async-io-unix.c++ 44.3 KB
Newer Older
Kenton Varda's avatar
Kenton Varda committed
1 2
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
3
//
Kenton Varda's avatar
Kenton Varda committed
4 5 6 7 8 9
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
10
//
Kenton Varda's avatar
Kenton Varda committed
11 12
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
13
//
Kenton Varda's avatar
Kenton Varda committed
14 15 16 17 18 19 20
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
21

22 23 24
#if !_WIN32
// For Win32 implementation, see async-io-win32.c++.

25 26 27
#include "async-io.h"
#include "async-unix.h"
#include "debug.h"
28
#include "thread.h"
Kenton Varda's avatar
Kenton Varda committed
29
#include "io.h"
Tom Lee's avatar
Tom Lee committed
30
#include "miniposix.h"
31 32 33 34 35 36 37
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
38
#include <netinet/in.h>
39
#include <netinet/tcp.h>
40 41 42
#include <stddef.h>
#include <stdlib.h>
#include <arpa/inet.h>
Kenton Varda's avatar
Kenton Varda committed
43 44
#include <netdb.h>
#include <set>
45
#include <poll.h>
46 47
#include <limits.h>

48 49 50 51
namespace kj {

namespace {

52 53 54 55 56 57 58 59
void setNonblocking(int fd) {
  int flags;
  KJ_SYSCALL(flags = fcntl(fd, F_GETFL));
  if ((flags & O_NONBLOCK) == 0) {
    KJ_SYSCALL(fcntl(fd, F_SETFL, flags | O_NONBLOCK));
  }
}

60 61 62 63 64 65 66 67
void setCloseOnExec(int fd) {
  int flags;
  KJ_SYSCALL(flags = fcntl(fd, F_GETFD));
  if ((flags & FD_CLOEXEC) == 0) {
    KJ_SYSCALL(fcntl(fd, F_SETFD, flags | FD_CLOEXEC));
  }
}

Kenton Varda's avatar
Kenton Varda committed
68
static constexpr uint NEW_FD_FLAGS =
Kenton Varda's avatar
Kenton Varda committed
69
#if __linux__ && !__BIONIC__
70
    LowLevelAsyncIoProvider::ALREADY_CLOEXEC | LowLevelAsyncIoProvider::ALREADY_NONBLOCK |
Kenton Varda's avatar
Kenton Varda committed
71 72 73 74 75
#endif
    LowLevelAsyncIoProvider::TAKE_OWNERSHIP;
// We always try to open FDs with CLOEXEC and NONBLOCK already set on Linux, but on other platforms
// this is not possible.

76 77
class OwnedFileDescriptor {
public:
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  OwnedFileDescriptor(int fd, uint flags): fd(fd), flags(flags) {
    if (flags & LowLevelAsyncIoProvider::ALREADY_NONBLOCK) {
      KJ_DREQUIRE(fcntl(fd, F_GETFL) & O_NONBLOCK, "You claimed you set NONBLOCK, but you didn't.");
    } else {
      setNonblocking(fd);
    }

    if (flags & LowLevelAsyncIoProvider::TAKE_OWNERSHIP) {
      if (flags & LowLevelAsyncIoProvider::ALREADY_CLOEXEC) {
        KJ_DREQUIRE(fcntl(fd, F_GETFD) & FD_CLOEXEC,
                    "You claimed you set CLOEXEC, but you didn't.");
      } else {
        setCloseOnExec(fd);
      }
    }
93 94 95 96
  }

  ~OwnedFileDescriptor() noexcept(false) {
    // Don't use SYSCALL() here because close() should not be repeated on EINTR.
97
    if ((flags & LowLevelAsyncIoProvider::TAKE_OWNERSHIP) && close(fd) < 0) {
98 99 100 101 102 103 104 105 106
      KJ_FAIL_SYSCALL("close", errno, fd) {
        // Recoverable exceptions are safe in destructors.
        break;
      }
    }
  }

protected:
  const int fd;
107 108 109

private:
  uint flags;
110 111 112 113
};

// =======================================================================================

114
class AsyncStreamFd: public OwnedFileDescriptor, public AsyncIoStream {
115
public:
116
  AsyncStreamFd(UnixEventPort& eventPort, int fd, uint flags)
117
      : OwnedFileDescriptor(fd, flags),
118
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ_WRITE) {}
119
  virtual ~AsyncStreamFd() noexcept(false) {}
120 121 122 123 124 125 126

  Promise<size_t> tryRead(void* buffer, size_t minBytes, size_t maxBytes) override {
    return tryReadInternal(buffer, minBytes, maxBytes, 0);
  }

  Promise<void> write(const void* buffer, size_t size) override {
    ssize_t writeResult;
127
    KJ_NONBLOCKING_SYSCALL(writeResult = ::write(fd, buffer, size)) {
128 129 130 131 132 133 134 135 136 137 138
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
      return kj::READY_NOW;
139 140 141 142 143 144 145 146 147
    }

    // A negative result means EAGAIN, which we can treat the same as having written zero bytes.
    size_t n = writeResult < 0 ? 0 : writeResult;

    if (n == size) {
      return READY_NOW;
    }

148 149 150 151 152
    // Fewer than `size` bytes were written, therefore we must be out of buffer space. Wait until
    // the fd becomes writable again.
    buffer = reinterpret_cast<const byte*>(buffer) + n;
    size -= n;

153
    return observer.whenBecomesWritable().then([=]() {
154 155 156 157 158 159 160 161 162 163 164 165
      return write(buffer, size);
    });
  }

  Promise<void> write(ArrayPtr<const ArrayPtr<const byte>> pieces) override {
    if (pieces.size() == 0) {
      return writeInternal(nullptr, nullptr);
    } else {
      return writeInternal(pieces[0], pieces.slice(1, pieces.size()));
    }
  }

166 167 168
  void shutdownWrite() override {
    // There's no legitimate way to get an AsyncStreamFd that isn't a socket through the
    // UnixAsyncIoProvider interface.
169
    KJ_SYSCALL(shutdown(fd, SHUT_WR));
170 171
  }

172 173 174 175 176 177
  void abortRead() override {
    // There's no legitimate way to get an AsyncStreamFd that isn't a socket through the
    // UnixAsyncIoProvider interface.
    KJ_SYSCALL(shutdown(fd, SHUT_RD));
  }

178 179 180 181 182 183 184 185 186 187
  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }

  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

188 189 190 191 192 193 194 195 196 197 198 199
  void getsockname(struct sockaddr* addr, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockname(fd, addr, &socklen));
    *length = socklen;
  }

  void getpeername(struct sockaddr* addr, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getpeername(fd, addr, &socklen));
    *length = socklen;
  }

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  Promise<void> waitConnected() {
    // Wait until initial connection has completed. This actually just waits until it is writable.

