// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors // Licensed under the MIT License: // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows: // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C. // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`. // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n. // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`. // // Note that: // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the // type. // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be // flattened. // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause // with type inference and `tuple()`. #ifndef KJ_TUPLE_H_ #define KJ_TUPLE_H_ #if defined(__GNUC__) && !KJ_HEADER_WARNINGS #pragma GCC system_header #endif #include "common.h" namespace kj { namespace _ { // private template <size_t index, typename... T> struct TypeByIndex_; template <typename First, typename... Rest> struct TypeByIndex_<0, First, Rest...> { typedef First Type; }; template <size_t index, typename First, typename... Rest> struct TypeByIndex_<index, First, Rest...> : public TypeByIndex_<index - 1, Rest...> {}; template <size_t index> struct TypeByIndex_<index> { static_assert(index != index, "Index out-of-range."); }; template <size_t index, typename... T> using TypeByIndex = typename TypeByIndex_<index, T...>::Type; // Chose a particular type out of a list of types, by index. template <size_t... s> struct Indexes {}; // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match // templates against them and unpack them with '...'. template <size_t end, size_t... prefix> struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {}; template <size_t... prefix> struct MakeIndexes_<0, prefix...> { typedef Indexes<prefix...> Type; }; template <size_t end> using MakeIndexes = typename MakeIndexes_<end>::Type; // Equivalent to Indexes<0, 1, 2, ..., end>. template <typename... T> class Tuple; template <size_t index, typename... U> inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); template <size_t index, typename... U> inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); template <size_t index, typename... U> inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); template <uint index, typename T> struct TupleElement { // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits // from a TupleElement for each element, which is more efficient than a recursive definition. T value; TupleElement() = default; constexpr inline TupleElement(const T& value): value(value) {} constexpr inline TupleElement(T&& value): value(kj::mv(value)) {} }; template <uint index, typename T> struct TupleElement<index, T&> { // If tuples contained references, one of the following would have to be true: // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is // probably not what you expected. // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned // Tuple<Foo, Bar>. static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references."); }; template <uint index, typename... T> struct TupleElement<index, Tuple<T...>> { static_assert(sizeof(Tuple<T...>*) == 0, "Tuples cannot contain other tuples -- they should be flattened."); }; template <typename Indexes, typename... Types> struct TupleImpl; template <size_t... indexes, typename... Types> struct TupleImpl<Indexes<indexes...>, Types...> : public TupleElement<indexes, Types>... { // Implementation of Tuple. The only reason we need this rather than rolling this into class // Tuple (below) is so that we can get "indexes" as an unpackable list. static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl."); template <typename... Params> inline TupleImpl(Params&&... params) : TupleElement<indexes, Types>(kj::fwd<Params>(params))... { // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes // segfaults instead.) static_assert(sizeof...(params) == sizeof...(indexes), "Wrong number of parameters to Tuple constructor."); } template <typename... U> constexpr inline TupleImpl(Tuple<U...>&& other) : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {} template <typename... U> constexpr inline TupleImpl(Tuple<U...>& other) : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} template <typename... U> constexpr inline TupleImpl(const Tuple<U...>& other) : TupleElement<indexes, Types>(getImpl<indexes>(other))... {} }; struct MakeTupleFunc; template <typename... T> class Tuple { // The actual Tuple class (used for tuples of size other than 1). public: template <typename... U> constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {} template <typename... U> constexpr inline Tuple(Tuple<U...>& other): impl(other) {} template <typename... U> constexpr inline Tuple(const Tuple<U...>& other): impl(other) {} private: template <typename... Params> constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {} TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl; template <size_t index, typename... U> friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple); template <size_t index, typename... U> friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple); template <size_t index, typename... U> friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple); friend struct MakeTupleFunc; }; template <> class Tuple<> { // Simplified zero-member version of Tuple. In particular this is important to make sure that // Tuple<>() is constexpr. }; template <typename T> class Tuple<T>; // Single-element tuple should never be used. The public API should ensure this. template <size_t index, typename... T> inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) { // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; } template <size_t index, typename... T> inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) { // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value); } template <size_t index, typename... T> inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) { // Get member of a Tuple by index, e.g. `get<2>(myTuple)`. static_assert(index < sizeof...