1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright (c) 2016 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
// This file implements TLS (aka SSL) encrypted networking. It is actually a wrapper, currently
// around OpenSSL / BoringSSL / LibreSSL, but the interface is intended to remain
// implementation-agnostic.
//
// Unlike OpenSSL's API, the API defined in this file is intended to be hard to use wrong. Good
// ciphers and settings are used by default. Certificates validation is performed automatically
// and cannot be bypassed.
#include <kj/async-io.h>
namespace kj {
class TlsPrivateKey;
class TlsCertificate;
struct TlsKeypair;
class TlsSniCallback;
enum class TlsVersion {
SSL_3, // avoid; cryptographically broken
TLS_1_0,
TLS_1_1,
TLS_1_2
};
class TlsContext {
// TLS system. Allocate one of these, configure it with the proper keys and certificates (or
// use the defaults), and then use it to wrap the standard KJ network interfaces in
// implementations that transparently use TLS.
public:
struct Options {
Options();
// Initializes all values to reasonable defaults.
bool useSystemTrustStore;
// Whether or not to trust the system's default trust store. Default: true.
bool verifyClients;
// If true, when acting as a server, require the client to present a certificate. The
// certificate must be signed by one of the trusted CAs, otherwise the client will be rejected.
// (Typically you should set `useSystemTrustStore` false when using this flag, and specify
// your specific trusted CAs in `trustedCertificates`.)
// Default: false
kj::ArrayPtr<const TlsCertificate> trustedCertificates;
// Additional certificates which should be trusted. Default: none.
TlsVersion minVersion;
// Minimum version. Defaults to minimum version that hasn't been cryptographically broken.
// If you override this, consider doing:
//
// options.minVersion = kj::max(myVersion, options.minVersion);
kj::StringPtr cipherList;
// OpenSSL cipher list string. The default is a curated list designed to be compatible with
// almost all software in curent use (specifically, based on Mozilla's "intermediate"
// recommendations). The defaults will change in future versions of this library to account
// for the latest cryptanalysis.
//
// Generally you should only specify your own `cipherList` if:
// - You have extreme backwards-compatibility needs and wish to enable obsolete and/or broken
// algorithms.
// - You need quickly to disable an algorithm recently discovered to be broken.
kj::Maybe<const TlsKeypair&> defaultKeypair;
// Default keypair to use for all connections. Required for servers; optional for clients.
kj::Maybe<TlsSniCallback&> sniCallback;
// Callback that can be used to choose a different key/certificate based on the specific
// hostname requested by the client.
};
TlsContext(Options options = Options());
~TlsContext() noexcept(false);
KJ_DISALLOW_COPY(TlsContext);
kj::Promise<kj::Own<kj::AsyncIoStream>> wrapServer(kj::Own<kj::AsyncIoStream> stream);
// Upgrade a regular network stream to TLS and begin the initial handshake as the server. The
// returned promise resolves when the handshake has completed successfully.
kj::Promise<kj::Own<kj::AsyncIoStream>> wrapClient(
kj::Own<kj::AsyncIoStream> stream, kj::StringPtr expectedServerHostname);
// Upgrade a regular network stream to TLS and begin the initial handshake as a client. The
// returned promise resolves when the handshake has completed successfully, including validating
// the server's certificate.
//
// You must specify the server's hostname. This is used for two purposes:
// 1. It is sent to the server in the initial handshake via the TLS SNI extension, so that a
// server serving multiple hosts knows which certificate to use.
// 2. The server's certificate is validated against this hostname. If validation fails, the
// promise returned by wrapClient() will be broken; you'll never get a stream.
kj::Own<kj::ConnectionReceiver> wrapPort(kj::Own<kj::ConnectionReceiver> port);
// Upgrade a ConnectionReceiver to one that automatically upgrades all accepted connections to
// TLS (acting as the server).
kj::Own<kj::Network> wrapNetwork(kj::Network& network);
// Upgrade a Network to one that automatically upgrades all connections to TLS. The network will
// only accept addresses of the form "hostname" and "hostname:port" (it does not accept raw IP
// addresses). It will automatically use SNI and verify certificates based on these hostnames.
private:
void* ctx; // actually type SSL_CTX, but we don't want to #include the OpenSSL headers here
struct SniCallback;
};
class TlsPrivateKey {
// A private key suitable for use in a TLS server.
public:
TlsPrivateKey(kj::ArrayPtr<const byte> asn1);
// Parse a single binary (ASN1) private key. Supports PKCS8 keys as well as "traditional format"
// RSA and DSA keys. Does not accept encrypted keys; it is the caller's responsibility to
// decrypt.
