
current
->
num_ref_idx_l1_active_minus1
;
i
++
)
{
if
(
current
->
luma_weight_l1_flag
[
i
])
{
se
(
delta_luma_weight_l1
[
i
],
-
128
,
+
127
);
se
(
luma_offset_l1
[
i
],
-
1
<<
(
sps
->
bit_depth_luma_minus8
+
8
-
1
),
+
1
<<
(
sps
->
bit_depth_luma_minus8
+
8
-
1
)
-
1
);
}
else
{
infer
(
delta_luma_weight_l1
[
i
],
0
);
infer
(
luma_offset_l1
[
i
],
0
);
}
if
(
current
->
chroma_weight_l1_flag
[
i
])
{
for
(
j
=
0
;
j
<
2
;
j
++
)
{
se
(
delta_chroma_weight_l1
[
i
][
j
],
-
128
,
+
127
);
se
(
chroma_offset_l1
[
i
][
j
],
-
4
<<
(
sps
->
bit_depth_chroma_minus8
+
8
-
1
),
+
4
<<
(
sps
->
bit_depth_chroma_minus8
+
8
-
1
)
-
1
);
}
}
else
{
for
(
j
=
0
;
j
<
2
;
j
++
)
{
infer
(
delta_chroma_weight_l1
[
i
][
j
],
0
);
infer
(
chroma_offset_l1
[
i
][
j
],
0
);
}
}
}
}
return
0
;
}
static
int
FUNC
(
slice_segment_header
)(
CodedBitstreamContext
*
ctx
,
RWContext
*
rw
,
H265RawSliceHeader
*
current
)
{
CodedBitstreamH265Context
*
h265
=
ctx
->
priv_data
;
const
H265RawSPS
*
sps
;
const
H265RawPPS
*
pps
;
unsigned
int
min_cb_log2_size_y
,
ctb_log2_size_y
,
ctb_size_y
;
unsigned
int
pic_width_in_ctbs_y
,
pic_height_in_ctbs_y
,
pic_size_in_ctbs_y
;
unsigned
int
num_pic_total_curr
=
0
;
int
err
,
i
;
HEADER
(
"Slice Segment Header"
);
CHECK
(
FUNC
(
nal_unit_header
)(
ctx
,
rw
,
&
current
->
nal_unit_header
,
-
1
));
flag
(
first_slice_segment_in_pic_flag
);
if
(
current
->
nal_unit_header
.
nal_unit_type
>=
HEVC_NAL_BLA_W_LP
&&
current
->
nal_unit_header
.
nal_unit_type
<=
HEVC_NAL_IRAP_VCL23
)
flag
(
no_output_of_prior_pics_flag
);
ue
(
slice_pic_parameter_set_id
,
0
,
63
);
pps
=
h265
->
pps
[
current
->
slice_pic_parameter_set_id
];
if
(
!
pps
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"PPS id %d not available.
\n
"
,
current
->
slice_pic_parameter_set_id
);
return
AVERROR_INVALIDDATA
;
}
h265
->
active_pps
=
pps
;
sps
=
h265
->
sps
[
pps
->
pps_seq_parameter_set_id
];
if
(
!
sps
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"SPS id %d not available.
\n
"
,
pps
->
pps_seq_parameter_set_id
);
return
AVERROR_INVALIDDATA
;
}
h265
->
active_sps
=
sps
;
min_cb_log2_size_y
=
sps
->
log2_min_luma_coding_block_size_minus3
+
3
;
ctb_log2_size_y
=
min_cb_log2_size_y
+
sps
->
log2_diff_max_min_luma_coding_block_size
;
ctb_size_y
=
1
<<
ctb_log2_size_y
;
pic_width_in_ctbs_y
=
(
sps
->
pic_width_in_luma_samples
+
ctb_size_y
-
1
)
/
ctb_size_y
;
pic_height_in_ctbs_y
=
(
sps
->
pic_height_in_luma_samples
+
ctb_size_y
-
1
)
/
ctb_size_y
;
pic_size_in_ctbs_y
=
pic_width_in_ctbs_y
*
pic_height_in_ctbs_y
;
if
(
!
current
->
first_slice_segment_in_pic_flag
)
{
unsigned
int
address_size
=
av_log2
(
pic_size_in_ctbs_y
-
1
)
+
1
;
if
(
pps
->
dependent_slice_segments_enabled_flag
)
flag
(
dependent_slice_segment_flag
);
else
infer
(
dependent_slice_segment_flag
,
0
);
u
(
address_size
,
slice_segment_address
,
0
,
pic_size_in_ctbs_y
-
1
);
}
else
{
infer
(
dependent_slice_segment_flag
,
0
);
}
if
(
!