(T), "Tuple element index out-of-bounds."); return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value; } template <size_t index, typename T> inline T&& getImpl(T&& value) { // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`. // Non-tuples are equivalent to one-element tuples. static_assert(index == 0, "Tuple element index out-of-bounds."); return kj::fwd<T>(value); } template <typename Func, typename SoFar, typename... T> struct ExpandAndApplyResult_; // Template which computes the return type of applying Func to T... after flattening tuples. // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters. template <typename Func, typename First, typename... Rest, typename... T> struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...> : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {}; template <typename Func, typename... FirstTypes, typename... Rest, typename... T> struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...> : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {}; template <typename Func, typename... FirstTypes, typename... Rest, typename... T> struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...> : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {}; template <typename Func, typename... FirstTypes, typename... Rest, typename... T> struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...> : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {}; template <typename Func, typename... T> struct ExpandAndApplyResult_<Func, Tuple<T...>> { typedef decltype(instance<Func>()(instance<T&&>()...)) Type; }; template <typename Func, typename... T> using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type; // Computes the expected return type of `expandAndApply()`. template <typename Func> inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> { return func(); } template <typename Func, typename First, typename... Rest> struct ExpandAndApplyFunc { Func&& func; First&& first; ExpandAndApplyFunc(Func&& func, First&& first) : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {} template <typename... T> auto operator()(T&&... params) -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) { return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...); } }; template <typename Func, typename First, typename... Rest> inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest) -> ExpandAndApplyResult<Func, First, Rest...> { return expandAndApply( ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)), kj::fwd<Rest>(rest)...); } template <typename Func, typename... FirstTypes, typename... Rest> inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...); } template <typename Func, typename... FirstTypes, typename... Rest> inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest) -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); } template <typename Func, typename... FirstTypes, typename... Rest> inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(), kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...); } template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> inline auto expandAndApplyWithIndexes( Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest) -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> { return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))..., kj::fwd<Rest>(rest)...); } template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes> inline auto expandAndApplyWithIndexes( Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest) -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> { return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)..., kj::fwd<Rest>(rest)...); } struct MakeTupleFunc { template <typename... Params> Tuple<Decay<Params>...> operator()(Params&&... params) { return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...); } template <typename Param> Decay<Param> operator()(Param&& param) { return kj::fwd<Param>(param); } }; } // namespace _ (private) template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; }; template <typename T> struct Tuple_<T> { typedef T Type; }; template <typename... T> using Tuple = typename Tuple_<T...>::Type; // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size // other than 1 expand to an internal type. Either way, you can construct a Tuple using // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple // as arguments to a function using `kj::apply(func, myTuple)`. // // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you // construct a tuple from other tuples, the elements are flattened and concatenated. template <typename... Params> inline auto tuple(Params&&... params) -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) { // Construct a new tuple from the given values. Any tuples in the argument list will be // flattened into the result. return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...); } template <size_t index, typename Tuple> inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) { // Unpack and return the tuple element at the given index. The index is specified as a template // parameter, e.g. `kj::get<3>(myTuple)`. return _::getImpl<index>(kj::fwd<Tuple>(tuple)); } template <typename Func, typename... Params> inline auto apply(Func&& func, Params&&... params) -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) { // Apply a function to some arguments, expanding tuples into separate arguments. return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...); } template <typename T> struct TupleSize_ { static constexpr size_t size = 1; }; template <typename... T> struct TupleSize_<_::Tuple<T...>> { static constexpr size_t size = sizeof...(T); }; template <typename T> constexpr size_t tupleSize() { return TupleSize_<T>::size; } // Returns size of the tuple T. } // namespace kj #endif // KJ_TUPLE_H_