    // Can't just go directly to writeObserver.whenBecomesWritable() because of edge triggering. We
    // need to explicitly check if the socket is already connected.

    struct pollfd pollfd;
    memset(&pollfd, 0, sizeof(pollfd));
    pollfd.fd = fd;
    pollfd.events = POLLOUT;

    int pollResult;
    KJ_SYSCALL(pollResult = poll(&pollfd, 1, 0));

    if (pollResult == 0) {
      // Not ready yet. We can safely use the edge-triggered observer.
216
      return observer.whenBecomesWritable();
217 218 219 220 221 222
    } else {
      // Ready now.
      return kj::READY_NOW;
    }
  }

223
private:
224
  UnixEventPort::FdObserver observer;
225 226 227 228 229 230 231 232

  Promise<size_t> tryReadInternal(void* buffer, size_t minBytes, size_t maxBytes,
                                  size_t alreadyRead) {
    // `alreadyRead` is the number of bytes we have already received via previous reads -- minBytes,
    // maxBytes, and buffer have already been adjusted to account for them, but this count must
    // be included in the final return value.

    ssize_t n;
233
    KJ_NONBLOCKING_SYSCALL(n = ::read(fd, buffer, maxBytes)) {
234 235 236 237 238 239 240 241 242 243
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
244 245 246 247 248
      return alreadyRead;
    }

    if (n < 0) {
      // Read would block.
249
      return observer.whenBecomesReadable().then([=]() {
250 251 252 253 254
        return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
      });
    } else if (n == 0) {
      // EOF -OR- maxBytes == 0.
      return alreadyRead;
255 256 257 258
    } else if (implicitCast<size_t>(n) >= minBytes) {
      // We read enough to stop here.
      return alreadyRead + n;
    } else {
259
      // The kernel returned fewer bytes than we asked for (and fewer than we need).
260 261 262 263 264 265

      buffer = reinterpret_cast<byte*>(buffer) + n;
      minBytes -= n;
      maxBytes -= n;
      alreadyRead += n;

266
      KJ_IF_MAYBE(atEnd, observer.atEndHint()) {
267 268 269 270 271 272 273 274 275 276 277 278
        if (*atEnd) {
          // We've already received an indication that the next read() will return EOF, so there's
          // nothing to wait for.
          return alreadyRead;
        } else {
          // As of the last time the event queue was checked, the kernel reported that we were
          // *not* at the end of the stream. It's unlikely that this has changed in the short time
          // it took to handle the event, therefore calling read() now will almost certainly fail
          // with EAGAIN. Moreover, since EOF had not been received as of the last check, we know
          // that even if it was received since then, whenBecomesReadable() will catch that. So,
          // let's go ahead and skip calling read() here and instead go straight to waiting for
          // more input.
279
          return observer.whenBecomesReadable().then([=]() {
280 281 282
            return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
          });
        }
283
      } else {
284 285 286 287
        // The kernel has not indicated one way or the other whether we are likely to be at EOF.
        // In this case we *must* keep calling read() until we either get a return of zero or
        // EAGAIN.
        return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
288 289 290 291 292 293
      }
    }
  }

  Promise<void> writeInternal(ArrayPtr<const byte> firstPiece,
                              ArrayPtr<const ArrayPtr<const byte>> morePieces) {
Tom Lee's avatar
Tom Lee committed
294
    const size_t iovmax = kj::miniposix::iovMax(1 + morePieces.size());
295 296
    // If there are more than IOV_MAX pieces, we'll only write the first IOV_MAX for now, and
    // then we'll loop later.
297
    KJ_STACK_ARRAY(struct iovec, iov, kj::min(1 + morePieces.size(), iovmax), 16, 128);
298
    size_t iovTotal = 0;
299 300 301 302

    // writev() interface is not const-correct.  :(
    iov[0].iov_base = const_cast<byte*>(firstPiece.begin());
    iov[0].iov_len = firstPiece.size();
303 304 305 306 307
    iovTotal += iov[0].iov_len;
    for (uint i = 1; i < iov.size(); i++) {
      iov[i].iov_base = const_cast<byte*>(morePieces[i - 1].begin());
      iov[i].iov_len = morePieces[i - 1].size();
      iovTotal += iov[i].iov_len;
308 309 310
    }

    ssize_t writeResult;
311
    KJ_NONBLOCKING_SYSCALL(writeResult = ::writev(fd, iov.begin(), iov.size())) {
Kenton Varda's avatar
Kenton Varda committed
312 313 314 315 316 317 318 319 320 321 322
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
      return kj::READY_NOW;
323 324 325 326 327 328 329 330
    }

    // A negative result means EAGAIN, which we can treat the same as having written zero bytes.
    size_t n = writeResult < 0 ? 0 : writeResult;

    // Discard all data that was written, then issue a new write for what's left (if any).
    for (;;) {
      if (n < firstPiece.size()) {
331
        // Only part of the first piece was consumed.  Wait for buffer space and then write again.
332
        firstPiece = firstPiece.slice(n, firstPiece.size());
333 334 335 336 337 338 339
        iovTotal -= n;

        if (iovTotal == 0) {
          // Oops, what actually happened is that we hit the IOV_MAX limit. Don't wait.
          return writeInternal(firstPiece, morePieces);
        }

340
        return observer.whenBecomesWritable().then([=]() {
341 342 343 344
          return writeInternal(firstPiece, morePieces);
        });
      } else if (morePieces.size() == 0) {
        // First piece was fully-consumed and there are no more pieces, so we're done.
345
        KJ_DASSERT(n == firstPiece.size(), n);
346 347 348 349
        return READY_NOW;
      } else {
        // First piece was fully consumed, so move on to the next piece.
        n -= firstPiece.size();
350
        iovTotal -= firstPiece.size();
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        firstPiece = morePieces[0];
        morePieces = morePieces.slice(1, morePieces.size());
      }
    }
  }
};

// =======================================================================================

class SocketAddress {
public:
  SocketAddress(const void* sockaddr, uint len): addrlen(len) {
    KJ_REQUIRE(len <= sizeof(addr), "Sorry, your sockaddr is too big for me.");
    memcpy(&addr.generic, sockaddr, len);
  }

Kenton Varda's avatar
Kenton Varda committed
367 368 369 370 371 372 373 374 375 376 377 378
  bool operator<(const SocketAddress& other) const {
    // So we can use std::set<SocketAddress>...  see DNS lookup code.

