• Harris Hancock's avatar
    Fix build error in MSVC · c4629e37
    Harris Hancock authored
    Closes #479.
    
    If T is a template instantiation and `List<T, kind<T>()>` is the return or
    parameter type of a function (notably get, set, init, adopt, and disown
    functions) defined out-of-line from its definition, MSVC fails to match
    the definition with its declaration. This seems to be another consequence
    of poor expression SFINAE / constexpr support.
    
    An easy workaround is to avoid using kind<T>() and instead manually
    instantiate Kind_<T>, as in lite mode. When I converted Kind_<T> to use
    VoidSfinae, I had thought this solved the problem, but clearly there are
    still edge cases.
    c4629e37
common.h 26.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.

#ifndef CAPNP_COMMON_H_
#define CAPNP_COMMON_H_

#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
#pragma GCC system_header
#endif

#include <inttypes.h>
#include <kj/string.h>
#include <kj/memory.h>

#if CAPNP_DEBUG_TYPES
#include <kj/units.h>
#endif

namespace capnp {

#define CAPNP_VERSION_MAJOR 0
#define CAPNP_VERSION_MINOR 7
#define CAPNP_VERSION_MICRO 0

#define CAPNP_VERSION \
  (CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)

#ifndef CAPNP_LITE
#define CAPNP_LITE 0
#endif

typedef unsigned int uint;

struct Void {
  // Type used for Void fields.  Using C++'s "void" type creates a bunch of issues since it behaves
  // differently from other types.

  inline constexpr bool operator==(Void other) const { return true; }
  inline constexpr bool operator!=(Void other) const { return false; }
};

static constexpr Void VOID = Void();
// Constant value for `Void`,  which is an empty struct.

inline kj::StringPtr KJ_STRINGIFY(Void) { return "void"; }

struct Text;
struct Data;

enum class Kind: uint8_t {
  PRIMITIVE,
  BLOB,
  ENUM,
  STRUCT,
  UNION,
  INTERFACE,
  LIST,

  OTHER
  // Some other type which is often a type parameter to Cap'n Proto templates, but which needs
  // special handling. This includes types like AnyPointer, Dynamic*, etc.
};

enum class Style: uint8_t {
  PRIMITIVE,
  POINTER,      // other than struct
  STRUCT,
  CAPABILITY
};

enum class ElementSize: uint8_t {
  // Size of a list element.

  VOID = 0,
  BIT = 1,
  BYTE = 2,
  TWO_BYTES = 3,
  FOUR_BYTES = 4,
  EIGHT_BYTES = 5,

  POINTER = 6,

  INLINE_COMPOSITE = 7
};

enum class PointerType {
  // Various wire types a pointer field can take

  NULL_,
  // Should be NULL, but that's #defined in stddef.h

  STRUCT,
  LIST,
  CAPABILITY
};

namespace schemas {

template <typename T>
struct EnumInfo;

}  // namespace schemas

namespace _ {  // private

template <typename T, typename = void> struct Kind_;

template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };

template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsStruct>> {
  static constexpr Kind kind = Kind::STRUCT;
};
template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsInterface>> {
  static constexpr Kind kind = Kind::INTERFACE;
};
template <typename T> struct Kind_<T, kj::VoidSfinae<typename schemas::EnumInfo<T>::IsEnum>> {
  static constexpr Kind kind = Kind::ENUM;
};

}  // namespace _ (private)

template <typename T, Kind k = _::Kind_<T>::kind>
inline constexpr Kind kind() {
  // This overload of kind() matches types which have a Kind_ specialization.

  return k;
}

#if _MSC_VER

#define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind
// Avoid constexpr methods in MSVC (it remains buggy in many situations).

#else  // _MSC_VER

#define CAPNP_KIND(T) ::capnp::kind<T>()
// Use this macro rather than kind<T>() in any code which must work in MSVC.

