1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "string.h"
#include "debug.h"
#include <stdio.h>
#include <float.h>
#include <errno.h>
#include <stdlib.h>
namespace kj {
#if _MSC_VER
#pragma warning(disable: 4996)
// Warns that sprintf() is buffer-overrunny. We know that, it's cool.
#endif
String heapString(size_t size) {
char* buffer = _::HeapArrayDisposer::allocate<char>(size + 1);
buffer[size] = '\0';
return String(buffer, size, _::HeapArrayDisposer::instance);
}
String heapString(const char* value, size_t size) {
char* buffer = _::HeapArrayDisposer::allocate<char>(size + 1);
memcpy(buffer, value, size);
buffer[size] = '\0';
return String(buffer, size, _::HeapArrayDisposer::instance);
}
#define HEXIFY_INT(type, format) \
CappedArray<char, sizeof(type) * 2 + 1> hex(type i) { \
CappedArray<char, sizeof(type) * 2 + 1> result; \
result.setSize(sprintf(result.begin(), format, i)); \
return result; \
}
HEXIFY_INT(unsigned char, "%x");
HEXIFY_INT(unsigned short, "%x");
HEXIFY_INT(unsigned int, "%x");
HEXIFY_INT(unsigned long, "%lx");
HEXIFY_INT(unsigned long long, "%llx");
#undef HEXIFY_INT
namespace _ { // private
StringPtr Stringifier::operator*(decltype(nullptr)) const {
return "nullptr";
}
StringPtr Stringifier::operator*(bool b) const {
return b ? StringPtr("true") : StringPtr("false");
}
#define STRINGIFY_INT(type, format) \
CappedArray<char, sizeof(type) * 3 + 2> Stringifier::operator*(type i) const { \
CappedArray<char, sizeof(type) * 3 + 2> result; \
result.setSize(sprintf(result.begin(), format, i)); \
return result; \
}
STRINGIFY_INT(signed char, "%d");
STRINGIFY_INT(unsigned char, "%u");
STRINGIFY_INT(short, "%d");
STRINGIFY_INT(unsigned short, "%u");
STRINGIFY_INT(int, "%d");
STRINGIFY_INT(unsigned int, "%u");
STRINGIFY_INT(long, "%ld");
STRINGIFY_INT(unsigned long, "%lu");
STRINGIFY_INT(long long, "%lld");
STRINGIFY_INT(unsigned long long, "%llu");
STRINGIFY_INT(const void*, "%p");
#undef STRINGIFY_INT
namespace {
// ----------------------------------------------------------------------
// DoubleToBuffer()
// FloatToBuffer()
// Copied from Protocol Buffers, (C) Google, BSD license.
// Kenton wrote this code originally. The following commentary is
// from the original.
//
// Description: converts a double or float to a string which, if
// passed to NoLocaleStrtod(), will produce the exact same original double
// (except in case of NaN; all NaNs are considered the same value).
// We try to keep the string short but it's not guaranteed to be as
// short as possible.
//
// DoubleToBuffer() and FloatToBuffer() write the text to the given
// buffer and return it. The buffer must be at least
// kDoubleToBufferSize bytes for doubles and kFloatToBufferSize
// bytes for floats. kFastToBufferSize is also guaranteed to be large
// enough to hold either.
//
// We want to print the value without losing precision, but we also do
// not want to print more digits than necessary. This turns out to be
// trickier than it sounds. Numbers like 0.2 cannot be represented
// exactly in binary. If we print 0.2 with a very large precision,
// e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
// On the other hand, if we set the precision too low, we lose
// significant digits when printing numbers that actually need them.
// It turns out there is no precision value that does the right thing
// for all numbers.
//
// Our strategy is to first try printing with a precision that is never
// over-precise, then parse the result with strtod() to see if it
// matches. If not, we print again with a precision that will always
// give a precise result, but may use more digits than necessary.
//
// An arguably better strategy would be to use the algorithm described
// in "How to Print Floating-Point Numbers Accurately" by Steele &
// White, e.g. as implemented by David M. Gay's dtoa(). It turns out,
// however, that the following implementation is about as fast as
// DMG's code. Furthermore, DMG's code locks mutexes, which means it
// will not scale well on multi-core machines. DMG's code is slightly
// more accurate (in that it will never use more digits than
// necessary), but this is probably irrelevant for most users.
//
// Rob Pike and Ken Thompson also have an implementation of dtoa() in
// third_party/fmt/fltfmt.cc. Their implementation is similar to this
// one in that it makes guesses and then uses strtod() to check them.
// Their implementation is faster because they use their own code to
// generate the digits in the first place rather than use snprintf(),
// thus avoiding format string parsing overhead. However, this makes
// it considerably more complicated than the following implementation,
// and it is embedded in a larger library. If speed turns out to be
// an issue, we could re-implement this in terms of their
// implementation.
// ----------------------------------------------------------------------
#ifdef _WIN32
// MSVC has only _snprintf, not snprintf.
//
// MinGW has both snprintf and _snprintf, but they appear to be different
// functions. The former is buggy. When invoked like so:
// char buffer[32];
// snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
// it prints "1.23000e+10". This is plainly wrong: %g should never print
// trailing zeros after the decimal point. For some reason this bug only
// occurs with some input values, not all. In any case, _snprintf does the
// right thing, so we use it.