    if (wildcard < other.wildcard) return true;
    if (wildcard > other.wildcard) return false;

    if (addrlen < other.addrlen) return true;
    if (addrlen > other.addrlen) return false;

    return memcmp(&addr.generic, &other.addr.generic, addrlen) < 0;
  }

379 380 381
  const struct sockaddr* getRaw() const { return &addr.generic; }
  socklen_t getRawSize() const { return addrlen; }

382
  int socket(int type) const {
383 384
    bool isStream = type == SOCK_STREAM;

385
    int result;
Kenton Varda's avatar
Kenton Varda committed
386
#if __linux__ && !__BIONIC__
387 388 389
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
#endif
    KJ_SYSCALL(result = ::socket(addr.generic.sa_family, type, 0));
390 391 392

    if (isStream && (addr.generic.sa_family == AF_INET ||
                     addr.generic.sa_family == AF_INET6)) {
393
      // TODO(perf):  As a hack for the 0.4 release we are always setting
394 395 396 397 398 399 400 401 402
      //   TCP_NODELAY because Nagle's algorithm pretty much kills Cap'n Proto's
      //   RPC protocol.  Later, we should extend the interface to provide more
      //   control over this.  Perhaps write() should have a flag which
      //   specifies whether to pass MSG_MORE.
      int one = 1;
      KJ_SYSCALL(setsockopt(
          result, IPPROTO_TCP, TCP_NODELAY, (char*)&one, sizeof(one)));
    }

403 404 405 406
    return result;
  }

  void bind(int sockfd) const {
407
#if !defined(__OpenBSD__)
408 409 410 411 412 413
    if (wildcard) {
      // Disable IPV6_V6ONLY because we want to handle both ipv4 and ipv6 on this socket.  (The
      // default value of this option varies across platforms.)
      int value = 0;
      KJ_SYSCALL(setsockopt(sockfd, IPPROTO_IPV6, IPV6_V6ONLY, &value, sizeof(value)));
    }
414
#endif
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

    KJ_SYSCALL(::bind(sockfd, &addr.generic, addrlen), toString());
  }

  uint getPort() const {
    switch (addr.generic.sa_family) {
      case AF_INET: return ntohs(addr.inet4.sin_port);
      case AF_INET6: return ntohs(addr.inet6.sin6_port);
      default: return 0;
    }
  }

  String toString() const {
    if (wildcard) {
      return str("*:", getPort());
    }

    switch (addr.generic.sa_family) {
      case AF_INET: {
        char buffer[INET6_ADDRSTRLEN];
        if (inet_ntop(addr.inet4.sin_family, &addr.inet4.sin_addr,
                      buffer, sizeof(buffer)) == nullptr) {
437 438
          KJ_FAIL_SYSCALL("inet_ntop", errno) { break; }
          return heapString("(inet_ntop error)");
439 440 441 442 443 444 445
        }
        return str(buffer, ':', ntohs(addr.inet4.sin_port));
      }
      case AF_INET6: {
        char buffer[INET6_ADDRSTRLEN];
        if (inet_ntop(addr.inet6.sin6_family, &addr.inet6.sin6_addr,
                      buffer, sizeof(buffer)) == nullptr) {
446 447
          KJ_FAIL_SYSCALL("inet_ntop", errno) { break; }
          return heapString("(inet_ntop error)");
448 449 450 451 452 453 454 455 456 457 458
        }
        return str('[', buffer, "]:", ntohs(addr.inet6.sin6_port));
      }
      case AF_UNIX: {
        return str("unix:", addr.unixDomain.sun_path);
      }
      default:
        return str("(unknown address family ", addr.generic.sa_family, ")");
    }
  }

Kenton Varda's avatar
Kenton Varda committed
459 460 461 462 463 464 465 466
  static Promise<Array<SocketAddress>> lookupHost(
      LowLevelAsyncIoProvider& lowLevel, kj::String host, kj::String service, uint portHint);
  // Perform a DNS lookup.

  static Promise<Array<SocketAddress>> parse(
      LowLevelAsyncIoProvider& lowLevel, StringPtr str, uint portHint) {
    // TODO(someday):  Allow commas in `str`.

467 468 469 470 471 472 473 474 475
    SocketAddress result;

    if (str.startsWith("unix:")) {
      StringPtr path = str.slice(strlen("unix:"));
      KJ_REQUIRE(path.size() < sizeof(addr.unixDomain.sun_path),
                 "Unix domain socket address is too long.", str);
      result.addr.unixDomain.sun_family = AF_UNIX;
      strcpy(result.addr.unixDomain.sun_path, path.cStr());
      result.addrlen = offsetof(struct sockaddr_un, sun_path) + path.size() + 1;
Kenton Varda's avatar
Kenton Varda committed
476 477 478
      auto array = kj::heapArrayBuilder<SocketAddress>(1);
      array.add(result);
      return array.finish();
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    }

    // Try to separate the address and port.
    ArrayPtr<const char> addrPart;
    Maybe<StringPtr> portPart;

    int af;

    if (str.startsWith("[")) {
      // Address starts with a bracket, which is a common way to write an ip6 address with a port,
      // since without brackets around the address part, the port looks like another segment of
      // the address.
      af = AF_INET6;
      size_t closeBracket = KJ_ASSERT_NONNULL(str.findLast(']'),
          "Unclosed '[' in address string.", str);

      addrPart = str.slice(1, closeBracket);
      if (str.size() > closeBracket + 1) {
        KJ_REQUIRE(str.slice(closeBracket + 1).startsWith(":"),
                   "Expected port suffix after ']'.", str);
        portPart = str.slice(closeBracket + 2);
      }
    } else {
      KJ_IF_MAYBE(colon, str.findFirst(':')) {
        if (str.slice(*colon + 1).findFirst(':') == nullptr) {
          // There is exactly one colon and no brackets, so it must be an ip4 address with port.
          af = AF_INET;
          addrPart = str.slice(0, *colon);
          portPart = str.slice(*colon + 1);
        } else {
          // There are two or more colons and no brackets, so the whole thing must be an ip6
          // address with no port.
          af = AF_INET6;
          addrPart = str;
        }
      } else {
        // No colons, so it must be an ip4 address without port.
        af = AF_INET;
        addrPart = str;
      }
    }

    // Parse the port.
    unsigned long port;
    KJ_IF_MAYBE(portText, portPart) {
      char* endptr;
      port = strtoul(portText->cStr(), &endptr, 0);
      if (portText->size() == 0 || *endptr != '\0') {
Kenton Varda's avatar
Kenton Varda committed
527 528
        // Not a number.  Maybe it's a service name.  Fall back to DNS.
        return lookupHost(lowLevel, kj::heapString(addrPart), kj::heapString(*portText), portHint);
529 530 531 532 533 534
      }
      KJ_REQUIRE(port < 65536, "Port number too large.");
    } else {
      port = portHint;
    }