#endif  // _MSC_VER, else

#if !CAPNP_LITE

template <typename T, Kind k = kind<T>()>
inline constexpr Style style() {
  return k == Kind::PRIMITIVE || k == Kind::ENUM ? Style::PRIMITIVE
       : k == Kind::STRUCT ? Style::STRUCT
       : k == Kind::INTERFACE ? Style::CAPABILITY : Style::POINTER;
}

#endif  // !CAPNP_LITE

template <typename T, Kind k = CAPNP_KIND(T)>
struct List;

#if _MSC_VER

template <typename T, Kind k>
struct List {};
// For some reason, without this declaration, MSVC will error out on some uses of List
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.

#endif

template <typename T> struct ListElementType_;
template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
template <typename T> using ListElementType = typename ListElementType_<T>::Type;

namespace _ {  // private
template <typename T, Kind k> struct Kind_<List<T, k>> {
  static constexpr Kind kind = Kind::LIST;
};
}  // namespace _ (private)

template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; };
template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
// The type returned by List<T>::Reader::operator[].

template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; };
template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
// The type returned by List<T>::Builder::operator[].

template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;};
template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;

template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_;
template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };

template <typename T>
using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;

template <typename T>
using FromReader = typename kj::Decay<T>::Reads;
// FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).

template <typename T>
using FromBuilder = typename kj::Decay<T>::Builds;
// FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).

template <typename T>
using FromPipeline = typename kj::Decay<T>::Pipelines;
// FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type).

template <typename T>
using FromClient = typename kj::Decay<T>::Calls;
// FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).

template <typename T>
using FromServer = typename kj::Decay<T>::Serves;
// FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).

template <typename T, typename = void>
struct FromAny_;

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromReader<T>>> {
  using Type = FromReader<T>;
};

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromBuilder<T>>> {
  using Type = FromBuilder<T>;
};

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromPipeline<T>>> {
  using Type = FromPipeline<T>;
};

// Note that T::Client is covered by FromReader

template <typename T>
struct FromAny_<kj::Own<T>, kj::VoidSfinae<FromServer<T>>> {
  using Type = FromServer<T>;
};

template <typename T>
struct FromAny_<T,
    kj::EnableIf<_::Kind_<T>::kind == Kind::PRIMITIVE || _::Kind_<T>::kind == Kind::ENUM>> {
  // TODO(msvc): Ideally the EnableIf condition would be `style<T>() == Style::PRIMITIVE`, but MSVC
  // cannot yet use style<T>() in this constexpr context.

  using Type = kj::Decay<T>;
};

template <typename T>
using FromAny = typename FromAny_<T>::Type;
// Given any Cap'n Proto value type as an input, return the Cap'n Proto base type. That is:
//
//     Foo::Reader -> Foo
//     Foo::Builder -> Foo
//     Foo::Pipeline -> Foo
//     Foo::Client -> Foo
//     Own<Foo::Server> -> Foo
//     uint32_t -> uint32_t

namespace _ {  // private

template <typename T, Kind k = CAPNP_KIND(T)>
struct PointerHelpers;

#if _MSC_VER

template <typename T, Kind k>
struct PointerHelpers {};
// For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.

#endif

}  // namespace _ (private)

struct MessageSize {
  // Size of a message.  Every struct type has a method `.totalSize()` that returns this.
  uint64_t wordCount;
  uint capCount;
};

// =======================================================================================
// Raw memory types and measures

using kj::byte;

class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
// word is an opaque type with size of 64 bits.  This type is useful only to make pointer
// arithmetic clearer.  Since the contents are private, the only way to access them is to first
// reinterpret_cast to some other pointer type.
//
// Copying is disallowed because you should always use memcpy().  Otherwise, you may run afoul of
// aliasing rules.
//
// A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
// that type.

static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");

#if CAPNP_DEBUG_TYPES
// Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types.  Otherwise, plain integers are
// used.  All the code should still operate exactly the same, we just lose compile-time checking.
// Note that this will also change symbol names, so it's important that the library and any clients
// be compiled with the same setting here.
//
// We disable this by default to reduce symbol name size and avoid any possibility of the compiler
// failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
// during development and testing.

namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }

template <uint width, typename T = uint>
using BitCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::BitLabel>;
template <uint width, typename T = uint>
using ByteCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, byte>;
template <uint width, typename T = uint>
using WordCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, word>;
template <uint width, typename T = uint>
using ElementCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::ElementLabel>;
template <uint width, typename T = uint>
using WirePointerCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::WirePointer>;

typedef BitCountN<8, uint8_t> BitCount8;
typedef BitCountN<16, uint16_t> BitCount16;
typedef BitCountN<32, uint32_t> BitCount32;
typedef BitCountN<64, uint64_t> BitCount64;
typedef BitCountN<sizeof(uint) * 8, uint> BitCount;

typedef ByteCountN<8, uint8_t> ByteCount8;
typedef ByteCountN<16, uint16_t> ByteCount16;
typedef ByteCountN<32, uint32_t> ByteCount32;
typedef ByteCountN<64, uint64_t> ByteCount64;
typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;

typedef WordCountN<8, uint8_t> WordCount8;
typedef WordCountN<16, uint16_t> WordCount16;
typedef WordCountN<32, uint32_t> WordCount32;
typedef WordCountN<64, uint64_t> WordCount64;
typedef WordCountN<sizeof(uint) * 8, uint> WordCount;

typedef ElementCountN<8, uint8_t> ElementCount8;
typedef ElementCountN<16, uint16_t> ElementCount16;
typedef ElementCountN<32, uint32_t> ElementCount32;
typedef ElementCountN<64, uint64_t> ElementCount64;
typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;

typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;

template <uint width>
using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
template <uint width>
using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
template <uint width>
using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
template <uint width>
using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());

using kj::bounded;
using kj::unbound;
using kj::unboundAs;
using kj::unboundMax;
using kj::unboundMaxBits;
using kj::assertMax;
using kj::assertMaxBits;
using kj::upgradeBound;
using kj::ThrowOverflow;
using kj::assumeBits;
using kj::assumeMax;
using kj::subtractChecked;
using kj::trySubtract;

template <typename T, typename U>
inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
  return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
  return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}

template <typename T, typename U>
inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
  return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
  return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}

constexpr auto BITS = kj::unit<BitCountN<1>>();
constexpr auto BYTES = kj::unit<ByteCountN<1>>();
constexpr auto WORDS = kj::unit<WordCountN<1>>();
constexpr auto ELEMENTS = kj::unit<ElementCountN<1>>();
constexpr auto POINTERS = kj::unit<WirePointerCountN<1>>();

constexpr auto ZERO = kj::bounded<0>();
constexpr auto ONE = kj::bounded<1>();

// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr auto BITS_PER_BYTE KJ_UNUSED = bounded<8>() * BITS / BYTES;
constexpr auto BITS_PER_WORD KJ_UNUSED = bounded<64>() * BITS / WORDS;
constexpr auto BYTES_PER_WORD KJ_UNUSED = bounded<8>() * BYTES / WORDS;

constexpr auto BITS_PER_POINTER KJ_UNUSED = bounded<64>() * BITS / POINTERS;
constexpr auto BYTES_PER_POINTER KJ_UNUSED = bounded<8>() * BYTES / POINTERS;
constexpr auto WORDS_PER_POINTER KJ_UNUSED = ONE * WORDS / POINTERS;

constexpr auto POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;

constexpr uint SEGMENT_WORD_COUNT_BITS = 29;      // Number of words in a segment.
constexpr uint LIST_ELEMENT_COUNT_BITS = 29;      // Number of elements in a list.
constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16;  // Number of words in a Struct data section.
constexpr uint STRUCT_POINTER_COUNT_BITS = 16;    // Number of pointers in a Struct pointer section.
constexpr uint BLOB_SIZE_BITS = 29;               // Number of bytes in a blob.

typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;

constexpr auto MAX_SEGMENT_WORDS =
    bounded<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>()>() * WORDS;
constexpr auto MAX_LIST_ELEMENTS =
    bounded<kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>()>() * ELEMENTS;
constexpr auto MAX_STUCT_DATA_WORDS =
    bounded<kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>()>() * WORDS;
constexpr auto MAX_STRUCT_POINTER_COUNT =
    bounded<kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>()>() * POINTERS;

using StructDataBitCount = decltype(WordCountN<STRUCT_POINTER_COUNT_BITS>() * BITS_PER_WORD);
// Number of bits in a Struct data segment (should come out to BitCountN<22>).

