array.h 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef KJ_ARRAY_H_
#define KJ_ARRAY_H_

#include "common.h"
#include <string.h>
29
#include <initializer_list>
30 31 32

namespace kj {

Kenton Varda's avatar
Kenton Varda committed
33 34 35 36 37 38 39
// =======================================================================================
// ArrayDisposer -- Implementation details.

class ArrayDisposer {
  // Much like Disposer from memory.h.

protected:
40 41
  // Do not declare a destructor, as doing so will force a global initializer for
  // HeapArrayDisposer::instance.
Kenton Varda's avatar
Kenton Varda committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

  virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                           size_t capacity, void (*destroyElement)(void*)) const = 0;
  // Disposes of the array.  `destroyElement` invokes the destructor of each element, or is nullptr
  // if the elements have trivial destructors.  `capacity` is the amount of space that was
  // allocated while `elementCount` is the number of elements that were actually constructed;
  // these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.

public:

  template <typename T>
  void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
  // Helper wrapper around disposeImpl().
  //
  // Callers must not call dispose() on the same array twice, even if the first call throws
  // an exception.

private:
  template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
  struct Dispose_;
};

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
class ExceptionSafeArrayUtil {
  // Utility class that assists in constructing or destroying elements of an array, where the
  // constructor or destructor could throw exceptions.  In case of an exception,
  // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been
  // constructed but not destroyed.  Remember that destructors that throw exceptions are required
  // to use UnwindDetector to detect unwind and avoid exceptions in this case.  Therefore, no more
  // than one exception will be thrown (and the program will not terminate).

public:
  inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount,
                                void (*destroyElement)(void*))
      : pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount),
        elementSize(elementSize), constructedElementCount(constructedElementCount),
        destroyElement(destroyElement) {}
  KJ_DISALLOW_COPY(ExceptionSafeArrayUtil);

  inline ~ExceptionSafeArrayUtil() noexcept(false) {
    if (constructedElementCount > 0) destroyAll();
  }

  void construct(size_t count, void (*constructElement)(void*));
  // Construct the given number of elements.

  void destroyAll();
  // Destroy all elements.  Call this immediately before ExceptionSafeArrayUtil goes out-of-scope
  // to ensure that one element throwing an exception does not prevent the others from being
  // destroyed.

  void release() { constructedElementCount = 0; }
  // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements.
  // Call this after you've successfully finished constructing.

private:
  byte* pos;
  size_t elementSize;
  size_t constructedElementCount;
  void (*destroyElement)(void*);
};

103 104 105 106 107 108 109 110
class DestructorOnlyArrayDisposer: public ArrayDisposer {
public:
  static const DestructorOnlyArrayDisposer instance;

  void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                   size_t capacity, void (*destroyElement)(void*)) const override;
};

111 112 113 114 115
// =======================================================================================
// Array

template <typename T>
class Array {
Kenton Varda's avatar
Kenton Varda committed
116 117 118
  // An owned array which will automatically be disposed of (using an ArrayDisposer) in the
  // destructor.  Can be moved, but not copied.  Much like Own<T>, but for arrays rather than
  // single objects.
119 120 121 122

public:
  inline Array(): ptr(nullptr), size_(0) {}
  inline Array(decltype(nullptr)): ptr(nullptr), size_(0) {}
Kenton Varda's avatar
Kenton Varda committed
123 124
  inline Array(Array&& other) noexcept
      : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
125 126 127
    other.ptr = nullptr;
    other.size_ = 0;
  }
128
  inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept
129 130 131 132
      : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
    other.ptr = nullptr;
    other.size_ = 0;
  }
Kenton Varda's avatar
Kenton Varda committed
133 134
  inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer)
      : ptr(firstElement), size_(size), disposer(&disposer) {}
135 136

