async-io.c++ 46.6 KB
Newer Older
Kenton Varda's avatar
Kenton Varda committed
1 2
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
3
//
Kenton Varda's avatar
Kenton Varda committed
4 5 6 7 8 9
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
10
//
Kenton Varda's avatar
Kenton Varda committed
11 12
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
13
//
Kenton Varda's avatar
Kenton Varda committed
14 15 16 17 18 19 20
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
21 22 23 24

#include "async-io.h"
#include "async-unix.h"
#include "debug.h"
25
#include "thread.h"
Kenton Varda's avatar
Kenton Varda committed
26
#include "io.h"
Tom Lee's avatar
Tom Lee committed
27
#include "miniposix.h"
28 29 30 31 32 33 34
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
35
#include <netinet/in.h>
36
#include <netinet/tcp.h>
37 38 39
#include <stddef.h>
#include <stdlib.h>
#include <arpa/inet.h>
Kenton Varda's avatar
Kenton Varda committed
40 41
#include <netdb.h>
#include <set>
42
#include <poll.h>
43 44
#include <limits.h>

45 46 47 48
namespace kj {

namespace {

49 50 51 52 53 54 55 56
void setNonblocking(int fd) {
  int flags;
  KJ_SYSCALL(flags = fcntl(fd, F_GETFL));
  if ((flags & O_NONBLOCK) == 0) {
    KJ_SYSCALL(fcntl(fd, F_SETFL, flags | O_NONBLOCK));
  }
}

57 58 59 60 61 62 63 64
void setCloseOnExec(int fd) {
  int flags;
  KJ_SYSCALL(flags = fcntl(fd, F_GETFD));
  if ((flags & FD_CLOEXEC) == 0) {
    KJ_SYSCALL(fcntl(fd, F_SETFD, flags | FD_CLOEXEC));
  }
}

Kenton Varda's avatar
Kenton Varda committed
65
static constexpr uint NEW_FD_FLAGS =
Kenton Varda's avatar
Kenton Varda committed
66
#if __linux__ && !__BIONIC__
67
    LowLevelAsyncIoProvider::ALREADY_CLOEXEC | LowLevelAsyncIoProvider::ALREADY_NONBLOCK |
Kenton Varda's avatar
Kenton Varda committed
68 69 70 71 72
#endif
    LowLevelAsyncIoProvider::TAKE_OWNERSHIP;
// We always try to open FDs with CLOEXEC and NONBLOCK already set on Linux, but on other platforms
// this is not possible.

73 74
class OwnedFileDescriptor {
public:
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  OwnedFileDescriptor(int fd, uint flags): fd(fd), flags(flags) {
    if (flags & LowLevelAsyncIoProvider::ALREADY_NONBLOCK) {
      KJ_DREQUIRE(fcntl(fd, F_GETFL) & O_NONBLOCK, "You claimed you set NONBLOCK, but you didn't.");
    } else {
      setNonblocking(fd);
    }

    if (flags & LowLevelAsyncIoProvider::TAKE_OWNERSHIP) {
      if (flags & LowLevelAsyncIoProvider::ALREADY_CLOEXEC) {
        KJ_DREQUIRE(fcntl(fd, F_GETFD) & FD_CLOEXEC,
                    "You claimed you set CLOEXEC, but you didn't.");
      } else {
        setCloseOnExec(fd);
      }
    }
90 91 92 93
  }

  ~OwnedFileDescriptor() noexcept(false) {
    // Don't use SYSCALL() here because close() should not be repeated on EINTR.
94
    if ((flags & LowLevelAsyncIoProvider::TAKE_OWNERSHIP) && close(fd) < 0) {
95 96 97 98 99 100 101 102 103
      KJ_FAIL_SYSCALL("close", errno, fd) {
        // Recoverable exceptions are safe in destructors.
        break;
      }
    }
  }

protected:
  const int fd;
104 105 106

private:
  uint flags;
107 108 109 110
};

// =======================================================================================

111
class AsyncStreamFd: public OwnedFileDescriptor, public AsyncIoStream {
112
public:
113
  AsyncStreamFd(UnixEventPort& eventPort, int fd, uint flags)
114
      : OwnedFileDescriptor(fd, flags),
115
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ_WRITE) {}
116
  virtual ~AsyncStreamFd() noexcept(false) {}
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