using StructDataOffset = decltype(StructDataBitCount() * (ONE * ELEMENTS / BITS));
using StructPointerOffset = StructPointerCount;
// Type of a field offset.

inline StructDataOffset assumeDataOffset(uint32_t offset) {
  return assumeMax(MAX_STUCT_DATA_WORDS * BITS_PER_WORD * (ONE * ELEMENTS / BITS),
                   bounded(offset) * ELEMENTS);
}

inline StructPointerOffset assumePointerOffset(uint32_t offset) {
  return assumeMax(MAX_STRUCT_POINTER_COUNT, bounded(offset) * POINTERS);
}

constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
typedef kj::Quantity<kj::Bounded<MAX_TEXT_SIZE, uint>, byte> TextSize;
// Not including NUL terminator.

template <typename T>
inline KJ_CONSTEXPR() decltype(bounded<sizeof(T)>() * BYTES / ELEMENTS) bytesPerElement() {
  return bounded<sizeof(T)>() * BYTES / ELEMENTS;
}

template <typename T>
inline KJ_CONSTEXPR() decltype(bounded<sizeof(T) * 8>() * BITS / ELEMENTS) bitsPerElement() {
  return bounded<sizeof(T) * 8>() * BITS / ELEMENTS;
}

template <typename T, uint maxN>
inline constexpr kj::Quantity<kj::Bounded<maxN, size_t>, T>
intervalLength(const T* a, const T* b, kj::Quantity<kj::BoundedConst<maxN>, T>) {
  return kj::assumeMax<maxN>(b - a) * kj::unit<kj::Quantity<kj::BoundedConst<1u>, T>>();
}

template <typename T, typename U>
inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, kj::Quantity<T, U> size) {
  return kj::ArrayPtr<const U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
}
template <typename T, typename U>
inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, kj::Quantity<T, U> size) {
  return kj::ArrayPtr<U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
}

#else

template <uint width, typename T = uint>
using BitCountN = T;
template <uint width, typename T = uint>
using ByteCountN = T;
template <uint width, typename T = uint>
using WordCountN = T;
template <uint width, typename T = uint>
using ElementCountN = T;
template <uint width, typename T = uint>
using WirePointerCountN = T;


// XXX
typedef BitCountN<8, uint8_t> BitCount8;
typedef BitCountN<16, uint16_t> BitCount16;
typedef BitCountN<32, uint32_t> BitCount32;
typedef BitCountN<64, uint64_t> BitCount64;
typedef BitCountN<sizeof(uint) * 8, uint> BitCount;

typedef ByteCountN<8, uint8_t> ByteCount8;
typedef ByteCountN<16, uint16_t> ByteCount16;
typedef ByteCountN<32, uint32_t> ByteCount32;
typedef ByteCountN<64, uint64_t> ByteCount64;
typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;

typedef WordCountN<8, uint8_t> WordCount8;
typedef WordCountN<16, uint16_t> WordCount16;
typedef WordCountN<32, uint32_t> WordCount32;
typedef WordCountN<64, uint64_t> WordCount64;
typedef WordCountN<sizeof(uint) * 8, uint> WordCount;

typedef ElementCountN<8, uint8_t> ElementCount8;
typedef ElementCountN<16, uint16_t> ElementCount16;
typedef ElementCountN<32, uint32_t> ElementCount32;
typedef ElementCountN<64, uint64_t> ElementCount64;
typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;

typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;

template <uint width>
using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
template <uint width>
using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
template <uint width>
using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
template <uint width>
using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());

using kj::ThrowOverflow;
// YYY

template <uint i> inline constexpr uint bounded() { return i; }
template <typename T> inline constexpr T bounded(T i) { return i; }
template <typename T> inline constexpr T unbound(T i) { return i; }

template <typename T, typename U> inline constexpr T unboundAs(U i) { return i; }

template <uint64_t requestedMax, typename T> inline constexpr uint unboundMax(T i) { return i; }
template <uint bits, typename T> inline constexpr uint unboundMaxBits(T i) { return i; }