current
->
dependent_slice_segment_flag
)
{
for
(
i
=
0
;
i
<
pps
->
num_extra_slice_header_bits
;
i
++
)
flag
(
slice_reserved_flag
[
i
]);
ue
(
slice_type
,
0
,
2
);
if
(
pps
->
output_flag_present_flag
)
flag
(
pic_output_flag
);
if
(
sps
->
separate_colour_plane_flag
)
u
(
2
,
colour_plane_id
,
0
,
2
);
if
(
current
->
nal_unit_header
.
nal_unit_type
!=
HEVC_NAL_IDR_W_RADL
&&
current
->
nal_unit_header
.
nal_unit_type
!=
HEVC_NAL_IDR_N_LP
)
{
const
H265RawSTRefPicSet
*
rps
;
u
(
sps
->
log2_max_pic_order_cnt_lsb_minus4
+
4
,
slice_pic_order_cnt_lsb
,
0
,
(
1
<<
(
sps
->
log2_max_pic_order_cnt_lsb_minus4
+
4
))
-
1
);
flag
(
short_term_ref_pic_set_sps_flag
);
if
(
!
current
->
short_term_ref_pic_set_sps_flag
)
{
CHECK
(
FUNC
(
st_ref_pic_set
)(
ctx
,
rw
,
&
current
->
short_term_ref_pic_set
,
sps
->
num_short_term_ref_pic_sets
,
sps
));
rps
=
&
current
->
short_term_ref_pic_set
;
}
else
if
(
sps
->
num_short_term_ref_pic_sets
>
1
)
{
unsigned
int
idx_size
=
av_log2
(
sps
->
num_short_term_ref_pic_sets
-
1
)
+
1
;
u
(
idx_size
,
short_term_ref_pic_set_idx
,
0
,
sps
->
num_short_term_ref_pic_sets
-
1
);
rps
=
&
sps
->
st_ref_pic_set
[
current
->
short_term_ref_pic_set_idx
];
}
else
{
infer
(
short_term_ref_pic_set_idx
,
0
);
rps
=
&
sps
->
st_ref_pic_set
[
0
];
}
num_pic_total_curr
=
0
;
for
(
i
=
0
;
i
<
rps
->
num_negative_pics
;
i
++
)
if
(
rps
->
used_by_curr_pic_s0_flag
[
i
])
++
num_pic_total_curr
;
for
(
i
=
0
;
i
<
rps
->
num_positive_pics
;
i
++
)
if
(
rps
->
used_by_curr_pic_s1_flag
[
i
])
++
num_pic_total_curr
;
if
(
sps
->
long_term_ref_pics_present_flag
)
{
unsigned
int
idx_size
;
if
(
sps
->
num_long_term_ref_pics_sps
>
0
)
{
ue
(
num_long_term_sps
,
0
,
sps
->
num_long_term_ref_pics_sps
);
idx_size
=
av_log2
(
sps
->
num_long_term_ref_pics_sps
-
1
)
+
1
;
}
else
{
infer
(
num_long_term_sps
,
0
);
idx_size
=
0
;
}
ue
(
num_long_term_pics
,
0
,
HEVC_MAX_LONG_TERM_REF_PICS
);
for
(
i
=
0
;
i
<
current
->
num_long_term_sps
+
current
->
num_long_term_pics
;
i
++
)
{
if
(
i
<
current
->
num_long_term_sps
)
{
if
(
sps
->
num_long_term_ref_pics_sps
>
1
)
u
(
idx_size
,
lt_idx_sps
[
i
],
0
,
sps
->
num_long_term_ref_pics_sps
-
1
);
if
(
sps
->
used_by_curr_pic_lt_sps_flag
[
current
->
lt_idx_sps
[
i
]])
++
num_pic_total_curr
;
}
else
{
u
(
sps
->
log2_max_pic_order_cnt_lsb_minus4
+
4
,
poc_lsb_lt
[
i
],
0
,
(
1
<<
(
sps
->
log2_max_pic_order_cnt_lsb_minus4
+
4
))
-
1
);
flag
(
used_by_curr_pic_lt_flag
[
i
]);
if
(
current
->
used_by_curr_pic_lt_flag
[
i
])
++
num_pic_total_curr
;
}
flag
(
delta_poc_msb_present_flag
[
i
]);
if
(
current
->
delta_poc_msb_present_flag
[
i
])
ue
(
delta_poc_msb_cycle_lt
[
i
],
0
,
UINT32_MAX
-
1
);
else
infer
(
delta_poc_msb_cycle_lt
[
i
],
0
);
}
}
if
(
sps
->
sps_temporal_mvp_enabled_flag
)
flag
(
slice_temporal_mvp_enabled_flag
);
else
infer
(
slice_temporal_mvp_enabled_flag
,
0
);
if
(
pps
->
pps_curr_pic_ref_enabled_flag
)
++
num_pic_total_curr
;
}
if
(
sps
->
sample_adaptive_offset_enabled_flag
)
{
flag
(
slice_sao_luma_flag
);
if
(
!