Kenton Varda's avatar
Kenton Varda committed
535 536 537
    // Check for wildcard.
    if (addrPart.size() == 1 && addrPart[0] == '*') {
      result.wildcard = true;
538 539 540 541 542 543 544 545
#if defined(__OpenBSD__)
      // On OpenBSD, all sockets are either v4-only or v6-only, so use v4 as a
      // temporary workaround for wildcards.
      result.addrlen = sizeof(addr.inet4);
      result.addr.inet4.sin_family = AF_INET;
      result.addr.inet4.sin_port = htons(port);
#else
      // Create an ip6 socket and set IPV6_V6ONLY to 0 later.
Kenton Varda's avatar
Kenton Varda committed
546 547 548
      result.addrlen = sizeof(addr.inet6);
      result.addr.inet6.sin6_family = AF_INET6;
      result.addr.inet6.sin6_port = htons(port);
549
#endif
Kenton Varda's avatar
Kenton Varda committed
550 551 552 553 554
      auto array = kj::heapArrayBuilder<SocketAddress>(1);
      array.add(result);
      return array.finish();
    }

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    void* addrTarget;
    if (af == AF_INET6) {
      result.addrlen = sizeof(addr.inet6);
      result.addr.inet6.sin6_family = AF_INET6;
      result.addr.inet6.sin6_port = htons(port);
      addrTarget = &result.addr.inet6.sin6_addr;
    } else {
      result.addrlen = sizeof(addr.inet4);
      result.addr.inet4.sin_family = AF_INET;
      result.addr.inet4.sin_port = htons(port);
      addrTarget = &result.addr.inet4.sin_addr;
    }

    // addrPart is not necessarily NUL-terminated so we have to make a copy.  :(
    KJ_REQUIRE(addrPart.size() < INET6_ADDRSTRLEN - 1, "IP address too long.", addrPart);
    char buffer[INET6_ADDRSTRLEN];
    memcpy(buffer, addrPart.begin(), addrPart.size());
    buffer[addrPart.size()] = '\0';

    // OK, parse it!
    switch (inet_pton(af, buffer, addrTarget)) {
Kenton Varda's avatar
Kenton Varda committed
576
      case 1: {
577
        // success.
Kenton Varda's avatar
Kenton Varda committed
578 579 580 581
        auto array = kj::heapArrayBuilder<SocketAddress>(1);
        array.add(result);
        return array.finish();
      }
582
      case 0:
Kenton Varda's avatar
Kenton Varda committed
583 584
        // It's apparently not a simple address...  fall back to DNS.
        return lookupHost(lowLevel, kj::heapString(addrPart), nullptr, port);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
      default:
        KJ_FAIL_SYSCALL("inet_pton", errno, af, addrPart);
    }
  }

  static SocketAddress getLocalAddress(int sockfd) {
    SocketAddress result;
    result.addrlen = sizeof(addr);
    KJ_SYSCALL(getsockname(sockfd, &result.addr.generic, &result.addrlen));
    return result;
  }

private:
  SocketAddress(): addrlen(0) {
    memset(&addr, 0, sizeof(addr));
  }

  socklen_t addrlen;
  bool wildcard = false;
  union {
    struct sockaddr generic;
    struct sockaddr_in inet4;
    struct sockaddr_in6 inet6;
    struct sockaddr_un unixDomain;
    struct sockaddr_storage storage;
  } addr;
Kenton Varda's avatar
Kenton Varda committed
611 612 613

  struct LookupParams;
  class LookupReader;
614 615
};

Kenton Varda's avatar
Kenton Varda committed
616 617 618
class SocketAddress::LookupReader {
  // Reads SocketAddresses off of a pipe coming from another thread that is performing
  // getaddrinfo.
619

Kenton Varda's avatar
Kenton Varda committed
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
public:
  LookupReader(kj::Own<Thread>&& thread, kj::Own<AsyncInputStream>&& input)
      : thread(kj::mv(thread)), input(kj::mv(input)) {}

  ~LookupReader() {
    if (thread) thread->detach();
  }

  Promise<Array<SocketAddress>> read() {
    return input->tryRead(&current, sizeof(current), sizeof(current)).then(
        [this](size_t n) -> Promise<Array<SocketAddress>> {
      if (n < sizeof(current)) {
        thread = nullptr;
        // getaddrinfo()'s docs seem to say it will never return an empty list, but let's check
        // anyway.
        KJ_REQUIRE(addresses.size() > 0, "DNS lookup returned no addresses.") { break; }
        return addresses.releaseAsArray();
      } else {
        // getaddrinfo() can return multiple copies of the same address for several reasons.
        // A major one is that we don't give it a socket type (SOCK_STREAM vs. SOCK_DGRAM), so
        // it may return two copies of the same address, one for each type, unless it explicitly
        // knows that the service name given is specific to one type.  But we can't tell it a type,
        // because we don't actually know which one the user wants, and if we specify SOCK_STREAM
        // while the user specified a UDP service name then they'll get a resolution error which
        // is lame.  (At least, I think that's how it works.)
        //
        // So we instead resort to de-duping results.
        if (alreadySeen.insert(current).second) {
          addresses.add(current);
        }
        return read();
      }
    });
  }

private:
  kj::Own<Thread> thread;
  kj::Own<AsyncInputStream> input;
  SocketAddress current;
  kj::Vector<SocketAddress> addresses;
  std::set<SocketAddress> alreadySeen;
};

struct SocketAddress::LookupParams {
  kj::String host;
  kj::String service;
};

Promise<Array<SocketAddress>> SocketAddress::lookupHost(
    LowLevelAsyncIoProvider& lowLevel, kj::String host, kj::String service, uint portHint) {
  // This shitty function spawns a thread to run getaddrinfo().  Unfortunately, getaddrinfo() is
  // the only cross-platform DNS API and it is blocking.
  //
  // TODO(perf):  Use a thread pool?  Maybe kj::Thread should use a thread pool automatically?
  //   Maybe use the various platform-specific asynchronous DNS libraries?  Please do not implement
  //   a custom DNS resolver...

  int fds[2];
Kenton Varda's avatar
Kenton Varda committed
678
#if __linux__ && !__BIONIC__
Kenton Varda's avatar
Kenton Varda committed
679 680 681
  KJ_SYSCALL(pipe2(fds, O_NONBLOCK | O_CLOEXEC));
#else
  KJ_SYSCALL(pipe(fds));
682
#endif
Kenton Varda's avatar
Kenton Varda committed
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

  auto input = lowLevel.wrapInputFd(fds[0], NEW_FD_FLAGS);

  int outFd = fds[1];