  KJ_DISALLOW_COPY(Array);
Kenton Varda's avatar
Kenton Varda committed
137
  inline ~Array() noexcept { dispose(); }
138 139 140 141 142 143 144 145 146 147 148 149 150

  inline operator ArrayPtr<T>() {
    return ArrayPtr<T>(ptr, size_);
  }
  inline operator ArrayPtr<const T>() const {
    return ArrayPtr<T>(ptr, size_);
  }
  inline ArrayPtr<T> asPtr() {
    return ArrayPtr<T>(ptr, size_);
  }

  inline size_t size() const { return size_; }
  inline T& operator[](size_t index) const {
Kenton Varda's avatar
Kenton Varda committed
151
    KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
152 153 154
    return ptr[index];
  }

Kenton Varda's avatar
Kenton Varda committed
155 156 157 158 159 160 161 162
  inline const T* begin() const { return ptr; }
  inline const T* end() const { return ptr + size_; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(ptr + size_ - 1); }
  inline T* begin() { return ptr; }
  inline T* end() { return ptr + size_; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(ptr + size_ - 1); }
163 164

  inline ArrayPtr<T> slice(size_t start, size_t end) {
Kenton Varda's avatar
Kenton Varda committed
165
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
166 167 168
    return ArrayPtr<T>(ptr + start, end - start);
  }
  inline ArrayPtr<const T> slice(size_t start, size_t end) const {
Kenton Varda's avatar
Kenton Varda committed
169
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
170 171 172 173 174 175 176
    return ArrayPtr<const T>(ptr + start, end - start);
  }

  inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
  inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }

  inline Array& operator=(decltype(nullptr)) {
Kenton Varda's avatar
Kenton Varda committed
177
    dispose();
178 179 180 181
    return *this;
  }

  inline Array& operator=(Array&& other) {
Kenton Varda's avatar
Kenton Varda committed
182
    dispose();
183 184
    ptr = other.ptr;
    size_ = other.size_;
Kenton Varda's avatar
Kenton Varda committed
185
    disposer = other.disposer;
186 187 188 189 190 191 192 193
    other.ptr = nullptr;
    other.size_ = 0;
    return *this;
  }

private:
  T* ptr;
  size_t size_;
Kenton Varda's avatar
Kenton Varda committed
194 195 196 197 198 199 200 201 202 203 204 205 206
  const ArrayDisposer* disposer;

  inline void dispose() {
    // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
    // dispose again.
    T* ptrCopy = ptr;
    size_t sizeCopy = size_;
    if (ptrCopy != nullptr) {
      ptr = nullptr;
      size_ = 0;
      disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
    }
  }
207 208 209

  template <typename U>
  friend class Array;
Kenton Varda's avatar
Kenton Varda committed
210 211
};

212
namespace _ {  // private
Kenton Varda's avatar
Kenton Varda committed
213 214 215 216 217 218 219

class HeapArrayDisposer final: public ArrayDisposer {
public:
  template <typename T>
  static T* allocate(size_t count);
  template <typename T>
  static T* allocateUninitialized(size_t count);
220

Kenton Varda's avatar
Kenton Varda committed
221 222 223
  static const HeapArrayDisposer instance;

private:
Kenton Varda's avatar
Kenton Varda committed
224 225 226 227 228 229 230 231
  static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
                            void (*constructElement)(void*), void (*destroyElement)(void*));
  // Allocates and constructs the array.  Both function pointers are null if the constructor is
  // trivial, otherwise destroyElement is null if the constructor doesn't throw.

  virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                           size_t capacity, void (*destroyElement)(void*)) const override;

Kenton Varda's avatar
Kenton Varda committed
232 233 234
  template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
                        bool hasNothrowConstructor = __has_nothrow_constructor(T)>
  struct Allocate_;
235 236
};

237
}  // namespace _ (private)
Kenton Varda's avatar
Kenton Varda committed
238

239
template <typename T>
Kenton Varda's avatar
Kenton Varda committed
240 241 242
inline Array<T> heapArray(size_t size) {
  // Much like `heap<T>()` from memory.h, allocates a new array on the heap.