sps
->
separate_colour_plane_flag
&&
sps
->
chroma_format_idc
!=
0
)
flag
(
slice_sao_chroma_flag
);
else
infer
(
slice_sao_chroma_flag
,
0
);
}
else
{
infer
(
slice_sao_luma_flag
,
0
);
infer
(
slice_sao_chroma_flag
,
0
);
}
if
(
current
->
slice_type
==
HEVC_SLICE_P
||
current
->
slice_type
==
HEVC_SLICE_B
)
{
flag
(
num_ref_idx_active_override_flag
);
if
(
current
->
num_ref_idx_active_override_flag
)
{
ue
(
num_ref_idx_l0_active_minus1
,
0
,
14
);
if
(
current
->
slice_type
==
HEVC_SLICE_B
)
ue
(
num_ref_idx_l1_active_minus1
,
0
,
14
);
else
infer
(
num_ref_idx_l1_active_minus1
,
pps
->
num_ref_idx_l1_default_active_minus1
);
}
else
{
infer
(
num_ref_idx_l0_active_minus1
,
pps
->
num_ref_idx_l0_default_active_minus1
);
infer
(
num_ref_idx_l1_active_minus1
,
pps
->
num_ref_idx_l1_default_active_minus1
);
}
if
(
pps
->
lists_modification_present_flag
&&
num_pic_total_curr
>
1
)
CHECK
(
FUNC
(
ref_pic_lists_modification
)(
ctx
,
rw
,
current
,
num_pic_total_curr
));
if
(
current
->
slice_type
==
HEVC_SLICE_B
)
flag
(
mvd_l1_zero_flag
);
if
(
pps
->
cabac_init_present_flag
)
flag
(
cabac_init_flag
);
else
infer
(
cabac_init_flag
,
0
);
if
(
current
->
slice_temporal_mvp_enabled_flag
)
{
if
(
current
->
slice_type
==
HEVC_SLICE_B
)
flag
(
collocated_from_l0_flag
);
else
infer
(
collocated_from_l0_flag
,
1
);
if
(
current
->
collocated_from_l0_flag
)
{
if
(
current
->
num_ref_idx_l0_active_minus1
>
0
)
ue
(
collocated_ref_idx
,
0
,
current
->
num_ref_idx_l0_active_minus1
);
else
infer
(
collocated_ref_idx
,
0
);
}
else
{
if
(
current
->
num_ref_idx_l1_active_minus1
>
0
)
ue
(
collocated_ref_idx
,
0
,
current
->
num_ref_idx_l1_active_minus1
);
else
infer
(
collocated_ref_idx
,
0
);
}
}
if
((
pps
->
weighted_pred_flag
&&
current
->
slice_type
==
HEVC_SLICE_P
)
||
(
pps
->
weighted_bipred_flag
&&
current
->
slice_type
==
HEVC_SLICE_B
))
CHECK
(
FUNC
(
pred_weight_table
)(
ctx
,
rw
,
current
));
ue
(
five_minus_max_num_merge_cand
,
0
,
4
);
if
(
sps
->
motion_vector_resolution_control_idc
==
2
)
flag
(
use_integer_mv_flag
);
else
infer
(
use_integer_mv_flag
,
sps
->
motion_vector_resolution_control_idc
);
}
se
(
slice_qp_delta
,
-
6
*
sps
->
bit_depth_luma_minus8
-
(
pps
->
init_qp_minus26
+
26
),
+
51
-
(
pps
->
init_qp_minus26
+
26
));
if
(
pps
->
pps_slice_chroma_qp_offsets_present_flag
)
{
se
(
slice_cb_qp_offset
,
-
12
,
+
12
);
se
(
slice_cr_qp_offset
,
-
12
,
+
12
);
}
else
{
infer
(
slice_cb_qp_offset
,
0
);
infer
(
slice_cr_qp_offset
,
0
);
}
if
(
pps
->
pps_slice_act_qp_offsets_present_flag
)
{
se
(
slice_act_y_qp_offset
,
-
12
-
(
pps
->
pps_act_y_qp_offset_plus5
-
5
),
+
12
-
(
pps
->
pps_act_y_qp_offset_plus5
-
5
));
se
(
slice_act_cb_qp_offset
,
-
12
-
(
pps
->
pps_act_cb_qp_offset_plus5
-
5
),
+
12
-
(
pps
->
pps_act_cb_qp_offset_plus5
-
5
));
se
(
slice_act_cr_qp_offset
,
-
12
-
(
pps
->
pps_act_cr_qp_offset_plus3
-
3
),
+
12
-
(
pps
->
pps_act_cr_qp_offset_plus3
-
3
));
}
else
{
infer
(
slice_act_y_qp_offset
,
0
);
infer
(
slice_act_cb_qp_offset
,
0
);
infer
(
slice_act_cr_qp_offset
,
0
);
}
if
(
pps
->
chroma_qp_offset_list_enabled_flag
)
flag
(
cu_chroma_qp_offset_enabled_flag
);
else
infer
(
cu_chroma_qp_offset_enabled_flag
,
0
);
if
(
pps
->
deblocking_filter_override_enabled_flag
)
flag
(
deblocking_filter_override_flag
);
else
infer
(
deblocking_filter_override_flag
,
0
);
if
(
current
->
deblocking_filter_override_flag
)
{
flag
(
slice_deblocking_filter_disabled_flag
);
if
(
!