  LookupParams params = { kj::mv(host), kj::mv(service) };

  auto thread = heap<Thread>(kj::mvCapture(params, [outFd,portHint](LookupParams&& params) {
    FdOutputStream output((AutoCloseFd(outFd)));

    struct addrinfo* list;
    int status = getaddrinfo(
        params.host == "*" ? nullptr : params.host.cStr(),
        params.service == nullptr ? nullptr : params.service.cStr(),
        nullptr, &list);
    if (status == 0) {
      KJ_DEFER(freeaddrinfo(list));

      struct addrinfo* cur = list;
      while (cur != nullptr) {
        if (params.service == nullptr) {
          switch (cur->ai_addr->sa_family) {
            case AF_INET:
              ((struct sockaddr_in*)cur->ai_addr)->sin_port = htons(portHint);
              break;
            case AF_INET6:
              ((struct sockaddr_in6*)cur->ai_addr)->sin6_port = htons(portHint);
              break;
            default:
              break;
          }
        }

        SocketAddress addr;
Kenton Varda's avatar
Kenton Varda committed
717
        memset(&addr, 0, sizeof(addr));  // mollify valgrind
Kenton Varda's avatar
Kenton Varda committed
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
        if (params.host == "*") {
          // Set up a wildcard SocketAddress.  Only use the port number returned by getaddrinfo().
          addr.wildcard = true;
          addr.addrlen = sizeof(addr.addr.inet6);
          addr.addr.inet6.sin6_family = AF_INET6;
          switch (cur->ai_addr->sa_family) {
            case AF_INET:
              addr.addr.inet6.sin6_port = ((struct sockaddr_in*)cur->ai_addr)->sin_port;
              break;
            case AF_INET6:
              addr.addr.inet6.sin6_port = ((struct sockaddr_in6*)cur->ai_addr)->sin6_port;
              break;
            default:
              addr.addr.inet6.sin6_port = portHint;
              break;
          }
        } else {
          addr.addrlen = cur->ai_addrlen;
          memcpy(&addr.addr.generic, cur->ai_addr, cur->ai_addrlen);
        }
738
        KJ_ASSERT_CAN_MEMCPY(SocketAddress);
Kenton Varda's avatar
Kenton Varda committed
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
        output.write(&addr, sizeof(addr));
        cur = cur->ai_next;
      }
    } else if (status == EAI_SYSTEM) {
      KJ_FAIL_SYSCALL("getaddrinfo", errno, params.host, params.service) {
        return;
      }
    } else {
      KJ_FAIL_REQUIRE("DNS lookup failed.",
                      params.host, params.service, gai_strerror(status)) {
        return;
      }
    }
  }));

  auto reader = heap<LookupReader>(kj::mv(thread), kj::mv(input));
755
  return reader->read().attach(kj::mv(reader));
Kenton Varda's avatar
Kenton Varda committed
756 757 758
}

// =======================================================================================
759

760 761
class FdConnectionReceiver final: public ConnectionReceiver, public OwnedFileDescriptor {
public:
762
  FdConnectionReceiver(UnixEventPort& eventPort, int fd, uint flags)
763 764
      : OwnedFileDescriptor(fd, flags), eventPort(eventPort),
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ) {}
765 766 767 768

  Promise<Own<AsyncIoStream>> accept() override {
    int newFd;

769
  retry:
Kenton Varda's avatar
Kenton Varda committed
770
#if __linux__ && !__BIONIC__
771
    newFd = ::accept4(fd, nullptr, nullptr, SOCK_NONBLOCK | SOCK_CLOEXEC);
772
#else
773
    newFd = ::accept(fd, nullptr, nullptr);
774 775
#endif

776
    if (newFd >= 0) {
777
      return Own<AsyncIoStream>(heap<AsyncStreamFd>(eventPort, newFd, NEW_FD_FLAGS));
778 779 780 781 782 783 784 785 786
    } else {
      int error = errno;

      switch (error) {
        case EAGAIN:
#if EAGAIN != EWOULDBLOCK
        case EWOULDBLOCK:
#endif
          // Not ready yet.
787
          return observer.whenBecomesReadable().then([this]() {
788 789 790 791 792
            return accept();
          });

        case EINTR:
        case ENETDOWN:
793 794
#ifdef EPROTO
        // EPROTO is not defined on OpenBSD.
795
        case EPROTO:
796
#endif
797 798 799 800
        case EHOSTDOWN:
        case EHOSTUNREACH:
        case ENETUNREACH:
        case ECONNABORTED:
Kenton Varda's avatar
Kenton Varda committed
801 802 803 804 805
        case ETIMEDOUT:
          // According to the Linux man page, accept() may report an error if the accepted
          // connection is already broken.  In this case, we really ought to just ignore it and
          // keep waiting.  But it's hard to say exactly what errors are such network errors and
          // which ones are permanent errors.  We've made a guess here.
806 807 808 809 810 811
          goto retry;

        default:
          KJ_FAIL_SYSCALL("accept", error);
      }

812 813 814 815 816 817
    }
  }

  uint getPort() override {
    return SocketAddress::getLocalAddress(fd).getPort();
  }
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }
  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

public:
  UnixEventPort& eventPort;
  UnixEventPort::FdObserver observer;
};

class DatagramPortImpl final: public DatagramPort, public OwnedFileDescriptor {
public:
  DatagramPortImpl(LowLevelAsyncIoProvider& lowLevel, UnixEventPort& eventPort, int fd, uint flags)
      : OwnedFileDescriptor(fd, flags), lowLevel(lowLevel), eventPort(eventPort),
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ |
                                UnixEventPort::FdObserver::OBSERVE_WRITE) {}

  Promise<size_t> send(const void* buffer, size_t size, NetworkAddress& destination) override;
  Promise<size_t> send(
      ArrayPtr<const ArrayPtr<const byte>> pieces, NetworkAddress& destination) override;

  class ReceiverImpl;

  Own<DatagramReceiver> makeReceiver(DatagramReceiver::Capacity capacity) override;

  uint getPort() override {
    return SocketAddress::getLocalAddress(fd).getPort();
  }

  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }
  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

861
public:
862
  LowLevelAsyncIoProvider& lowLevel;
863
  UnixEventPort& eventPort;
864
  UnixEventPort::FdObserver observer;
865 866
};

867 868
class LowLevelAsyncIoProviderImpl final: public LowLevelAsyncIoProvider {
public:
869
  LowLevelAsyncIoProviderImpl()
870
      : eventLoop(eventPort), waitScope(eventLoop) {}
871 872

  inline WaitScope& getWaitScope() { return waitScope; }
873 874 875 876 877 878 879 880 881 882