  Promise<size_t> read(void* buffer, size_t minBytes, size_t maxBytes) override {
    return tryReadInternal(buffer, minBytes, maxBytes, 0).then([=](size_t result) {
      KJ_REQUIRE(result >= minBytes, "Premature EOF") {
        // Pretend we read zeros from the input.
        memset(reinterpret_cast<byte*>(buffer) + result, 0, minBytes - result);
        return minBytes;
      }
      return result;
    });
  }

  Promise<size_t> tryRead(void* buffer, size_t minBytes, size_t maxBytes) override {
    return tryReadInternal(buffer, minBytes, maxBytes, 0);
  }

  Promise<void> write(const void* buffer, size_t size) override {
    ssize_t writeResult;
135
    KJ_NONBLOCKING_SYSCALL(writeResult = ::write(fd, buffer, size)) {
136 137 138 139 140 141 142 143 144 145 146
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
      return kj::READY_NOW;
147 148 149 150 151 152 153 154 155
    }

    // A negative result means EAGAIN, which we can treat the same as having written zero bytes.
    size_t n = writeResult < 0 ? 0 : writeResult;

    if (n == size) {
      return READY_NOW;
    }

156 157 158 159 160
    // Fewer than `size` bytes were written, therefore we must be out of buffer space. Wait until
    // the fd becomes writable again.
    buffer = reinterpret_cast<const byte*>(buffer) + n;
    size -= n;

161
    return observer.whenBecomesWritable().then([=]() {
162 163 164 165 166 167 168 169 170 171 172 173
      return write(buffer, size);
    });
  }

  Promise<void> write(ArrayPtr<const ArrayPtr<const byte>> pieces) override {
    if (pieces.size() == 0) {
      return writeInternal(nullptr, nullptr);
    } else {
      return writeInternal(pieces[0], pieces.slice(1, pieces.size()));
    }
  }

174 175 176
  void shutdownWrite() override {
    // There's no legitimate way to get an AsyncStreamFd that isn't a socket through the
    // UnixAsyncIoProvider interface.
177
    KJ_SYSCALL(shutdown(fd, SHUT_WR));
178 179
  }

180 181 182 183 184 185
  void abortRead() override {
    // There's no legitimate way to get an AsyncStreamFd that isn't a socket through the
    // UnixAsyncIoProvider interface.
    KJ_SYSCALL(shutdown(fd, SHUT_RD));
  }

186 187 188 189 190 191 192 193 194 195
  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }

  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

196 197 198 199 200 201 202 203 204 205 206 207
  void getsockname(struct sockaddr* addr, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockname(fd, addr, &socklen));
    *length = socklen;
  }

  void getpeername(struct sockaddr* addr, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getpeername(fd, addr, &socklen));
    *length = socklen;
  }

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  Promise<void> waitConnected() {
    // Wait until initial connection has completed. This actually just waits until it is writable.

    // Can't just go directly to writeObserver.whenBecomesWritable() because of edge triggering. We
    // need to explicitly check if the socket is already connected.

    struct pollfd pollfd;
    memset(&pollfd, 0, sizeof(pollfd));
    pollfd.fd = fd;
    pollfd.events = POLLOUT;

    int pollResult;
    KJ_SYSCALL(pollResult = poll(&pollfd, 1, 0));

    if (pollResult == 0) {
      // Not ready yet. We can safely use the edge-triggered observer.
224
      return observer.whenBecomesWritable();
225 226 227 228 229 230
    } else {
      // Ready now.
      return kj::READY_NOW;
    }
  }

231
private:
232
  UnixEventPort::FdObserver observer;
233 234 235 236 237 238 239 240

  Promise<size_t> tryReadInternal(void* buffer, size_t minBytes, size_t maxBytes,
                                  size_t alreadyRead) {
    // `alreadyRead` is the number of bytes we have already received via previous reads -- minBytes,
    // maxBytes, and buffer have already been adjusted to account for them, but this count must
    // be included in the final return value.

    ssize_t n;
241
    KJ_NONBLOCKING_SYSCALL(n = ::read(fd, buffer, maxBytes)) {
242 243 244 245 246 247 248 249 250 251
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
252 253 254 255 256
      return alreadyRead;
    }

    if (n < 0) {
      // Read would block.
257
      return observer.whenBecomesReadable().then([=]() {
258 259 260 261 262
        return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
      });
    } else if (n == 0) {
      // EOF -OR- maxBytes == 0.
      return alreadyRead;
263 264 265 266
    } else if (implicitCast<size_t>(n) >= minBytes) {
      // We read enough to stop here.
      return alreadyRead + n;
    } else {
267
      // The kernel returned fewer bytes than we asked for (and fewer than we need).
268 269 270 271 272 273

      buffer = reinterpret_cast<byte*>(buffer) + n;
      minBytes -= n;
      maxBytes -= n;
      alreadyRead += n;

274
      KJ_IF_MAYBE(atEnd, observer.atEndHint()) {
275 276 277 278 279 280 281 282 283 284 285 286
        if (*atEnd) {
          // We've already received an indication that the next read() will return EOF, so there's
          // nothing to wait for.
          return alreadyRead;
        } else {
          // As of the last time the event queue was checked, the kernel reported that we were
          // *not* at the end of the stream. It's unlikely that this has changed in the short time
          // it took to handle the event, therefore calling read() now will almost certainly fail
          // with EAGAIN. Moreover, since EOF had not been received as of the last check, we know
          // that even if it was received since then, whenBecomesReadable() will catch that. So,
          // let's go ahead and skip calling read() here and instead go straight to waiting for
          // more input.
287
          return observer.whenBecomesReadable().then([=]() {
288 289 290
            return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
          });
        }
291
      } else {
292 293 294 295
        // The kernel has not indicated one way or the other whether we are likely to be at EOF.
        // In this case we *must* keep calling read() until we either get a return of zero or
        // EAGAIN.
        return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
296 297 298 299 300 301
      }
    }
  }

  Promise<void> writeInternal(ArrayPtr<const byte> firstPiece,
                              ArrayPtr<const ArrayPtr<const byte>> morePieces) {
Tom Lee's avatar
Tom Lee committed
302
    const size_t iovmax = kj::miniposix::iovMax(1 + morePieces.size());
303 304
    // If there are more than IOV_MAX pieces, we'll only write the first IOV_MAX for now, and
    // then we'll loop later.
305
    KJ_STACK_ARRAY(struct iovec, iov, kj::min(1 + morePieces.size(), iovmax), 16, 128);
306
    size_t iovTotal = 0;
307 308 309 310

    // writev() interface is not const-correct.  :(
    iov[0].iov_base = const_cast<byte*>(firstPiece.begin());
    iov[0].iov_len = firstPiece.size();
311 312 313 314 315
    iovTotal += iov[0].iov_len;
    for (uint i = 1; i < iov.size(); i++) {
      iov[i].iov_base = const_cast<byte*>(morePieces[i - 1].begin());
      iov[i].iov_len = morePieces[i - 1].size();
      iovTotal += iov[i].iov_len;
316 317 318
    }

    ssize_t writeResult;
319
    KJ_NONBLOCKING_SYSCALL(writeResult = ::writev(fd, iov.begin(), iov.size())) {
Kenton Varda's avatar
Kenton Varda committed
320 321 322 323 324 325 326 327 328 329 330
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
      return kj::READY_NOW;
331 332 333 334 335 336 337 338
    }

    // A negative result means EAGAIN, which we can treat the same as having written zero bytes.
    size_t n = writeResult < 0 ? 0 : writeResult;

    // Discard all data that was written, then issue a new write for what's left (if any).
    for (;;) {
      if (n < firstPiece.size()) {
339
        // Only part of the first piece was consumed.  Wait for buffer space and then write again.
340
        firstPiece = firstPiece.slice(n, firstPiece.size());
341 342 343 344 345 346 347
        iovTotal -= n;

        if (iovTotal == 0) {
          // Oops, what actually happened is that we hit the IOV_MAX limit. Don't wait.
          return writeInternal(firstPiece, morePieces);
        }

348
        return observer.whenBecomesWritable().then([=]() {
349 350 351 352
          return writeInternal(firstPiece, morePieces);
        });
      } else if (morePieces.size() == 0) {
        // First piece was fully-consumed and there are no more pieces, so we're done.
353
        KJ_DASSERT(n == firstPiece.size(), n);
354 355 356 357
        return READY_NOW;
      } else {
        // First piece was fully consumed, so move on to the next piece.
        n -= firstPiece.size();
358
        iovTotal -= firstPiece.size();
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
        firstPiece = morePieces[0];
        morePieces = morePieces.slice(1, morePieces.size());
      }
    }
  }
};

// =======================================================================================

class SocketAddress {
public:
  SocketAddress(const void* sockaddr, uint len): addrlen(len) {
    KJ_REQUIRE(len <= sizeof(addr), "Sorry, your sockaddr is too big for me.");
    memcpy(&addr.generic, sockaddr, len);
  }

Kenton Varda's avatar
Kenton Varda committed
375 376 377 378 379 380 381 382 383 384 385 386
  bool operator<(const SocketAddress& other) const {
    // So we can use std::set<SocketAddress>...  see DNS lookup code.

    if (wildcard < other.wildcard) return true;
    if (wildcard > other.wildcard) return false;

    if (addrlen < other.addrlen) return true;
    if (addrlen > other.addrlen) return false;

    return memcmp(&addr.generic, &other.addr.generic, addrlen) < 0;
  }

387 388 389
  const struct sockaddr* getRaw() const { return &addr.generic; }
  socklen_t getRawSize() const { return addrlen; }

390
  int socket(int type) const {
391 392
    bool isStream = type == SOCK_STREAM;

393
    int result;
Kenton Varda's avatar
Kenton Varda committed
394
#if __linux__ && !__BIONIC__
395 396 397
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
#endif
    KJ_SYSCALL(result = ::socket(addr.generic.sa_family, type, 0));
398 399 400

    if (isStream && (addr.generic.sa_family == AF_INET ||
                     addr.generic.sa_family == AF_INET6)) {
401
      // TODO(perf):  As a hack for the 0.4 release we are always setting
402 403 404 405 406 407 408 409 410
      //   TCP_NODELAY because Nagle's algorithm pretty much kills Cap'n Proto's
      //   RPC protocol.  Later, we should extend the interface to provide more
      //   control over this.  Perhaps write() should have a flag which
      //   specifies whether to pass MSG_MORE.
      int one = 1;
      KJ_SYSCALL(setsockopt(
          result, IPPROTO_TCP, TCP_NODELAY, (char*)&one, sizeof(one)));
    }

411 412 413 414
    return result;
  }

  void bind(int sockfd) const {
415
#if !defined(__OpenBSD__)
416 417 418 419 420 421
    if (wildcard) {
      // Disable IPV6_V6ONLY because we want to handle both ipv4 and ipv6 on this socket.  (The
      // default value of this option varies across platforms.)
      int value = 0;
      KJ_SYSCALL(setsockopt(sockfd, IPPROTO_IPV6, IPV6_V6ONLY, &value, sizeof(value)));
    }
422
#endif
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

    KJ_SYSCALL(::bind(sockfd, &addr.generic, addrlen), toString());
  }

  void connect(int sockfd) const {
    // Unfortunately connect() doesn't fit the mold of KJ_NONBLOCKING_SYSCALL, since it indicates
    // non-blocking using EINPROGRESS.
    for (;;) {
      if (::connect(sockfd, &addr.generic, addrlen) < 0) {
        int error = errno;
        if (error == EINPROGRESS) {
          return;
        } else if (error != EINTR) {
          KJ_FAIL_SYSCALL("connect()", error, toString()) {
            // Recover by returning, since reads/writes will simply fail.
            return;
          }
        }
      } else {
        // no error
        return;
      }
    }
  }

  uint getPort() const {
    switch (addr.generic.sa_family) {
      case AF_INET: return ntohs(addr.inet4.sin_port);
      case AF_INET6: return ntohs(addr.inet6.sin6_port);
      default: return 0;
    }
  }

  String toString() const {
    if (wildcard) {
      return str("*:", getPort());
    }

    switch (addr.generic.sa_family) {
      case AF_INET: {
        char buffer[INET6_ADDRSTRLEN];
        if (inet_ntop(addr.inet4.sin_family, &addr.inet4.sin_addr,
                      buffer, sizeof(buffer)) == nullptr) {
          KJ_FAIL_SYSCALL("inet_ntop", errno) { return heapString("(inet_ntop error)"); }
        }
        return str(buffer, ':', ntohs(addr.inet4.sin_port));
      }
      case AF_INET6: {
        char buffer[INET6_ADDRSTRLEN];
        if (inet_ntop(addr.inet6.sin6_family, &addr.inet6.sin6_addr,
                      buffer, sizeof(buffer)) == nullptr) {
          KJ_FAIL_SYSCALL("inet_ntop", errno) { return heapString("(inet_ntop error)"); }
        }
        return str('[', buffer, "]:", ntohs(addr.inet6.sin6_port));
      }
      case AF_UNIX: {
        return str("unix:", addr.unixDomain.sun_path);
      }
      default:
        return str("(unknown address family ", addr.generic.sa_family, ")");
    }
  }

Kenton Varda's avatar
Kenton Varda committed
486 487 488 489 490 491 492 493
  static Promise<Array<SocketAddress>> lookupHost(
      LowLevelAsyncIoProvider& lowLevel, kj::String host, kj::String service, uint portHint);
  // Perform a DNS lookup.

  static Promise<Array<SocketAddress>> parse(
      LowLevelAsyncIoProvider& lowLevel, StringPtr str, uint portHint) {
    // TODO(someday):  Allow commas in `str`.

494 495 496 497 498 499 500 501 502
    SocketAddress result;

    if (str.startsWith("unix:")) {
      StringPtr path = str.slice(strlen("unix:"));
      KJ_REQUIRE(path.size() < sizeof(addr.unixDomain.sun_path),
                 "Unix domain socket address is too long.", str);
      result.addr.unixDomain.sun_family = AF_UNIX;
      strcpy(result.addr.unixDomain.sun_path, path.cStr());
      result.addrlen = offsetof(struct sockaddr_un, sun_path) + path.size() + 1;
Kenton Varda's avatar
Kenton Varda committed
503 504 505
      auto array = kj::heapArrayBuilder<SocketAddress>(1);
      array.add(result);
      return array.finish();
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    }

    // Try to separate the address and port.
    ArrayPtr<const char> addrPart;
    Maybe<StringPtr> portPart;

    int af;

    if (str.startsWith("[")) {
      // Address starts with a bracket, which is a common way to write an ip6 address with a port,
      // since without brackets around the address part, the port looks like another segment of
      // the address.
      af = AF_INET6;
      size_t closeBracket = KJ_ASSERT_NONNULL(str.findLast(']'),
          "Unclosed '[' in address string.", str);

      addrPart = str.slice(1, closeBracket);
      if (str.size() > closeBracket + 1) {
        KJ_REQUIRE(str.slice(closeBracket + 1).startsWith(":"),
                   "Expected port suffix after ']'.", str);
        portPart = str.slice(closeBracket + 2);
      }
    } else {
      KJ_IF_MAYBE(colon, str.findFirst(':')) {
        if (str.slice(*colon + 1).findFirst(':') == nullptr) {
          // There is exactly one colon and no brackets, so it must be an ip4 address with port.
          af = AF_INET;
          addrPart = str.slice(0, *colon);
          portPart = str.slice(*colon + 1);
        } else {
          // There are two or more colons and no brackets, so the whole thing must be an ip6
          // address with no port.
          af = AF_INET6;
          addrPart = str;
        }
      } else {
        // No colons, so it must be an ip4 address without port.
        af = AF_INET;
        addrPart = str;
      }
    }

    // Parse the port.
    unsigned long port;
    KJ_IF_MAYBE(portText, portPart) {
      char* endptr;
      port = strtoul(portText->cStr(), &endptr, 0);
      if (portText->size() == 0 || *endptr != '\0') {
Kenton Varda's avatar
Kenton Varda committed
554 555
        // Not a number.  Maybe it's a service name.  Fall back to DNS.
        return lookupHost(lowLevel, kj::heapString(addrPart), kj::heapString(*portText), portHint);
556 557 558 559 560 561
      }
      KJ_REQUIRE(port < 65536, "Port number too large.");
    } else {
      port = portHint;
    }

Kenton Varda's avatar
Kenton Varda committed
562 563 564
    // Check for wildcard.
    if (addrPart.size() == 1 && addrPart[0] == '*') {
      result.wildcard = true;
565 566 567 568 569 570 571 572
#if defined(__OpenBSD__)
      // On OpenBSD, all sockets are either v4-only or v6-only, so use v4 as a
      // temporary workaround for wildcards.
      result.addrlen = sizeof(addr.inet4);
      result.addr.inet4.sin_family = AF_INET;
      result.addr.inet4.sin_port = htons(port);
#else
      // Create an ip6 socket and set IPV6_V6ONLY to 0 later.
Kenton Varda's avatar
Kenton Varda committed
573 574 575
      result.addrlen = sizeof(addr.inet6);
      result.addr.inet6.sin6_family = AF_INET6;
      result.addr.inet6.sin6_port = htons(port);
576
#endif
Kenton Varda's avatar
Kenton Varda committed
577 578 579 580 581
      auto array = kj::heapArrayBuilder<SocketAddress>(1);
      array.add(result);
      return array.finish();
    }