current
->
slice_deblocking_filter_disabled_flag
)
{
se
(
slice_beta_offset_div2
,
-
6
,
+
6
);
se
(
slice_tc_offset_div2
,
-
6
,
+
6
);
}
else
{
infer
(
slice_beta_offset_div2
,
pps
->
pps_beta_offset_div2
);
infer
(
slice_tc_offset_div2
,
pps
->
pps_tc_offset_div2
);
}
}
else
{
infer
(
slice_deblocking_filter_disabled_flag
,
pps
->
pps_deblocking_filter_disabled_flag
);
infer
(
slice_beta_offset_div2
,
pps
->
pps_beta_offset_div2
);
infer
(
slice_tc_offset_div2
,
pps
->
pps_tc_offset_div2
);
}
if
(
pps
->
pps_loop_filter_across_slices_enabled_flag
&&
(
current
->
slice_sao_luma_flag
||
current
->
slice_sao_chroma_flag
||
!
current
->
slice_deblocking_filter_disabled_flag
))
flag
(
slice_loop_filter_across_slices_enabled_flag
);
else
infer
(
slice_loop_filter_across_slices_enabled_flag
,
pps
->
pps_loop_filter_across_slices_enabled_flag
);
}
if
(
pps
->
tiles_enabled_flag
||
pps
->
entropy_coding_sync_enabled_flag
)
{
unsigned
int
num_entry_point_offsets_limit
;
if
(
!
pps
->
tiles_enabled_flag
&&
pps
->
entropy_coding_sync_enabled_flag
)
num_entry_point_offsets_limit
=
pic_height_in_ctbs_y
-
1
;
else
if
(
pps
->
tiles_enabled_flag
&&
!
pps
->
entropy_coding_sync_enabled_flag
)
num_entry_point_offsets_limit
=
(
pps
->
num_tile_columns_minus1
+
1
)
*
(
pps
->
num_tile_rows_minus1
+
1
);
else
num_entry_point_offsets_limit
=
(
pps
->
num_tile_columns_minus1
+
1
)
*
pic_height_in_ctbs_y
-
1
;
ue
(
num_entry_point_offsets
,
0
,
num_entry_point_offsets_limit
);
if
(
current
->
num_entry_point_offsets
>
HEVC_MAX_ENTRY_POINT_OFFSETS
)
{
av_log
(
ctx
->
log_ctx
,
AV_LOG_ERROR
,
"Too many entry points: "
"%"
PRIu16
".
\n
"
,
current
->
num_entry_point_offsets
);
return
AVERROR_PATCHWELCOME
;
}
if
(
current
->
num_entry_point_offsets
>
0
)
{
ue
(
offset_len_minus1
,
0
,
31
);
for
(
i
=
0
;
i
<
current
->
num_entry_point_offsets
;
i
++
)
u
(
current
->
offset_len_minus1
+
1
,
entry_point_offset_minus1
[
i
],
0
,
(
1
<<
(
current
->
offset_len_minus1
+
1
))
-
1
);
}
}
if
(
pps
->
slice_segment_header_extension_present_flag
)
{
ue
(
slice_segment_header_extension_length
,
0
,
256
);
for
(
i
=
0
;
i
<
current
->
slice_segment_header_extension_length
;
i
++
)
u
(
8
,
slice_segment_header_extension_data_byte
[
i
],
0x00
,
0xff
);
}
CHECK
(
FUNC
(
byte_alignment
)(
ctx
,
rw
));
return
0
;
}
libavcodec/cbs_internal.h
View file @
867381b8
...
...
@@ -81,6 +81,7 @@ int ff_cbs_write_unsigned(CodedBitstreamContext *ctx, PutBitContext *pbc,
extern
const
CodedBitstreamType
ff_cbs_type_h264
;
extern
const
CodedBitstreamType
ff_cbs_type_h265
;
#endif
/* AVCODEC_CBS_INTERNAL_H */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment