encoding.c++ 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2017 Cloudflare, Inc.; Sandstorm Development Group, Inc.; and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#include "encoding.h"
#include "vector.h"
#include "debug.h"

namespace kj {

namespace {

#define GOTO_ERROR_IF(cond) if (KJ_UNLIKELY(cond)) goto error

inline void addChar32(Vector<char16_t>& vec, char32_t u) {
  // Encode as surrogate pair.
  u -= 0x10000;
  vec.add(0xd800 | (u >> 10));
  vec.add(0xdc00 | (u & 0x03ff));
}

inline void addChar32(Vector<char32_t>& vec, char32_t u) {
  vec.add(u);
}

template <typename T>
44
EncodingResult<Array<T>> encodeUtf(ArrayPtr<const char> text, bool nulTerminate) {
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  Vector<T> result(text.size() + nulTerminate);
  bool hadErrors = false;

  size_t i = 0;
  while (i < text.size()) {
    byte c = text[i++];
    if (c < 0x80) {
      // 0xxxxxxx -- ASCII
      result.add(c);
      continue;
    } else if (KJ_UNLIKELY(c < 0xc0)) {
      // 10xxxxxx -- malformed continuation byte
      goto error;
    } else if (c < 0xe0) {
      // 110xxxxx -- 2-byte
      byte c2;
      GOTO_ERROR_IF(i == text.size() || ((c2 = text[i]) & 0xc0) != 0x80); ++i;
      char16_t u = (static_cast<char16_t>(c  & 0x1f) <<  6)
                 | (static_cast<char16_t>(c2 & 0x3f)      );

      // Disallow overlong sequence.
      GOTO_ERROR_IF(u < 0x80);

      result.add(u);
      continue;
    } else if (c < 0xf0) {
      // 1110xxxx -- 3-byte
      byte c2, c3;
      GOTO_ERROR_IF(i == text.size() || ((c2 = text[i]) & 0xc0) != 0x80); ++i;
      GOTO_ERROR_IF(i == text.size() || ((c3 = text[i]) & 0xc0) != 0x80); ++i;
      char16_t u = (static_cast<char16_t>(c  & 0x0f) << 12)
                 | (static_cast<char16_t>(c2 & 0x3f) <<  6)
                 | (static_cast<char16_t>(c3 & 0x3f)      );

      // Disallow overlong sequence.
      GOTO_ERROR_IF(u < 0x0800);

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
      // Flag surrogate pair code points as errors, but allow them through.
      if (KJ_UNLIKELY((u & 0xf800) == 0xd800)) {
        if (result.size() > 0 &&
            (u & 0xfc00) == 0xdc00 &&
            (result.back() & 0xfc00) == 0xd800) {
          // Whoops, the *previous* character was also an invalid surrogate, and if we add this
          // one too, they'll form a valid surrogate pair. If we allowed this, then it would mean
          // invalid UTF-8 round-tripped to UTF-16 and back could actually change meaning entirely.
          // OTOH, the reason we allow dangling surrogates is to allow invalid UTF-16 to round-trip
          // to UTF-8 without loss, but if the original UTF-16 had a valid surrogate pair, it would
          // have been encoded as a valid single UTF-8 codepoint, not as separate UTF-8 codepoints
          // for each surrogate.
          goto error;
        }

        hadErrors = true;
      }
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

      result.add(u);
      continue;
    } else if (c < 0xf8) {
      // 11110xxx -- 4-byte
      byte c2, c3, c4;
      GOTO_ERROR_IF(i == text.size() || ((c2 = text[i]) & 0xc0) != 0x80); ++i;
      GOTO_ERROR_IF(i == text.size() || ((c3 = text[i]) & 0xc0) != 0x80); ++i;
      GOTO_ERROR_IF(i == text.size() || ((c4 = text[i]) & 0xc0) != 0x80); ++i;
      char32_t u = (static_cast<char32_t>(c  & 0x07) << 18)
                 | (static_cast<char32_t>(c2 & 0x3f) << 12)
                 | (static_cast<char32_t>(c3 & 0x3f) <<  6)
                 | (static_cast<char32_t>(c4 & 0x3f)      );

      // Disallow overlong sequence.
      GOTO_ERROR_IF(u < 0x10000);

      // Unicode ends at U+10FFFF
      GOTO_ERROR_IF(u >= 0x110000);

      addChar32(result, u);
      continue;
    } else {
      // 5-byte and 6-byte sequences are not legal as they'd result in codepoints outside the
      // range of Unicode.
      goto error;
    }

  error:
    result.add(0xfffd);
    hadErrors = true;
    // Ignore all continuation bytes.
    while (i < text.size() && (text[i] & 0xc0) == 0x80) {
      ++i;
    }
  }

  if (nulTerminate) result.add(0);

  return { result.releaseAsArray(), hadErrors };
}

}  // namespace

143
EncodingResult<Array<char16_t>> encodeUtf16(ArrayPtr<const char> text, bool nulTerminate) {
144 145 146
  return encodeUtf<char16_t>(text, nulTerminate);
}

147
EncodingResult<Array<char32_t>> encodeUtf32(ArrayPtr<const char> text, bool nulTerminate) {
148 149 150
  return encodeUtf<char32_t>(text, nulTerminate);
}

151
EncodingResult<String> decodeUtf16(ArrayPtr<const char16_t> utf16) {
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  Vector<char> result(utf16.size() + 1);
  bool hadErrors = false;

  size_t i = 0;
  while (i < utf16.size()) {
    char16_t u = utf16[i++];

    if (u < 0x80) {
      result.add(u);
      continue;
    } else if (u < 0x0800) {
      result.addAll<std::initializer_list<char>>({
        static_cast<char>(((u >>  6)       ) | 0xc0),
        static_cast<char>(((u      ) & 0x3f) | 0x80)
      });
      continue;
    } else if ((u & 0xf800) == 0xd800) {
      // surrogate pair
      char16_t u2;
171 172 173 174 175 176
      if (KJ_UNLIKELY(i == utf16.size()                         // missing second half
                   || (u & 0x0400) != 0                         // first half in wrong range
                   || ((u2 = utf16[i]) & 0xfc00) != 0xdc00)) {  // second half in wrong range
        hadErrors = true;
        goto threeByte;
      }
177 178 179 180 181 182 183 184 185 186 187
      ++i;

      char32_t u32 = (((u & 0x03ff) << 10) | (u2 & 0x03ff)) + 0x10000;
      result.addAll<std::initializer_list<char>>({
        static_cast<char>(((u32 >> 18)       ) | 0xf0),
        static_cast<char>(((u32 >> 12) & 0x3f) | 0x80),
        static_cast<char>(((u32 >>  6) & 0x3f) | 0x80),
        static_cast<char>(((u32      ) & 0x3f) | 0x80)
      });
      continue;
    } else {
188
    threeByte:
189 190 191 192 193 194 195 196 197 198 199 200 201
      result.addAll<std::initializer_list<char>>({
        static_cast<char>(((u >> 12)       ) | 0xe0),
        static_cast<char>(((u >>  6) & 0x3f) | 0x80),
        static_cast<char>(((u      ) & 0x3f) | 0x80)
      });
      continue;
    }
  }

  result.add(0);
  return { String(result.releaseAsArray()), hadErrors };
}

202
EncodingResult<String> decodeUtf32(ArrayPtr<const char32_t> utf16) {
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  Vector<char> result(utf16.size() + 1);
  bool hadErrors = false;

  size_t i = 0;
  while (i < utf16.size()) {
    char32_t u = utf16[i++];

    if (u < 0x80) {
      result.add(u);
      continue;
    } else if (u < 0x0800) {
      result.addAll<std::initializer_list<char>>({
        static_cast<char>(((u >>  6)       ) | 0xc0),
        static_cast<char>(((u      ) & 0x3f) | 0x80)
      });
      continue;
    } else if (u < 0x10000) {
220 221 222 223
      if (KJ_UNLIKELY((u & 0xfffff800) == 0xd800)) {
        // no surrogates allowed in utf-32
        hadErrors = true;
      }
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      result.addAll<std::initializer_list<char>>({
        static_cast<char>(((u >> 12)       ) | 0xe0),
        static_cast<char>(((u >>  6) & 0x3f) | 0x80),
        static_cast<char>(((u      ) & 0x3f) | 0x80)
      });
      continue;
    } else {
      GOTO_ERROR_IF(u >= 0x110000);  // outside Unicode range
      result.addAll<std::initializer_list<char>>({
        static_cast<char>(((u >> 18)       ) | 0xf0),
        static_cast<char>(((u >> 12) & 0x3f) | 0x80),
        static_cast<char>(((u >>  6) & 0x3f) | 0x80),
        static_cast<char>(((u      ) & 0x3f) | 0x80)
      });
      continue;
    }

  error:
    result.addAll(StringPtr(u8"\ufffd"));
    hadErrors = true;
  }

  result.add(0);
  return { String(result.releaseAsArray()), hadErrors };
}

250 251
namespace {

252 253 254 255 256 257 258
#if __GNUC__ >= 8 && !__clang__
// GCC 8's new class-memaccess warning rightly dislikes the following hacks, but we're really sure
// we want to allow them so disable the warning.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wclass-memaccess"
#endif

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
template <typename To, typename From>
Array<To> coerceTo(Array<From>&& array) {
  static_assert(sizeof(To) == sizeof(From), "incompatible coercion");
  Array<wchar_t> result;
  memcpy(&result, &array, sizeof(array));
  memset(&array, 0, sizeof(array));
  return result;
}

template <typename To, typename From>
ArrayPtr<To> coerceTo(ArrayPtr<From> array) {
  static_assert(sizeof(To) == sizeof(From), "incompatible coercion");
  return arrayPtr(reinterpret_cast<To*>(array.begin()), array.size());
}

template <typename To, typename From>
EncodingResult<Array<To>> coerceTo(EncodingResult<Array<From>>&& result) {
  return { coerceTo<To>(Array<From>(kj::mv(result))), result.hadErrors };
}

279 280 281 282
#if __GNUC__ >= 8 && !__clang__
#pragma GCC diagnostic pop
#endif

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
template <size_t s>
struct WideConverter;

template <>
struct WideConverter<sizeof(char)> {
  typedef char Type;

  static EncodingResult<Array<char>> encode(ArrayPtr<const char> text, bool nulTerminate) {
    auto result = heapArray<char>(text.size() + nulTerminate);
    memcpy(result.begin(), text.begin(), text.size());
    if (nulTerminate) result.back() = 0;
    return { kj::mv(result), false };
  }

  static EncodingResult<kj::String> decode(ArrayPtr<const char> text) {
    return { kj::heapString(text), false };
  }
};

template <>
struct WideConverter<sizeof(char16_t)> {
  typedef char16_t Type;

  static inline EncodingResult<Array<char16_t>> encode(
      ArrayPtr<const char> text, bool nulTerminate) {
    return encodeUtf16(text, nulTerminate);
  }

  static inline EncodingResult<kj::String> decode(ArrayPtr<const char16_t> text) {
    return decodeUtf16(text);
  }
};

template <>
struct WideConverter<sizeof(char32_t)> {
  typedef char32_t Type;

  static inline EncodingResult<Array<char32_t>> encode(
      ArrayPtr<const char> text, bool nulTerminate) {
    return encodeUtf32(text, nulTerminate);
  }

  static inline EncodingResult<kj::String> decode(ArrayPtr<const char32_t> text) {
    return decodeUtf32(text);
  }
};

}  // namespace

EncodingResult<Array<wchar_t>> encodeWideString(ArrayPtr<const char> text, bool nulTerminate) {
  return coerceTo<wchar_t>(WideConverter<sizeof(wchar_t)>::encode(text, nulTerminate));
}
EncodingResult<String> decodeWideString(ArrayPtr<const wchar_t> wide) {
  using Converter = WideConverter<sizeof(wchar_t)>;
  return Converter::decode(coerceTo<const Converter::Type>(wide));
}

340 341 342 343 344
// =======================================================================================

namespace {

const char HEX_DIGITS[] = "0123456789abcdef";
345 346 347 348 349
// Maps integer in the range [0,16) to a hex digit.

const char HEX_DIGITS_URI[] = "0123456789ABCDEF";
// RFC 3986 section 2.1 says "For consistency, URI producers and normalizers should use uppercase
// hexadecimal digits for all percent-encodings.
350 351 352 353 354 355 356 357

static Maybe<uint> tryFromHexDigit(char c) {
  if ('0' <= c && c <= '9') {
    return c - '0';
  } else if ('a' <= c && c <= 'f') {
    return c - ('a' - 10);
  } else if ('A' <= c && c <= 'F') {
    return c - ('A' - 10);
358
  } else {
359
    return nullptr;
360 361
  }
}
362 363 364 365

static Maybe<uint> tryFromOctDigit(char c) {
  if ('0' <= c && c <= '7') {
    return c - '0';
366
  } else {
367
    return nullptr;
368 369 370
  }
}

371
}  // namespace
372 373 374 375 376 377 378

String encodeHex(ArrayPtr<const byte> input) {
  return strArray(KJ_MAP(b, input) {
    return heapArray<char>({HEX_DIGITS[b/16], HEX_DIGITS[b%16]});
  }, "");
}

379
EncodingResult<Array<byte>> decodeHex(ArrayPtr<const char> text) {
380
  auto result = heapArray<byte>(text.size() / 2);
381
  bool hadErrors = text.size() % 2;
382 383

  for (auto i: kj::indices(result)) {
384 385 386 387 388 389 390 391 392 393 394 395
    byte b = 0;
    KJ_IF_MAYBE(d1, tryFromHexDigit(text[i*2])) {
      b = *d1 << 4;
    } else {
      hadErrors = true;
    }
    KJ_IF_MAYBE(d2, tryFromHexDigit(text[i*2+1])) {
      b |= *d2;
    } else {
      hadErrors = true;
    }
    result[i] = b;
396 397
  }

398
  return { kj::mv(result), hadErrors };
399 400 401 402 403
}

String encodeUriComponent(ArrayPtr<const byte> bytes) {
  Vector<char> result(bytes.size() + 1);
  for (byte b: bytes) {
404 405 406
    if (('A' <= b && b <= 'Z') ||
        ('a' <= b && b <= 'z') ||
        ('0' <= b && b <= '9') ||
407 408 409 410 411
        b == '-' || b == '_' || b == '.' || b == '!' || b == '~' || b == '*' || b == '\'' ||
        b == '(' || b == ')') {
      result.add(b);
    } else {
      result.add('%');
412 413
      result.add(HEX_DIGITS_URI[b/16]);
      result.add(HEX_DIGITS_URI[b%16]);
414 415 416 417 418 419
    }
  }
  result.add('\0');
  return String(result.releaseAsArray());
}

420 421 422 423 424
String encodeUriFragment(ArrayPtr<const byte> bytes) {
  Vector<char> result(bytes.size() + 1);
  for (byte b: bytes) {
    if (('?' <= b && b <= '_') || // covers A-Z
        ('a' <= b && b <= '~') || // covers a-z
425 426
        ('&' <= b && b <= ';') || // covers 0-9
        b == '!' || b == '=' || b == '#' || b == '$') {
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
      result.add(b);
    } else {
      result.add('%');
      result.add(HEX_DIGITS_URI[b/16]);
      result.add(HEX_DIGITS_URI[b%16]);
    }
  }
  result.add('\0');
  return String(result.releaseAsArray());
}

String encodeUriPath(ArrayPtr<const byte> bytes) {
  Vector<char> result(bytes.size() + 1);
  for (byte b: bytes) {
    if (('@' <= b && b <= '[') || // covers A-Z
        ('a' <= b && b <= 'z') ||
        ('0' <= b && b <= ';') || // covers 0-9
444 445 446
        ('&' <= b && b <= '.') ||
        b == '_' || b == '!' || b == '=' || b == ']' ||
        b == '^' || b == '|' || b == '~' || b == '$') {
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
      result.add(b);
    } else {
      result.add('%');
      result.add(HEX_DIGITS_URI[b/16]);
      result.add(HEX_DIGITS_URI[b%16]);
    }
  }
  result.add('\0');
  return String(result.releaseAsArray());
}

String encodeUriUserInfo(ArrayPtr<const byte> bytes) {
  Vector<char> result(bytes.size() + 1);
  for (byte b: bytes) {
    if (('A' <= b && b <= 'Z') ||
        ('a' <= b && b <= 'z') ||
        ('0' <= b && b <= '9') ||
464 465
        ('&' <= b && b <= '.') ||
        b == '_' || b == '!' || b == '~' || b == '$') {
466 467 468 469 470 471 472 473 474 475 476
      result.add(b);
    } else {
      result.add('%');
      result.add(HEX_DIGITS_URI[b/16]);
      result.add(HEX_DIGITS_URI[b%16]);
    }
  }
  result.add('\0');
  return String(result.releaseAsArray());
}

477 478 479
String encodeWwwForm(ArrayPtr<const byte> bytes) {
  Vector<char> result(bytes.size() + 1);
  for (byte b: bytes) {
480 481 482
    if (('A' <= b && b <= 'Z') ||
        ('a' <= b && b <= 'z') ||
        ('0' <= b && b <= '9') ||
483 484 485 486 487 488 489 490 491 492 493 494 495 496
        b == '-' || b == '_' || b == '.' || b == '*') {
      result.add(b);
    } else if (b == ' ') {
      result.add('+');
    } else {
      result.add('%');
      result.add(HEX_DIGITS_URI[b/16]);
      result.add(HEX_DIGITS_URI[b%16]);
    }
  }
  result.add('\0');
  return String(result.releaseAsArray());
}

497
EncodingResult<Array<byte>> decodeBinaryUriComponent(
498 499
    ArrayPtr<const char> text, DecodeUriOptions options) {
  Vector<byte> result(text.size() + options.nulTerminate);
500
  bool hadErrors = false;
501 502 503 504 505 506

  const char* ptr = text.begin();
  const char* end = text.end();
  while (ptr < end) {
    if (*ptr == '%') {
      ++ptr;
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

      if (ptr == end) {
        hadErrors = true;
      } else KJ_IF_MAYBE(d1, tryFromHexDigit(*ptr)) {
        byte b = *d1;
        ++ptr;
        if (ptr == end) {
          hadErrors = true;
        } else KJ_IF_MAYBE(d2, tryFromHexDigit(*ptr)) {
          b = (b << 4) | *d2;
          ++ptr;
        } else {
          hadErrors = true;
        }
        result.add(b);
      } else {
        hadErrors = true;
      }
525 526 527
    } else if (options.plusToSpace && *ptr == '+') {
      ++ptr;
      result.add(' ');
528 529 530 531 532
    } else {
      result.add(*ptr++);
    }
  }

533
  if (options.nulTerminate) result.add(0);
534
  return { result.releaseAsArray(), hadErrors };
535 536
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
// =======================================================================================

String encodeCEscape(ArrayPtr<const byte> bytes) {
  Vector<char> escaped(bytes.size());

  for (byte b: bytes) {
    switch (b) {
      case '\a': escaped.addAll(StringPtr("\\a")); break;
      case '\b': escaped.addAll(StringPtr("\\b")); break;
      case '\f': escaped.addAll(StringPtr("\\f")); break;
      case '\n': escaped.addAll(StringPtr("\\n")); break;
      case '\r': escaped.addAll(StringPtr("\\r")); break;
      case '\t': escaped.addAll(StringPtr("\\t")); break;
      case '\v': escaped.addAll(StringPtr("\\v")); break;
      case '\'': escaped.addAll(StringPtr("\\\'")); break;
      case '\"': escaped.addAll(StringPtr("\\\"")); break;
      case '\\': escaped.addAll(StringPtr("\\\\")); break;
      default:
        if (b < 0x20 || b == 0x7f) {
          // Use octal escape, not hex, because hex escapes technically have no length limit and
          // so can create ambiguity with subsequent characters.
          escaped.add('\\');
          escaped.add(HEX_DIGITS[b / 64]);
          escaped.add(HEX_DIGITS[(b / 8) % 8]);
          escaped.add(HEX_DIGITS[b % 8]);
        } else {
          escaped.add(b);
        }
        break;
    }
  }

  escaped.add(0);
  return String(escaped.releaseAsArray());
}

573
EncodingResult<Array<byte>> decodeBinaryCEscape(ArrayPtr<const char> text, bool nulTerminate) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
  Vector<byte> result(text.size() + nulTerminate);
  bool hadErrors = false;

  size_t i = 0;
  while (i < text.size()) {
    char c = text[i++];
    if (c == '\\') {
      if (i == text.size()) {
        hadErrors = true;
        continue;
      }
      char c2 = text[i++];
      switch (c2) {
        case 'a' : result.add('\a'); break;
        case 'b' : result.add('\b'); break;
        case 'f' : result.add('\f'); break;
        case 'n' : result.add('\n'); break;
        case 'r' : result.add('\r'); break;
        case 't' : result.add('\t'); break;
        case 'v' : result.add('\v'); break;
        case '\'': result.add('\''); break;
        case '\"': result.add('\"'); break;
        case '\\': result.add('\\'); break;

        case '0':
        case '1':
        case '2':
        case '3':
        case '4':
        case '5':
        case '6':
        case '7': {
          uint value = c2 - '0';
          for (uint j = 0; j < 2 && i < text.size(); j++) {
            KJ_IF_MAYBE(d, tryFromOctDigit(text[i])) {
              ++i;
              value = (value << 3) | *d;
            } else {
              break;
            }
          }
          if (value >= 0x100) hadErrors = true;
          result.add(value);
          break;
        }