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    void* addrTarget;
    if (af == AF_INET6) {
      result.addrlen = sizeof(addr.inet6);
      result.addr.inet6.sin6_family = AF_INET6;
      result.addr.inet6.sin6_port = htons(port);
      addrTarget = &result.addr.inet6.sin6_addr;
    } else {
      result.addrlen = sizeof(addr.inet4);
      result.addr.inet4.sin_family = AF_INET;
      result.addr.inet4.sin_port = htons(port);
      addrTarget = &result.addr.inet4.sin_addr;
    }

    // addrPart is not necessarily NUL-terminated so we have to make a copy.  :(
    KJ_REQUIRE(addrPart.size() < INET6_ADDRSTRLEN - 1, "IP address too long.", addrPart);
    char buffer[INET6_ADDRSTRLEN];
    memcpy(buffer, addrPart.begin(), addrPart.size());
    buffer[addrPart.size()] = '\0';

    // OK, parse it!
    switch (inet_pton(af, buffer, addrTarget)) {
Kenton Varda's avatar
Kenton Varda committed
603
      case 1: {
604
        // success.
Kenton Varda's avatar
Kenton Varda committed
605 606 607 608
        auto array = kj::heapArrayBuilder<SocketAddress>(1);
        array.add(result);
        return array.finish();
      }
609
      case 0:
Kenton Varda's avatar
Kenton Varda committed
610 611
        // It's apparently not a simple address...  fall back to DNS.
        return lookupHost(lowLevel, kj::heapString(addrPart), nullptr, port);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
      default:
        KJ_FAIL_SYSCALL("inet_pton", errno, af, addrPart);
    }
  }

  static SocketAddress getLocalAddress(int sockfd) {
    SocketAddress result;
    result.addrlen = sizeof(addr);
    KJ_SYSCALL(getsockname(sockfd, &result.addr.generic, &result.addrlen));
    return result;
  }

private:
  SocketAddress(): addrlen(0) {
    memset(&addr, 0, sizeof(addr));
  }

  socklen_t addrlen;
  bool wildcard = false;
  union {
    struct sockaddr generic;
    struct sockaddr_in inet4;
    struct sockaddr_in6 inet6;
    struct sockaddr_un unixDomain;
    struct sockaddr_storage storage;
  } addr;
Kenton Varda's avatar
Kenton Varda committed
638 639 640

  struct LookupParams;
  class LookupReader;
641 642
};

Kenton Varda's avatar
Kenton Varda committed
643 644 645
class SocketAddress::LookupReader {
  // Reads SocketAddresses off of a pipe coming from another thread that is performing
  // getaddrinfo.
646

Kenton Varda's avatar
Kenton Varda committed
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
public:
  LookupReader(kj::Own<Thread>&& thread, kj::Own<AsyncInputStream>&& input)
      : thread(kj::mv(thread)), input(kj::mv(input)) {}

  ~LookupReader() {
    if (thread) thread->detach();
  }

  Promise<Array<SocketAddress>> read() {
    return input->tryRead(&current, sizeof(current), sizeof(current)).then(
        [this](size_t n) -> Promise<Array<SocketAddress>> {
      if (n < sizeof(current)) {
        thread = nullptr;
        // getaddrinfo()'s docs seem to say it will never return an empty list, but let's check
        // anyway.
        KJ_REQUIRE(addresses.size() > 0, "DNS lookup returned no addresses.") { break; }
        return addresses.releaseAsArray();
      } else {
        // getaddrinfo() can return multiple copies of the same address for several reasons.
        // A major one is that we don't give it a socket type (SOCK_STREAM vs. SOCK_DGRAM), so
        // it may return two copies of the same address, one for each type, unless it explicitly
        // knows that the service name given is specific to one type.  But we can't tell it a type,
        // because we don't actually know which one the user wants, and if we specify SOCK_STREAM
        // while the user specified a UDP service name then they'll get a resolution error which
        // is lame.  (At least, I think that's how it works.)
        //
        // So we instead resort to de-duping results.
        if (alreadySeen.insert(current).second) {
          addresses.add(current);
        }
        return read();
      }
    });
  }

private:
  kj::Own<Thread> thread;
  kj::Own<AsyncInputStream> input;
  SocketAddress current;
  kj::Vector<SocketAddress> addresses;
  std::set<SocketAddress> alreadySeen;
};

struct SocketAddress::LookupParams {
  kj::String host;
  kj::String service;
};