  Own<AsyncInputStream> wrapInputFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
  Own<AsyncOutputStream> wrapOutputFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
  Own<AsyncIoStream> wrapSocketFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
  Promise<Own<AsyncIoStream>> wrapConnectingSocketFd(
      int fd, const struct sockaddr* addr, uint addrlen, uint flags = 0) override {
    // Unfortunately connect() doesn't fit the mold of KJ_NONBLOCKING_SYSCALL, since it indicates
    // non-blocking using EINPROGRESS.
    for (;;) {
      if (::connect(fd, addr, addrlen) < 0) {
        int error = errno;
        if (error == EINPROGRESS) {
          // Fine.
          break;
        } else if (error != EINTR) {
          KJ_FAIL_SYSCALL("connect()", error) { break; }
          return Own<AsyncIoStream>();
        }
      } else {
        // no error
        break;
      }
    }

903
    auto result = heap<AsyncStreamFd>(eventPort, fd, flags);
904 905 906 907 908 909 910 911 912 913 914

    auto connected = result->waitConnected();
    return connected.then(kj::mvCapture(result, [fd](Own<AsyncIoStream>&& stream) {
      int err;
      socklen_t errlen = sizeof(err);
      KJ_SYSCALL(getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen));
      if (err != 0) {
        KJ_FAIL_SYSCALL("connect()", err) { break; }
      }
      return kj::mv(stream);
    }));
915 916 917 918
  }
  Own<ConnectionReceiver> wrapListenSocketFd(int fd, uint flags = 0) override {
    return heap<FdConnectionReceiver>(eventPort, fd, flags);
  }
919 920 921
  Own<DatagramPort> wrapDatagramSocketFd(int fd, uint flags = 0) override {
    return heap<DatagramPortImpl>(*this, eventPort, fd, flags);
  }
922

923
  Timer& getTimer() override { return eventPort.getTimer(); }
924

925 926
  UnixEventPort& getEventPort() { return eventPort; }

927 928 929
private:
  UnixEventPort eventPort;
  EventLoop eventLoop;
930
  WaitScope waitScope;
931 932
};

933 934
// =======================================================================================

Kenton Varda's avatar
Kenton Varda committed
935
class NetworkAddressImpl final: public NetworkAddress {
936
public:
Kenton Varda's avatar
Kenton Varda committed
937 938 939 940
  NetworkAddressImpl(LowLevelAsyncIoProvider& lowLevel, Array<SocketAddress> addrs)
      : lowLevel(lowLevel), addrs(kj::mv(addrs)) {}

  Promise<Own<AsyncIoStream>> connect() override {
941 942 943
    auto addrsCopy = heapArray(addrs.asPtr());
    auto promise = connectImpl(lowLevel, addrsCopy);
    return promise.attach(kj::mv(addrsCopy));
Kenton Varda's avatar
Kenton Varda committed
944
  }
945 946

  Own<ConnectionReceiver> listen() override {
Kenton Varda's avatar
Kenton Varda committed
947 948 949 950 951
    if (addrs.size() > 1) {
      KJ_LOG(WARNING, "Bind address resolved to multiple addresses.  Only the first address will "
          "be used.  If this is incorrect, specify the address numerically.  This may be fixed "
          "in the future.", addrs[0].toString());
    }
Kenton Varda's avatar
Kenton Varda committed
952 953

    int fd = addrs[0].socket(SOCK_STREAM);
954

955 956 957 958 959 960 961
    {
      KJ_ON_SCOPE_FAILURE(close(fd));

      // We always enable SO_REUSEADDR because having to take your server down for five minutes
      // before it can restart really sucks.
      int optval = 1;
      KJ_SYSCALL(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)));
962

Kenton Varda's avatar
Kenton Varda committed
963
      addrs[0].bind(fd);
964

965 966 967
      // TODO(someday):  Let queue size be specified explicitly in string addresses.
      KJ_SYSCALL(::listen(fd, SOMAXCONN));
    }
968

969
    return lowLevel.wrapListenSocketFd(fd, NEW_FD_FLAGS);
970 971
  }

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
  Own<DatagramPort> bindDatagramPort() override {
    if (addrs.size() > 1) {
      KJ_LOG(WARNING, "Bind address resolved to multiple addresses.  Only the first address will "
          "be used.  If this is incorrect, specify the address numerically.  This may be fixed "
          "in the future.", addrs[0].toString());
    }

    int fd = addrs[0].socket(SOCK_DGRAM);

    {
      KJ_ON_SCOPE_FAILURE(close(fd));

      // We always enable SO_REUSEADDR because having to take your server down for five minutes
      // before it can restart really sucks.
      int optval = 1;
      KJ_SYSCALL(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)));

      addrs[0].bind(fd);
    }

    return lowLevel.wrapDatagramSocketFd(fd, NEW_FD_FLAGS);
  }

  Own<NetworkAddress> clone() override {
    return kj::heap<NetworkAddressImpl>(lowLevel, kj::heapArray(addrs.asPtr()));
  }

999
  String toString() override {
Kenton Varda's avatar
Kenton Varda committed
1000
    return strArray(KJ_MAP(addr, addrs) { return addr.toString(); }, ",");
1001 1002
  }

1003 1004 1005 1006 1007
  const SocketAddress& chooseOneAddress() {
    KJ_REQUIRE(addrs.size() > 0, "No addresses available.");
    return addrs[counter++ % addrs.size()];
  }

1008
private:
1009
  LowLevelAsyncIoProvider& lowLevel;
Kenton Varda's avatar
Kenton Varda committed
1010
  Array<SocketAddress> addrs;
1011
  uint counter = 0;
1012

1013 1014 1015
  static Promise<Own<AsyncIoStream>> connectImpl(
      LowLevelAsyncIoProvider& lowLevel, ArrayPtr<SocketAddress> addrs) {
    KJ_ASSERT(addrs.size() > 0);
1016