        case 'x': {
          uint value = 0;
          while (i < text.size()) {
            KJ_IF_MAYBE(d, tryFromHexDigit(text[i])) {
              ++i;
              value = (value << 4) | *d;
            } else {
              break;
            }
          }
          if (value >= 0x100) hadErrors = true;
          result.add(value);
          break;
        }

        case 'u': {
          char16_t value = 0;
          for (uint j = 0; j < 4; j++) {
            if (i == text.size()) {
              hadErrors = true;
              break;
            } else KJ_IF_MAYBE(d, tryFromHexDigit(text[i])) {
              ++i;
              value = (value << 4) | *d;
            } else {
              hadErrors = true;
              break;
            }
          }
          auto utf = decodeUtf16(arrayPtr(&value, 1));
          if (utf.hadErrors) hadErrors = true;
          result.addAll(utf.asBytes());
          break;
        }

        case 'U': {
          char32_t value = 0;
          for (uint j = 0; j < 8; j++) {
            if (i == text.size()) {
              hadErrors = true;
              break;
            } else KJ_IF_MAYBE(d, tryFromHexDigit(text[i])) {
              ++i;
              value = (value << 4) | *d;
            } else {
              hadErrors = true;
              break;
            }
          }
          auto utf = decodeUtf32(arrayPtr(&value, 1));
          if (utf.hadErrors) hadErrors = true;
          result.addAll(utf.asBytes());
          break;
        }

        default:
          result.add(c2);
      }
    } else {
      result.add(c);
    }
  }

  if (nulTerminate) result.add(0);
  return { result.releaseAsArray(), hadErrors };
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
// =======================================================================================
// This code is derived from libb64 which has been placed in the public domain.
// For details, see http://sourceforge.net/projects/libb64

// -------------------------------------------------------------------
// Encoder

namespace {

typedef enum {
  step_A, step_B, step_C
} base64_encodestep;

typedef struct {
  base64_encodestep step;
  char result;
  int stepcount;
} base64_encodestate;

const int CHARS_PER_LINE = 72;

void base64_init_encodestate(base64_encodestate* state_in) {
  state_in->step = step_A;
  state_in->result = 0;
  state_in->stepcount = 0;
}

char base64_encode_value(char value_in) {
  static const char* encoding = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
  if (value_in > 63) return '=';
  return encoding[(int)value_in];
}

int base64_encode_block(const char* plaintext_in, int length_in,
                        char* code_out, base64_encodestate* state_in, bool breakLines) {
  const char* plainchar = plaintext_in;
  const char* const plaintextend = plaintext_in + length_in;
  char* codechar = code_out;
  char result;
  char fragment;

  result = state_in->result;

  switch (state_in->step) {
    while (1) {
  case step_A:
      if (plainchar == plaintextend) {
        state_in->result = result;
        state_in->step = step_A;
        return codechar - code_out;
      }
      fragment = *plainchar++;
      result = (fragment & 0x0fc) >> 2;
      *codechar++ = base64_encode_value(result);
      result = (fragment & 0x003) << 4;
742
      // fallthrough
743 744 745 746 747 748 749 750 751 752
  case step_B:
      if (plainchar == plaintextend) {
        state_in->result = result;
        state_in->step = step_B;
        return codechar - code_out;
      }
      fragment = *plainchar++;
      result |= (fragment & 0x0f0) >> 4;
      *codechar++ = base64_encode_value(result);
      result = (fragment & 0x00f) << 2;
753
      // fallthrough
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
  case step_C:
      if (plainchar == plaintextend) {
        state_in->result = result;
        state_in->step = step_C;
        return codechar - code_out;
      }
      fragment = *plainchar++;
      result |= (fragment & 0x0c0) >> 6;
      *codechar++ = base64_encode_value(result);
      result  = (fragment & 0x03f) >> 0;
      *codechar++ = base64_encode_value(result);

