// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors // Licensed under the MIT License: // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #ifndef KJ_STRING_TREE_H_ #define KJ_STRING_TREE_H_ #if defined(__GNUC__) && !KJ_HEADER_WARNINGS #pragma GCC system_header #endif #include "string.h" namespace kj { class StringTree { // A long string, represented internally as a tree of strings. This data structure is like a // String, but optimized for concatenation and iteration at the expense of seek time. The // structure is intended to be used for building large text blobs from many small pieces, where // repeatedly concatenating smaller strings into larger ones would waste copies. This structure // is NOT intended for use cases requiring random access or computing substrings. For those, // you should use a Rope, which is a much more complicated data structure. // // The proper way to construct a StringTree is via kj::strTree(...), which works just like // kj::str(...) but returns a StringTree rather than a String. // // KJ_STRINGIFY() functions that construct large strings from many smaller strings are encouraged // to return StringTree rather than a flat char container. public: inline StringTree(): size_(0) {} inline StringTree(String&& text): size_(text.size()), text(kj::mv(text)) {} StringTree(Array<StringTree>&& pieces, StringPtr delim); // Build a StringTree by concatenating the given pieces, delimited by the given delimiter // (e.g. ", "). inline size_t size() const { return size_; } template <typename Func> void visit(Func&& func) const; String flatten() const; // Return the contents as a string. // TODO(someday): flatten() when *this is an rvalue and when branches.size() == 0 could simply // return `kj::mv(text)`. Requires reference qualifiers (Clang 3.3 / GCC 4.8). void flattenTo(char* __restrict__ target) const; // Copy the contents to the given character array. Does not add a NUL terminator. private: size_t size_; String text; struct Branch; Array<Branch> branches; // In order. inline void fill(char* pos, size_t branchIndex); template <typename First, typename... Rest> void fill(char* pos, size_t branchIndex, First&& first, Rest&&... rest); template <typename... Rest> void fill(char* pos, size_t branchIndex, StringTree&& first, Rest&&... rest); template <typename... Rest> void fill(char* pos, size_t branchIndex, Array<char>&& first, Rest&&... rest); template <typename... Rest> void fill(char* pos, size_t branchIndex, String&& first, Rest&&... rest); template <typename... Params> static StringTree concat(Params&&... params); static StringTree&& concat(StringTree&& param) { return kj::mv(param); } template <typename T> static inline size_t flatSize(const T& t) { return t.size(); } static inline size_t flatSize(String&& s) { return 0; } static inline size_t flatSize(StringTree&& s) { return 0; } template <typename T> static inline size_t branchCount(const T& t) { return 0; } static inline size_t branchCount(String&& s) { return 1; } static inline size_t branchCount(StringTree&& s) { return 1; } template <typename... Params> friend StringTree strTree(Params&&... params); }; inline StringTree&& KJ_STRINGIFY(StringTree&& tree) { return kj::mv(tree); } inline const StringTree& KJ_STRINGIFY(const StringTree& tree) { return tree; } inline StringTree KJ_STRINGIFY(Array<StringTree>&& trees) { return StringTree(kj::mv(trees), ""); } template <typename... Params> StringTree strTree(Params&&... params); // Build a StringTree by stringifying the given parameters and concatenating the results. // If any of the parameters stringify to StringTree rvalues, they will be incorporated as // branches to avoid a copy. // ======================================================================================= // Inline implementation details namespace _ { // private template <typename... Rest> char* fill(char* __restrict__ target, const StringTree& first, Rest&&... rest) { // Make str() work with stringifiers that return StringTree by patching fill(). first.flattenTo(target); return fill(target + first.size(), kj::fwd<Rest>(rest)...); } template <typename T> constexpr bool isStringTree() { return false; } template <> constexpr bool isStringTree<StringTree>() { return true; } inline StringTree&& toStringTreeOrCharSequence(StringTree&& tree) { return kj::mv(tree); } inline StringTree toStringTreeOrCharSequence(String&& str) { return StringTree(kj::mv(str)); } template <typename T> inline auto toStringTreeOrCharSequence(T&& value) -> decltype(toCharSequence(kj::fwd<T>(value))) { static_assert(!isStringTree<Decay<T>>(), "When passing a StringTree into kj::strTree(), either pass it by rvalue " "(use kj::mv(value)) or explicitly call value.flatten() to make a copy."); return toCharSequence(kj::fwd<T>(value)); } } // namespace _ (private) struct StringTree::Branch { size_t index; // Index in `text` where this branch should be inserted. StringTree content; }; template <typename Func> void StringTree::visit(Func&& func) const { size_t pos = 0; for (auto& branch: branches) { if (branch.index > pos) { func(text.slice(pos, branch.index)); pos = branch.index; } branch.content.visit(func); } if (text.size() > pos) { func(text.slice(pos, text.size())); } } inline void StringTree::fill(char* pos, size_t branchIndex) { KJ_IREQUIRE(pos == text.end() && branchIndex == branches.size(), kj::str(text.end() - pos, ' ', branches.size() - branchIndex).cStr()); } template <typename First, typename... Rest> void StringTree::fill(char* pos, size_t branchIndex, First&& first, Rest&&... rest) { pos = _::fill(pos, kj::fwd<First>(first)); fill(pos, branchIndex, kj::fwd<Rest>(rest)...); } template <typename... Rest> void StringTree::fill(char* pos, size_t branchIndex, StringTree&& first, Rest&&... rest) { branches[branchIndex].index = pos - text.begin(); branches[branchIndex].content = kj::mv(first); fill(pos, branchIndex + 1, kj::fwd<Rest>(rest)...); } template <typename... Rest> void StringTree::fill(char* pos, size_t branchIndex, String&& first, Rest&&... rest) { branches[branchIndex].index = pos - text.begin(); branches[branchIndex].content = StringTree(kj::mv(first)); fill(pos, branchIndex + 1, kj::fwd<Rest>(rest)...); } template <typename... Params> StringTree StringTree::concat(Params&&... params) { StringTree result; result.size_ = _::sum({params.size()...}); result.text = heapString( _::sum({StringTree::flatSize(kj::fwd<Params>(params))...})); result.branches = heapArray<StringTree::Branch>( _::sum({StringTree::branchCount(kj::fwd<Params>(params))...})); result.fill(result.text.begin(), 0, kj::fwd<Params>(params)...); return result; } template <typename... Params> StringTree strTree(Params&&... params) { return StringTree::concat(_::toStringTreeOrCharSequence(kj::fwd<Params>(params))...); } } // namespace kj #endif // KJ_STRING_TREE_H_