1017
    int fd = addrs[0].socket(SOCK_STREAM);
1018

1019 1020 1021 1022
    return kj::evalNow([&]() {
      return lowLevel.wrapConnectingSocketFd(
          fd, addrs[0].getRaw(), addrs[0].getRawSize(), NEW_FD_FLAGS);
    }).then([](Own<AsyncIoStream>&& stream) -> Promise<Own<AsyncIoStream>> {
Kenton Varda's avatar
Kenton Varda committed
1023 1024
      // Success, pass along.
      return kj::mv(stream);
1025
    }, [&lowLevel,addrs](Exception&& exception) mutable -> Promise<Own<AsyncIoStream>> {
Kenton Varda's avatar
Kenton Varda committed
1026
      // Connect failed.
1027
      if (addrs.size() > 1) {
Kenton Varda's avatar
Kenton Varda committed
1028
        // Try the next address instead.
1029
        return connectImpl(lowLevel, addrs.slice(1, addrs.size()));
Kenton Varda's avatar
Kenton Varda committed
1030 1031 1032 1033 1034
      } else {
        // No more addresses to try, so propagate the exception.
        return kj::mv(exception);
      }
    });
1035 1036 1037 1038 1039
  }
};

class SocketNetwork final: public Network {
public:
1040
  explicit SocketNetwork(LowLevelAsyncIoProvider& lowLevel): lowLevel(lowLevel) {}
1041

Kenton Varda's avatar
Kenton Varda committed
1042
  Promise<Own<NetworkAddress>> parseAddress(StringPtr addr, uint portHint = 0) override {
1043
    auto& lowLevelCopy = lowLevel;
1044
    return evalLater(mvCapture(heapString(addr),
Kenton Varda's avatar
Kenton Varda committed
1045 1046 1047 1048 1049
        [&lowLevelCopy,portHint](String&& addr) {
      return SocketAddress::parse(lowLevelCopy, addr, portHint);
    })).then([&lowLevelCopy](Array<SocketAddress> addresses) -> Own<NetworkAddress> {
      return heap<NetworkAddressImpl>(lowLevelCopy, kj::mv(addresses));
    });
1050 1051
  }

Kenton Varda's avatar
Kenton Varda committed
1052 1053 1054 1055
  Own<NetworkAddress> getSockaddr(const void* sockaddr, uint len) override {
    auto array = kj::heapArrayBuilder<SocketAddress>(1);
    array.add(SocketAddress(sockaddr, len));
    return Own<NetworkAddress>(heap<NetworkAddressImpl>(lowLevel, array.finish()));
1056 1057
  }

1058
private:
1059
  LowLevelAsyncIoProvider& lowLevel;
1060
};
1061

1062
// =======================================================================================
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
Promise<size_t> DatagramPortImpl::send(
    const void* buffer, size_t size, NetworkAddress& destination) {
  auto& addr = downcast<NetworkAddressImpl>(destination).chooseOneAddress();

  ssize_t n;
  KJ_NONBLOCKING_SYSCALL(n = sendto(fd, buffer, size, 0, addr.getRaw(), addr.getRawSize()));
  if (n < 0) {
    // Write buffer full.
    return observer.whenBecomesWritable().then([this, buffer, size, &destination]() {
      return send(buffer, size, destination);
    });
  } else {
    // If less than the whole message was sent, then it got truncated, and there's nothing we can
    // do about it.
    return n;
  }
}

Promise<size_t> DatagramPortImpl::send(
    ArrayPtr<const ArrayPtr<const byte>> pieces, NetworkAddress& destination) {
  struct msghdr msg;
  memset(&msg, 0, sizeof(msg));

  auto& addr = downcast<NetworkAddressImpl>(destination).chooseOneAddress();
  msg.msg_name = const_cast<void*>(implicitCast<const void*>(addr.getRaw()));
  msg.msg_namelen = addr.getRawSize();

Tom Lee's avatar
Tom Lee committed
1091
  const size_t iovmax = kj::miniposix::iovMax(pieces.size());
1092
  KJ_STACK_ARRAY(struct iovec, iov, kj::min(pieces.size(), iovmax), 16, 64);
1093 1094 1095 1096 1097 1098 1099

  for (size_t i: kj::indices(pieces)) {
    iov[i].iov_base = const_cast<void*>(implicitCast<const void*>(pieces[i].begin()));
    iov[i].iov_len = pieces[i].size();
  }

  Array<byte> extra;
1100
  if (pieces.size() > iovmax) {
1101 1102 1103 1104 1105
    // Too many pieces, but we can't use multiple syscalls because they'd send separate
    // datagrams. We'll have to copy the trailing pieces into a temporary array.
    //
    // TODO(perf): On Linux we could use multiple syscalls via MSG_MORE.
    size_t extraSize = 0;
1106
    for (size_t i = iovmax - 1; i < pieces.size(); i++) {
1107 1108 1109 1110
      extraSize += pieces[i].size();
    }
    extra = kj::heapArray<byte>(extraSize);
    extraSize = 0;
1111
    for (size_t i = iovmax - 1; i < pieces.size(); i++) {
1112 1113 1114
      memcpy(extra.begin() + extraSize, pieces[i].begin(), pieces[i].size());
      extraSize += pieces[i].size();
    }
1115 1116
    iov[iovmax - 1].iov_base = extra.begin();
    iov[iovmax - 1].iov_len = extra.size();
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
  }

  msg.msg_iov = iov.begin();
  msg.msg_iovlen = iov.size();

  ssize_t n;
  KJ_NONBLOCKING_SYSCALL(n = sendmsg(fd, &msg, 0));
  if (n < 0) {
    // Write buffer full.
    return observer.whenBecomesWritable().then([this, pieces, &destination]() {
      return send(pieces, destination);
    });
  } else {
    // If less than the whole message was sent, then it was truncated, and there's nothing we can
    // do about that now.
    return n;
  }
}

class DatagramPortImpl::ReceiverImpl final: public DatagramReceiver {
public:
  explicit ReceiverImpl(DatagramPortImpl& port, Capacity capacity)
      : port(port),
        contentBuffer(heapArray<byte>(capacity.content)),
        ancillaryBuffer(capacity.ancillary > 0 ? heapArray<byte>(capacity.ancillary)
                                               : Array<byte>(nullptr)) {}

  Promise<void> receive() override {
    struct msghdr msg;
    memset(&msg, 0, sizeof(msg));

    struct sockaddr_storage addr;
    memset(&addr, 0, sizeof(addr));
    msg.msg_name = &addr;
    msg.msg_namelen = sizeof(addr);

    struct iovec iov;
    iov.iov_base = contentBuffer.begin();
    iov.iov_len = contentBuffer.size();
    msg.msg_iov = &iov;
    msg.msg_iovlen = 1;
    msg.msg_control = ancillaryBuffer.begin();
    msg.msg_controllen = ancillaryBuffer.size();

    ssize_t n;
    KJ_NONBLOCKING_SYSCALL(n = recvmsg(port.fd, &msg, 0));

    if (n < 0) {
      // No data available. Wait.
      return port.observer.whenBecomesReadable().then([this]() {
        return receive();
      });
    } else {
      receivedSize = n;
      contentTruncated = msg.msg_flags & MSG_TRUNC;

      source.emplace(port.lowLevel, msg.msg_name, msg.msg_namelen);

      ancillaryList.resize(0);
      ancillaryTruncated = msg.msg_flags & MSG_CTRUNC;

      for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg != nullptr;
           cmsg = CMSG_NXTHDR(&msg, cmsg)) {
        // On some platforms (OSX), a cmsghdr's length may cross the end of the ancillary buffer
        // when truncated. On other platforms (Linux) the length in cmsghdr will itself be
        // truncated to fit within the buffer.

        const byte* pos = reinterpret_cast<const byte*>(cmsg);
        size_t available = ancillaryBuffer.end() - pos;
        if (available < CMSG_SPACE(0)) {
          // The buffer ends in the middle of the header. We can't use this message.
          // (On Linux, this never happens, because the message is not included if there isn't
          // space for a header. I'm not sure how other systems behave, though, so let's be safe.)
          break;
        }

        // OK, we know the cmsghdr is valid, at least.