      ++(state_in->stepcount);
      if (breakLines && state_in->stepcount == CHARS_PER_LINE/4) {
        *codechar++ = '\n';
        state_in->stepcount = 0;
      }
    }
  }
  /* control should not reach here */
  return codechar - code_out;
}

int base64_encode_blockend(char* code_out, base64_encodestate* state_in, bool breakLines) {
  char* codechar = code_out;

  switch (state_in->step) {
  case step_B:
    *codechar++ = base64_encode_value(state_in->result);
    *codechar++ = '=';
    *codechar++ = '=';
    ++state_in->stepcount;
    break;
  case step_C:
    *codechar++ = base64_encode_value(state_in->result);
    *codechar++ = '=';
    ++state_in->stepcount;
    break;
  case step_A:
    break;
  }
  if (breakLines && state_in->stepcount > 0) {
    *codechar++ = '\n';
  }

  return codechar - code_out;
}

}  // namespace

String encodeBase64(ArrayPtr<const byte> input, bool breakLines) {
  /* set up a destination buffer large enough to hold the encoded data */
  // equivalent to ceil(input.size() / 3) * 4
  auto numChars = (input.size() + 2) / 3 * 4;
  if (breakLines) {
    // Add space for newline characters.
    uint lineCount = numChars / CHARS_PER_LINE;
    if (numChars % CHARS_PER_LINE > 0) {
      // Partial line.
      ++lineCount;
    }
    numChars = numChars + lineCount;
  }
  auto output = heapString(numChars);
  /* keep track of our encoded position */
  char* c = output.begin();
  /* store the number of bytes encoded by a single call */
  int cnt = 0;
  size_t total = 0;
  /* we need an encoder state */
  base64_encodestate s;

  /*---------- START ENCODING ----------*/
  /* initialise the encoder state */
  base64_init_encodestate(&s);
  /* gather data from the input and send it to the output */
  cnt = base64_encode_block((const char *)input.begin(), input.size(), c, &s, breakLines);
  c += cnt;
  total += cnt;

  /* since we have encoded the entire input string, we know that
     there is no more input data; finalise the encoding */
  cnt = base64_encode_blockend(c, &s, breakLines);
  c += cnt;
  total += cnt;
  /*---------- STOP ENCODING  ----------*/

  KJ_ASSERT(total == output.size(), total, output.size());

  return output;
}

// -------------------------------------------------------------------
// Decoder

namespace {

typedef enum {
  step_a, step_b, step_c, step_d
} base64_decodestep;

typedef struct {
856 857 858 859 860 861 862 863
  bool hadErrors = false;
  size_t nPaddingBytesSeen = 0;
  // Output state. `nPaddingBytesSeen` is not guaranteed to be correct if `hadErrors` is true. It is
  // included in the state purely to preserve the streaming capability of the algorithm while still
  // checking for errors correctly (consider chunk 1 = "abc=", chunk 2 = "d").

  base64_decodestep step = step_a;
  char plainchar = 0;
864 865 866
} base64_decodestate;

int base64_decode_value(char value_in) {
867 868 869 870 871
  // Returns either the fragment value or: -1 on whitespace, -2 on padding, -3 on invalid input.
  //
  // Note that the original libb64 implementation used -1 for invalid input, -2 on padding -- this
  // new scheme allows for some simpler error checks in steps A and B.

872
  static const signed char decoding[] = {
873 874 875 876 877 878 879
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-1,-1,-3,-1,-1,-3,-3,
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
    -1,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,62,-3,-3,-3,63,
    52,53,54,55,56,57,58,59,  60,61,-3,-3,-3,-2,-3,-3,
    -3, 0, 1, 2, 3, 4, 5, 6,   7, 8, 9,10,11,12,13,14,
    15,16,17,18,19,20,21,22,  23,24,25,-3,-3,-3,-3,-3,
    -3,26,27,28,29,30,31,32,  33,34,35,36,37,38,39,40,
880 881 882 883 884 885 886 887 888 889
    41,42,43,44,45,46,47,48,  49,50,51,-3,-3,-3,-3,-3,

    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
    -3,-3,-3,-3,-3,-3,-3,-3,  -3,-3,-3,-3,-3,-3,-3,-3,
890
  };
891 892
  static_assert(sizeof(decoding) == 256, "base64 decoding table size error");
  return decoding[(unsigned char)value_in];
893 894 895 896 897 898
}

int base64_decode_block(const char* code_in, const int length_in,
                        char* plaintext_out, base64_decodestate* state_in) {
  const char* codechar = code_in;
  char* plainchar = plaintext_out;
899
  signed char fragment;
900

901 902 903
  if (state_in->step != step_a) {
    *plainchar = state_in->plainchar;
  }
904