243 244
  return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
                  _::HeapArrayDisposer::instance);
245 246
}

Kenton Varda's avatar
Kenton Varda committed
247 248 249
template <typename T> Array<T> heapArray(const T* content, size_t size);
template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
250 251
template <typename T> Array<T> heapArray(std::initializer_list<T> init);
// Allocate a heap array containing a copy of the given content.
Kenton Varda's avatar
Kenton Varda committed
252

253 254 255 256 257
template <typename T, typename Container>
Array<T> heapArrayFromIterable(Container&& a) { return heapArray(a.begin(), a.end()); }
template <typename T>
Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }

258 259 260 261 262
// =======================================================================================
// ArrayBuilder

template <typename T>
class ArrayBuilder {
Kenton Varda's avatar
Kenton Varda committed
263 264
  // Class which lets you build an Array<T> specifying the exact constructor arguments for each
  // element, rather than starting by default-constructing them.
265 266

public:
Kenton Varda's avatar
Kenton Varda committed
267 268
  ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
  ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
269 270
  explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
                        const ArrayDisposer& disposer)
Kenton Varda's avatar
Kenton Varda committed
271 272 273 274 275 276 277 278 279
      : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
        disposer(&disposer) {}
  ArrayBuilder(ArrayBuilder&& other)
      : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
    other.ptr = nullptr;
    other.pos = nullptr;
    other.endPtr = nullptr;
  }
  KJ_DISALLOW_COPY(ArrayBuilder);
280
  inline ~ArrayBuilder() noexcept(false) { dispose(); }
Kenton Varda's avatar
Kenton Varda committed
281 282 283 284 285 286 287 288 289 290

  inline operator ArrayPtr<T>() {
    return arrayPtr(ptr, pos);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(ptr, pos);
  }
  inline ArrayPtr<T> asPtr() {
    return arrayPtr(ptr, pos);
  }
291 292 293
  inline ArrayPtr<const T> asPtr() const {
    return arrayPtr(ptr, pos);
  }
Kenton Varda's avatar
Kenton Varda committed
294 295 296 297

  inline size_t size() const { return pos - ptr; }
  inline size_t capacity() const { return endPtr - ptr; }
  inline T& operator[](size_t index) const {
Kenton Varda's avatar
Kenton Varda committed
298
    KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
Kenton Varda's avatar
Kenton Varda committed
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    return ptr[index];
  }

  inline const T* begin() const { return ptr; }
  inline const T* end() const { return pos; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(pos - 1); }
  inline T* begin() { return ptr; }
  inline T* end() { return pos; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(pos - 1); }

  ArrayBuilder& operator=(ArrayBuilder&& other) {
    dispose();
    ptr = other.ptr;
    pos = other.pos;
    endPtr = other.endPtr;
    disposer = other.disposer;
    other.ptr = nullptr;
    other.pos = nullptr;
    other.endPtr = nullptr;
    return *this;
  }
  ArrayBuilder& operator=(decltype(nullptr)) {
    dispose();
    return *this;
325 326 327 328
  }

  template <typename... Params>
  void add(Params&&... params) {
Kenton Varda's avatar
Kenton Varda committed
329
    KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
Kenton Varda's avatar
Kenton Varda committed
330
    ctor(*pos, kj::fwd<Params>(params)...);
331 332 333 334 335
    ++pos;
  }

  template <typename Container>
  void addAll(Container&& container) {
Kenton Varda's avatar
Kenton Varda committed
336
    addAll(container.begin(), container.end());
337 338
  }

Kenton Varda's avatar
Kenton Varda committed
339 340 341
  template <typename Iterator>
  void addAll(Iterator start, Iterator end);

342
  Array<T> finish() {
343 344 345 346 347 348
    // We could safely remove this check if we assume that the disposer implementation doesn't
    // need to know the original capacity, as is thes case with HeapArrayDisposer since it uses
    // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity
    // in a prefix.  But that would make it hard to write cleverer heap allocators, and anyway this
    // check might catch bugs.  Probably people should use Vector if they want to build arrays
    // without knowing the final size in advance.
Kenton Varda's avatar
Kenton Varda committed
349
    KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
350
    Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer);
351 352 353 354 355 356
    ptr = nullptr;
    pos = nullptr;
    endPtr = nullptr;
    return result;
  }