template <uint newMax, typename T, typename ErrorFunc>
inline T assertMax(T value, ErrorFunc&& func) {
  if (KJ_UNLIKELY(value > newMax)) func();
  return value;
}

template <typename T, typename ErrorFunc>
inline T assertMax(uint newMax, T value, ErrorFunc&& func) {
  if (KJ_UNLIKELY(value > newMax)) func();
  return value;
}

template <uint bits, typename T, typename ErrorFunc = ThrowOverflow>
inline T assertMaxBits(T value, ErrorFunc&& func = ErrorFunc()) {
  if (KJ_UNLIKELY(value > kj::maxValueForBits<bits>())) func();
  return value;
}

template <typename T, typename ErrorFunc = ThrowOverflow>
inline T assertMaxBits(uint bits, T value, ErrorFunc&& func = ErrorFunc()) {
  if (KJ_UNLIKELY(value > (1ull << bits) - 1)) func();
  return value;
}

template <typename T, typename U> inline constexpr T upgradeBound(U i) { return i; }

template <uint bits, typename T> inline constexpr T assumeBits(T i) { return i; }
template <uint64_t max, typename T> inline constexpr T assumeMax(T i) { return i; }

template <typename T, typename U, typename ErrorFunc = ThrowOverflow>
inline auto subtractChecked(T a, U b, ErrorFunc&& errorFunc = ErrorFunc())
    -> decltype(a - b) {
  if (b > a) errorFunc();
  return a - b;
}

template <typename T, typename U>
inline auto trySubtract(T a, U b) -> kj::Maybe<decltype(a - b)> {
  if (b > a) {
    return nullptr;
  } else {
    return a - b;
  }
}

constexpr uint BITS = 1;
constexpr uint BYTES = 1;
constexpr uint WORDS = 1;
constexpr uint ELEMENTS = 1;
constexpr uint POINTERS = 1;

constexpr uint ZERO = 0;
constexpr uint ONE = 1;

// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr uint BITS_PER_BYTE KJ_UNUSED = 8;
constexpr uint BITS_PER_WORD KJ_UNUSED = 64;
constexpr uint BYTES_PER_WORD KJ_UNUSED = 8;

constexpr uint BITS_PER_POINTER KJ_UNUSED = 64;
constexpr uint BYTES_PER_POINTER KJ_UNUSED = 8;
constexpr uint WORDS_PER_POINTER KJ_UNUSED = 1;

// XXX
constexpr uint POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;

constexpr uint SEGMENT_WORD_COUNT_BITS = 29;      // Number of words in a segment.
constexpr uint LIST_ELEMENT_COUNT_BITS = 29;      // Number of elements in a list.
constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16;  // Number of words in a Struct data section.
constexpr uint STRUCT_POINTER_COUNT_BITS = 16;    // Number of pointers in a Struct pointer section.
constexpr uint BLOB_SIZE_BITS = 29;               // Number of bytes in a blob.

typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;
// YYY

constexpr auto MAX_SEGMENT_WORDS = kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>();
constexpr auto MAX_LIST_ELEMENTS = kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>();
constexpr auto MAX_STUCT_DATA_WORDS = kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>();
constexpr auto MAX_STRUCT_POINTER_COUNT = kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>();

typedef uint StructDataBitCount;
typedef uint StructDataOffset;
typedef uint StructPointerOffset;

inline StructDataOffset assumeDataOffset(uint32_t offset) { return offset; }
inline StructPointerOffset assumePointerOffset(uint32_t offset) { return offset; }

constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
typedef uint TextSize;

template <typename T>
inline KJ_CONSTEXPR() size_t bytesPerElement() { return sizeof(T); }

template <typename T>
inline KJ_CONSTEXPR() size_t bitsPerElement() { return sizeof(T) * 8; }

template <typename T>
inline constexpr ptrdiff_t intervalLength(const T* a, const T* b, uint) {
  return b - a;
}

template <typename T, typename U>
inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, T size) {
  return kj::arrayPtr(ptr, size);
}
template <typename T, typename U>
inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, T size) {
  return kj::arrayPtr(ptr, size);
}

#endif

}  // namespace capnp

#endif  // CAPNP_COMMON_H_