905 906
#define ERROR_IF(predicate) state_in->hadErrors = state_in->hadErrors || (predicate)

907 908 909 910 911 912 913 914
  switch (state_in->step)
  {
    while (1)
    {
  case step_a:
      do {
        if (codechar == code_in+length_in) {
          state_in->step = step_a;
915
          state_in->plainchar = '\0';
916 917
          return plainchar - plaintext_out;
        }
918
        fragment = (signed char)base64_decode_value(*codechar++);
919 920
        // It is an error to see invalid or padding bytes in step A.
        ERROR_IF(fragment < -1);
921 922
      } while (fragment < 0);
      *plainchar    = (fragment & 0x03f) << 2;
923
      // fallthrough
924 925 926 927 928
  case step_b:
      do {
        if (codechar == code_in+length_in) {
          state_in->step = step_b;
          state_in->plainchar = *plainchar;
929 930 931 932
          // It is always an error to suspend from step B, because we don't have enough bits yet.
          // TODO(someday): This actually breaks the streaming use case, if base64_decode_block() is
          //   to be called multiple times. We'll fix it if we ever care to support streaming.
          state_in->hadErrors = true;
933 934
          return plainchar - plaintext_out;
        }
935
        fragment = (signed char)base64_decode_value(*codechar++);
936 937
        // It is an error to see invalid or padding bytes in step B.
        ERROR_IF(fragment < -1);
938 939 940
      } while (fragment < 0);
      *plainchar++ |= (fragment & 0x030) >> 4;
      *plainchar    = (fragment & 0x00f) << 4;
941
      // fallthrough
942 943 944 945 946
  case step_c:
      do {
        if (codechar == code_in+length_in) {
          state_in->step = step_c;
          state_in->plainchar = *plainchar;
947 948 949 950
          // It is an error to complete from step C if we have seen incomplete padding.
          // TODO(someday): This actually breaks the streaming use case, if base64_decode_block() is
          //   to be called multiple times. We'll fix it if we ever care to support streaming.
          ERROR_IF(state_in->nPaddingBytesSeen == 1);
951 952
          return plainchar - plaintext_out;
        }
953
        fragment = (signed char)base64_decode_value(*codechar++);
954 955
        // It is an error to see invalid bytes or more than two padding bytes in step C.
        ERROR_IF(fragment < -2 || (fragment == -2 && ++state_in->nPaddingBytesSeen > 2));
956
      } while (fragment < 0);
957 958
      // It is an error to continue from step C after having seen any padding.
      ERROR_IF(state_in->nPaddingBytesSeen > 0);
959 960
      *plainchar++ |= (fragment & 0x03c) >> 2;
      *plainchar    = (fragment & 0x003) << 6;
961
      // fallthrough
962 963 964 965 966 967 968
  case step_d:
      do {
        if (codechar == code_in+length_in) {
          state_in->step = step_d;
          state_in->plainchar = *plainchar;
          return plainchar - plaintext_out;
        }
969
        fragment = (signed char)base64_decode_value(*codechar++);
970 971
        // It is an error to see invalid bytes or more than one padding byte in step D.
        ERROR_IF(fragment < -2 || (fragment == -2 && ++state_in->nPaddingBytesSeen > 1));
972
      } while (fragment < 0);
973 974
      // It is an error to continue from step D after having seen padding bytes.
      ERROR_IF(state_in->nPaddingBytesSeen > 0);
975 976 977
      *plainchar++   |= (fragment & 0x03f);
    }
  }
978 979 980

#undef ERROR_IF

981 982 983 984 985 986
  /* control should not reach here */
  return plainchar - plaintext_out;
}

}  // namespace

987
EncodingResult<Array<byte>> decodeBase64(ArrayPtr<const char> input) {
988 989 990 991 992 993 994 995 996 997 998 999 1000
  base64_decodestate state;

  auto output = heapArray<byte>((input.size() * 6 + 7) / 8);

  size_t n = base64_decode_block(input.begin(), input.size(),
      reinterpret_cast<char*>(output.begin()), &state);

  if (n < output.size()) {
    auto copy = heapArray<byte>(n);
    memcpy(copy.begin(), output.begin(), n);
    output = kj::mv(copy);
  }

1001
  return EncodingResult<Array<byte>>(kj::mv(output), state.hadErrors);
1002 1003 1004
}

} // namespace kj