        // Find the start of the message payload.
1196
        const byte* begin = (const byte *)CMSG_DATA(cmsg);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

        // Cap the message length to the available space.
        const byte* end = pos + kj::min(available, cmsg->cmsg_len);

        ancillaryList.add(AncillaryMessage(
            cmsg->cmsg_level, cmsg->cmsg_type, arrayPtr(begin, end)));
      }

      return READY_NOW;
    }
  }

  MaybeTruncated<ArrayPtr<const byte>> getContent() override {
    return { contentBuffer.slice(0, receivedSize), contentTruncated };
  }

  MaybeTruncated<ArrayPtr<const AncillaryMessage>> getAncillary() override {
    return { ancillaryList.asPtr(), ancillaryTruncated };
  }

  NetworkAddress& getSource() override {
    return KJ_REQUIRE_NONNULL(source, "Haven't sent a message yet.").abstract;
  }

private:
  DatagramPortImpl& port;
  Array<byte> contentBuffer;
  Array<byte> ancillaryBuffer;
  Vector<AncillaryMessage> ancillaryList;
  size_t receivedSize = 0;
  bool contentTruncated = false;
  bool ancillaryTruncated = false;

  struct StoredAddress {
    StoredAddress(LowLevelAsyncIoProvider& lowLevel, const void* sockaddr, uint length)
        : raw(sockaddr, length),
          abstract(lowLevel, Array<SocketAddress>(&raw, 1, NullArrayDisposer::instance)) {}

    SocketAddress raw;
    NetworkAddressImpl abstract;
  };

  kj::Maybe<StoredAddress> source;
};

Own<DatagramReceiver> DatagramPortImpl::makeReceiver(DatagramReceiver::Capacity capacity) {
  return kj::heap<ReceiverImpl>(*this, capacity);
}

// =======================================================================================

1248
class AsyncIoProviderImpl final: public AsyncIoProvider {
1249
public:
1250 1251
  AsyncIoProviderImpl(LowLevelAsyncIoProvider& lowLevel)
      : lowLevel(lowLevel), network(lowLevel) {}
Kenton Varda's avatar
Kenton Varda committed
1252

1253 1254
  OneWayPipe newOneWayPipe() override {
    int fds[2];
Kenton Varda's avatar
Kenton Varda committed
1255
#if __linux__ && !__BIONIC__
1256
    KJ_SYSCALL(pipe2(fds, O_NONBLOCK | O_CLOEXEC));
1257
#else
1258
    KJ_SYSCALL(pipe(fds));
1259
#endif
1260 1261 1262 1263
    return OneWayPipe {
      lowLevel.wrapInputFd(fds[0], NEW_FD_FLAGS),
      lowLevel.wrapOutputFd(fds[1], NEW_FD_FLAGS)
    };
1264
  }
1265

1266 1267 1268
  TwoWayPipe newTwoWayPipe() override {
    int fds[2];
    int type = SOCK_STREAM;
Kenton Varda's avatar
Kenton Varda committed
1269
#if __linux__ && !__BIONIC__
1270
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
1271
#endif
1272
    KJ_SYSCALL(socketpair(AF_UNIX, type, 0, fds));
1273 1274 1275 1276
    return TwoWayPipe { {
      lowLevel.wrapSocketFd(fds[0], NEW_FD_FLAGS),
      lowLevel.wrapSocketFd(fds[1], NEW_FD_FLAGS)
    } };
1277 1278 1279 1280 1281 1282
  }

  Network& getNetwork() override {
    return network;
  }

1283
  PipeThread newPipeThread(
1284
      Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)> startFunc) override {
1285 1286
    int fds[2];
    int type = SOCK_STREAM;
Kenton Varda's avatar
Kenton Varda committed
1287
#if __linux__ && !__BIONIC__
1288 1289 1290 1291 1292
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
#endif
    KJ_SYSCALL(socketpair(AF_UNIX, type, 0, fds));

    int threadFd = fds[1];
1293
    KJ_ON_SCOPE_FAILURE(close(threadFd));
1294

1295 1296 1297
    auto pipe = lowLevel.wrapSocketFd(fds[0], NEW_FD_FLAGS);

    auto thread = heap<Thread>(kj::mvCapture(startFunc,
1298
        [threadFd](Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)>&& startFunc) {
1299 1300 1301
      LowLevelAsyncIoProviderImpl lowLevel;
      auto stream = lowLevel.wrapSocketFd(threadFd, NEW_FD_FLAGS);
      AsyncIoProviderImpl ioProvider(lowLevel);
1302
      startFunc(ioProvider, *stream, lowLevel.getWaitScope());
1303
    }));
1304

1305
    return { kj::mv(thread), kj::mv(pipe) };
1306
  }
1307

1308 1309
  Timer& getTimer() override { return lowLevel.getTimer(); }

1310
private:
1311
  LowLevelAsyncIoProvider& lowLevel;
1312 1313 1314 1315 1316
  SocketNetwork network;
};

}  // namespace

1317 1318 1319 1320 1321 1322 1323
Own<AsyncIoProvider> newAsyncIoProvider(LowLevelAsyncIoProvider& lowLevel) {
  return kj::heap<AsyncIoProviderImpl>(lowLevel);
}

AsyncIoContext setupAsyncIo() {
  auto lowLevel = heap<LowLevelAsyncIoProviderImpl>();
  auto ioProvider = kj::heap<AsyncIoProviderImpl>(*lowLevel);
1324
  auto& waitScope = lowLevel->getWaitScope();
1325 1326
  auto& eventPort = lowLevel->getEventPort();
  return { kj::mv(lowLevel), kj::mv(ioProvider), waitScope, eventPort };
1327 1328
}

1329
}  // namespace kj
1330 1331

#endif  // !_WIN32