357 358 359 360
  inline bool isFull() const {
    return pos == endPtr;
  }

361
private:
Kenton Varda's avatar
Kenton Varda committed
362
  T* ptr;
363
  RemoveConst<T>* pos;
Kenton Varda's avatar
Kenton Varda committed
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  T* endPtr;
  const ArrayDisposer* disposer;

  inline void dispose() {
    // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
    // dispose again.
    T* ptrCopy = ptr;
    T* posCopy = pos;
    T* endCopy = endPtr;
    if (ptrCopy != nullptr) {
      ptr = nullptr;
      pos = nullptr;
      endPtr = nullptr;
      disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
    }
  }
380 381
};

Kenton Varda's avatar
Kenton Varda committed
382 383 384 385 386
template <typename T>
inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
  // Like `heapArray<T>()` but does not default-construct the elements.  You must construct them
  // manually by calling `add()`.

387 388
  return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
                         size, _::HeapArrayDisposer::instance);
Kenton Varda's avatar
Kenton Varda committed
389 390 391
}

// =======================================================================================
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
// Inline Arrays

template <typename T, size_t fixedSize>
class FixedArray {
  // A fixed-width array whose storage is allocated inline rather than on the heap.

public:
  inline size_t size() const { return fixedSize; }
  inline T* begin() { return content; }
  inline T* end() { return content + fixedSize; }
  inline const T* begin() const { return content; }
  inline const T* end() const { return content + fixedSize; }

  inline operator ArrayPtr<T>() {
    return arrayPtr(content, fixedSize);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(content, fixedSize);
  }

  inline T& operator[](size_t index) { return content[index]; }
  inline const T& operator[](size_t index) const { return content[index]; }

private:
  T content[fixedSize];
};

template <typename T, size_t fixedSize>
class CappedArray {
  // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
  // specified by the template parameter.
  //
  // TODO(someday):  Don't construct elements past currentSize?

public:
  inline constexpr CappedArray(): currentSize(fixedSize) {}
  inline explicit constexpr CappedArray(size_t s): currentSize(s) {}

  inline size_t size() const { return currentSize; }
  inline void setSize(size_t s) { currentSize = s; }
  inline T* begin() { return content; }
  inline T* end() { return content + currentSize; }
  inline const T* begin() const { return content; }
  inline const T* end() const { return content + currentSize; }

  inline operator ArrayPtr<T>() {
    return arrayPtr(content, currentSize);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(content, currentSize);
  }

  inline T& operator[](size_t index) { return content[index]; }
  inline const T& operator[](size_t index) const { return content[index]; }

private:
  size_t currentSize;
  T content[fixedSize];
};

// =======================================================================================
Kenton Varda's avatar
Kenton Varda committed
453 454 455 456 457 458
// Inline implementation details

template <typename T>
struct ArrayDisposer::Dispose_<T, true> {
  static void dispose(T* firstElement, size_t elementCount, size_t capacity,
                      const ArrayDisposer& disposer) {
459 460
    disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
                         sizeof(T), elementCount, capacity, nullptr);
Kenton Varda's avatar
Kenton Varda committed
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
  }
};
template <typename T>
struct ArrayDisposer::Dispose_<T, false> {
  static void destruct(void* ptr) {
    kj::dtor(*reinterpret_cast<T*>(ptr));
  }

  static void dispose(T* firstElement, size_t elementCount, size_t capacity,
                      const ArrayDisposer& disposer) {
    disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct);
  }
};

template <typename T>
void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
  Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
}