TlsPrivateKey(kj::StringPtr pem, kj::Maybe<kj::StringPtr> password = nullptr);
// Parse a single PEM-encoded private key. Supports PKCS8 keys as well as "traditional format"
// RSA and DSA keys. A password may optionally be provided and will be used if the key is
// encrypted.
~TlsPrivateKey() noexcept(false);
TlsPrivateKey(const TlsPrivateKey& other);
TlsPrivateKey& operator=(const TlsPrivateKey& other);
// Copy-by-refcount.
inline TlsPrivateKey(TlsPrivateKey&& other): pkey(other.pkey) { other.pkey = nullptr; }
inline TlsPrivateKey& operator=(TlsPrivateKey&& other) {
pkey = other.pkey; other.pkey = nullptr;
return *this;
}
private:
void* pkey; // actually type EVP_PKEY*
friend class TlsContext;
static int passwordCallback(char* buf, int size, int rwflag, void* u);
};
class TlsCertificate {
// A TLS certificate, possibly with chained intermediate certificates.
public:
TlsCertificate(kj::ArrayPtr<const byte> asn1);
// Parse a single binary (ASN1) X509 certificate.
TlsCertificate(kj::ArrayPtr<const kj::ArrayPtr<const byte>> asn1);
// Parse a chain of binary (ASN1) X509 certificates.
TlsCertificate(kj::StringPtr pem);
// Parse a PEM-encode X509 certificate or certificate chain. A chain can be constructed by
// concatenating multiple PEM-encoded certificates, starting with the leaf certificate.
~TlsCertificate() noexcept(false);
TlsCertificate(const TlsCertificate& other);
TlsCertificate& operator=(const TlsCertificate& other);
// Copy-by-refcount.
inline TlsCertificate(TlsCertificate&& other) {
memcpy(chain, other.chain, sizeof(chain));
memset(other.chain, 0, sizeof(chain));
}
inline TlsCertificate& operator=(TlsCertificate&& other) {
memcpy(chain, other.chain, sizeof(chain));
memset(other.chain, 0, sizeof(chain));
return *this;
}
private:
void* chain[10];
// Actually type X509*[10].
//
// Note that OpenSSL has a default maximum cert chain length of 10. Although configurable at
// runtime, you'd actually have to convince the _peer_ to reconfigure, which is unlikely except
// in specific use cases. So to avoid excess allocations we just assume a max of 10 certs.
//
// If this proves to be a problem, we should maybe use STACK_OF(X509) here, but stacks are not
// refcounted -- the X509_chain_up_ref() function actually allocates a new stack and uprefs all
// the certs.
friend class TlsContext;
};
struct TlsKeypair {
// A pair of a private key and a certificate, for use by a server.
TlsPrivateKey privateKey;
TlsCertificate certificate;
};
class TlsSniCallback {
// Callback object to implement Server Name Indication, in which the server is able to decide
// what key and certificate to use based on the hostname that the client is requesting.
//
// TODO(someday): Currently this callback is synchronous, because the OpenSSL API seems to be
// synchronous. Other people (e.g. Node) have figured out how to do it asynchronously, but
// it's unclear to me if and how this is possible while using the OpenSSL APIs. It looks like
// Node may be manually parsing the ClientHello message rather than relying on OpenSSL. We
// could do that but it's too much work for today.
public:
virtual kj::Maybe<TlsKeypair> getKey(kj::StringPtr hostname) = 0;
// Get the key to use for `hostname`. Null return means use the default from
// TlsContext::Options::defaultKeypair.
};
} // namespace kj