#define snprintf _snprintf
#endif
inline bool IsNaN(double value) {
// NaN is never equal to anything, even itself.
return value != value;
}
// In practice, doubles should never need more than 24 bytes and floats
// should never need more than 14 (including null terminators), but we
// overestimate to be safe.
static const int kDoubleToBufferSize = 32;
static const int kFloatToBufferSize = 24;
static inline bool IsValidFloatChar(char c) {
return ('0' <= c && c <= '9') ||
c == 'e' || c == 'E' ||
c == '+' || c == '-';
}
void DelocalizeRadix(char* buffer) {
// Fast check: if the buffer has a normal decimal point, assume no
// translation is needed.
if (strchr(buffer, '.') != NULL) return;
// Find the first unknown character.
while (IsValidFloatChar(*buffer)) ++buffer;
if (*buffer == '\0') {
// No radix character found.
return;
}
// We are now pointing at the locale-specific radix character. Replace it
// with '.'.
*buffer = '.';
++buffer;
if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
// It appears the radix was a multi-byte character. We need to remove the
// extra bytes.
char* target = buffer;
do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
memmove(target, buffer, strlen(buffer) + 1);
}
}
void RemovePlus(char* buffer) {
// Remove any + characters because they are redundant and ugly.
for (;;) {
buffer = strchr(buffer, '+');
if (buffer == NULL) {
return;
}
memmove(buffer, buffer + 1, strlen(buffer + 1) + 1);
}
}
#if _WIN32
void RemoveE0(char* buffer) {
// Remove redundant leading 0's after an e, e.g. 1e012. Seems to appear on
// Windows.
for (;;) {
buffer = strstr(buffer, "e0");
if (buffer == NULL || buffer[2] < '0' || buffer[2] > '9') {
return;
}
memmove(buffer + 1, buffer + 2, strlen(buffer + 2) + 1);
}
}
#endif
char* DoubleToBuffer(double value, char* buffer) {
// DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
// platforms these days. Just in case some system exists where DBL_DIG
// is significantly larger -- and risks overflowing our buffer -- we have
// this assert.
static_assert(DBL_DIG < 20, "DBL_DIG is too big.");
if (value == inf()) {
strcpy(buffer, "inf");
return buffer;
} else if (value == -inf()) {
strcpy(buffer, "-inf");
return buffer;
} else if (IsNaN(value)) {
strcpy(buffer, "nan");
return buffer;
}
int snprintf_result KJ_UNUSED =
snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
// The snprintf should never overflow because the buffer is significantly
// larger than the precision we asked for.
KJ_DASSERT(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
// We need to make parsed_value volatile in order to force the compiler to
// write it out to the stack. Otherwise, it may keep the value in a
// register, and if it does that, it may keep it as a long double instead
// of a double. This long double may have extra bits that make it compare
// unequal to "value" even though it would be exactly equal if it were
// truncated to a double.
volatile double parsed_value = strtod(buffer, NULL);
if (parsed_value != value) {
int snprintf_result2 KJ_UNUSED =
snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
// Should never overflow; see above.
KJ_DASSERT(snprintf_result2 > 0 && snprintf_result2 < kDoubleToBufferSize);
}
DelocalizeRadix(buffer);
RemovePlus(buffer);
#if _WIN32
RemoveE0(buffer);
#endif // _WIN32
return buffer;
}
bool safe_strtof(const char* str, float* value) {
char* endptr;
errno = 0; // errno only gets set on errors
#if defined(_WIN32) || defined (__hpux) // has no strtof()
*value = static_cast<float>(strtod(str, &endptr));
#else
*value = strtof(str, &endptr);
#endif
return *str != 0 && *endptr == 0 && errno == 0;
}
char* FloatToBuffer(float value, char* buffer) {
// FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
// platforms these days. Just in case some system exists where FLT_DIG
// is significantly larger -- and risks overflowing our buffer -- we have
// this assert.
static_assert(FLT_DIG < 10, "FLT_DIG is too big");
if (value == inf()) {
strcpy(buffer, "inf");
return buffer;
} else if (value == -inf()) {
strcpy(buffer, "-inf");
return buffer;
} else if (IsNaN(value)) {
strcpy(buffer, "nan");
return buffer;
}
int snprintf_result KJ_UNUSED =
snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
// The snprintf should never overflow because the buffer is significantly
// larger than the precision we asked for.
KJ_DASSERT(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
float parsed_value;
if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
int snprintf_result2 KJ_UNUSED =
snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);
// Should never overflow; see above.
KJ_DASSERT(snprintf_result2 > 0 && snprintf_result2 < kFloatToBufferSize);
}
DelocalizeRadix(buffer);
RemovePlus(buffer);
return buffer;
}
} // namespace
CappedArray<char, kFloatToBufferSize> Stringifier::operator*(float f) const {
CappedArray<char, kFloatToBufferSize> result;
result.setSize(strlen(FloatToBuffer(f, result.begin())));
return result;
}
CappedArray<char, kDoubleToBufferSize> Stringifier::operator*(double f) const {
CappedArray<char, kDoubleToBufferSize> result;
result.setSize(strlen(DoubleToBuffer(f, result.begin())));
return result;
}
} // namespace _ (private)
} // namespace kj