480
namespace _ {  // private
Kenton Varda's avatar
Kenton Varda committed
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

template <typename T>
struct HeapArrayDisposer::Allocate_<T, true, true> {
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, nullptr, nullptr));
  }
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, true> {
  static void construct(void* ptr) {
    kj::ctor(*reinterpret_cast<T*>(ptr));
  }
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, &construct, nullptr));
  }
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, false> {
  static void construct(void* ptr) {
    kj::ctor(*reinterpret_cast<T*>(ptr));
  }
  static void destruct(void* ptr) {
    kj::dtor(*reinterpret_cast<T*>(ptr));
  }
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, &construct, &destruct));
  }
};

template <typename T>
T* HeapArrayDisposer::allocate(size_t count) {
  return Allocate_<T>::allocate(count, count);
}

template <typename T>
T* HeapArrayDisposer::allocateUninitialized(size_t count) {
  return Allocate_<T, true, true>::allocate(0, count);
}

template <typename Element, typename Iterator,
          bool trivial = __has_trivial_copy(Element) && __has_trivial_assign(Element)>
struct CopyConstructArray_;

template <typename T>
struct CopyConstructArray_<T, T*, true> {
  static inline T* apply(T* __restrict__ pos, T* start, T* end) {
530
    memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
Kenton Varda's avatar
Kenton Varda committed
531 532 533 534 535 536 537
    return pos + (end - start);
  }
};

template <typename T>
struct CopyConstructArray_<T, const T*, true> {
  static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
538
    memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
Kenton Varda's avatar
Kenton Varda committed
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    return pos + (end - start);
  }
};

template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, true> {
  static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
    // Since both the copy constructor and assignment operator are trivial, we know that assignment
    // is equivalent to copy-constructing.  So we can make this case somewhat easier for the
    // compiler to optimize.
    while (start != end) {
      *pos++ = *start++;
    }
    return pos;
  }
};

template <typename T, typename Iterator>
struct CopyConstructArray_<T, Iterator, false> {
  struct ExceptionGuard {
    T* start;
    T* pos;
    inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
562
    ~ExceptionGuard() noexcept(false) {
Kenton Varda's avatar
Kenton Varda committed
563 564 565 566 567 568 569 570 571
      while (pos > start) {
        dtor(*--pos);
      }
    }
  };

  static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
    if (noexcept(T(instance<const T&>()))) {
      while (start != end) {
572
        ctor(*pos++, implicitCast<const T&>(*start++));
Kenton Varda's avatar
Kenton Varda committed
573 574 575 576 577 578
      }
      return pos;
    } else {
      // Crap.  This is complicated.
      ExceptionGuard guard(pos);
      while (start != end) {
579
        ctor(*guard.pos, implicitCast<const T&>(*start++));
Kenton Varda's avatar
Kenton Varda committed
580 581 582 583 584 585 586 587 588 589
        ++guard.pos;
      }
      guard.start = guard.pos;
      return guard.pos;
    }
  }
};

template <typename T, typename Iterator>
inline T* copyConstructArray(T* dst, Iterator start, Iterator end) {
590
  return CopyConstructArray_<T, Decay<Iterator>>::apply(dst, start, end);
Kenton Varda's avatar
Kenton Varda committed
591 592
}

593
}  // namespace _ (private)
Kenton Varda's avatar
Kenton Varda committed
594 595 596 597

template <typename T>
template <typename Iterator>
void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
598
  pos = _::copyConstructArray(pos, start, end);
Kenton Varda's avatar
Kenton Varda committed
599 600
}

Kenton Varda's avatar
Kenton Varda committed
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
template <typename T>
Array<T> heapArray(const T* content, size_t size) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
  builder.addAll(content, content + size);
  return builder.finish();
}

template <typename T>
Array<T> heapArray(ArrayPtr<const T> content) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
  builder.addAll(content);
  return builder.finish();
}

template <typename T, typename Iterator> Array<T>
heapArray(Iterator begin, Iterator end) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
  builder.addAll(begin, end);
  return builder.finish();
}

622 623 624 625 626
template <typename T>
inline Array<T> heapArray(std::initializer_list<T> init) {
  return heapArray<T>(init.begin(), init.end());
}

627 628 629
}  // namespace kj

#endif  // KJ_ARRAY_H_