Promise<Array<SocketAddress>> SocketAddress::lookupHost(
    LowLevelAsyncIoProvider& lowLevel, kj::String host, kj::String service, uint portHint) {
  // This shitty function spawns a thread to run getaddrinfo().  Unfortunately, getaddrinfo() is
  // the only cross-platform DNS API and it is blocking.
  //
  // TODO(perf):  Use a thread pool?  Maybe kj::Thread should use a thread pool automatically?
  //   Maybe use the various platform-specific asynchronous DNS libraries?  Please do not implement
  //   a custom DNS resolver...

  int fds[2];
Kenton Varda's avatar
Kenton Varda committed
705
#if __linux__ && !__BIONIC__
Kenton Varda's avatar
Kenton Varda committed
706 707 708
  KJ_SYSCALL(pipe2(fds, O_NONBLOCK | O_CLOEXEC));
#else
  KJ_SYSCALL(pipe(fds));
709
#endif
Kenton Varda's avatar
Kenton Varda committed
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

  auto input = lowLevel.wrapInputFd(fds[0], NEW_FD_FLAGS);

  int outFd = fds[1];

  LookupParams params = { kj::mv(host), kj::mv(service) };

  auto thread = heap<Thread>(kj::mvCapture(params, [outFd,portHint](LookupParams&& params) {
    FdOutputStream output((AutoCloseFd(outFd)));

    struct addrinfo* list;
    int status = getaddrinfo(
        params.host == "*" ? nullptr : params.host.cStr(),
        params.service == nullptr ? nullptr : params.service.cStr(),
        nullptr, &list);
    if (status == 0) {
      KJ_DEFER(freeaddrinfo(list));

      struct addrinfo* cur = list;
      while (cur != nullptr) {
        if (params.service == nullptr) {
          switch (cur->ai_addr->sa_family) {
            case AF_INET:
              ((struct sockaddr_in*)cur->ai_addr)->sin_port = htons(portHint);
              break;
            case AF_INET6:
              ((struct sockaddr_in6*)cur->ai_addr)->sin6_port = htons(portHint);
              break;
            default:
              break;
          }
        }

        SocketAddress addr;
Kenton Varda's avatar
Kenton Varda committed
744
        memset(&addr, 0, sizeof(addr));  // mollify valgrind
Kenton Varda's avatar
Kenton Varda committed
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
        if (params.host == "*") {
          // Set up a wildcard SocketAddress.  Only use the port number returned by getaddrinfo().
          addr.wildcard = true;
          addr.addrlen = sizeof(addr.addr.inet6);
          addr.addr.inet6.sin6_family = AF_INET6;
          switch (cur->ai_addr->sa_family) {
            case AF_INET:
              addr.addr.inet6.sin6_port = ((struct sockaddr_in*)cur->ai_addr)->sin_port;
              break;
            case AF_INET6:
              addr.addr.inet6.sin6_port = ((struct sockaddr_in6*)cur->ai_addr)->sin6_port;
              break;
            default:
              addr.addr.inet6.sin6_port = portHint;
              break;
          }
        } else {
          addr.addrlen = cur->ai_addrlen;
          memcpy(&addr.addr.generic, cur->ai_addr, cur->ai_addrlen);
        }
765
        static_assert(canMemcpy<SocketAddress>(), "Can't write() SocketAddress...");
Kenton Varda's avatar
Kenton Varda committed
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        output.write(&addr, sizeof(addr));
        cur = cur->ai_next;
      }
    } else if (status == EAI_SYSTEM) {
      KJ_FAIL_SYSCALL("getaddrinfo", errno, params.host, params.service) {
        return;
      }
    } else {
      KJ_FAIL_REQUIRE("DNS lookup failed.",
                      params.host, params.service, gai_strerror(status)) {
        return;
      }
    }
  }));

  auto reader = heap<LookupReader>(kj::mv(thread), kj::mv(input));
782
  return reader->read().attach(kj::mv(reader));
Kenton Varda's avatar
Kenton Varda committed
783 784 785
}

// =======================================================================================
786

787 788
class FdConnectionReceiver final: public ConnectionReceiver, public OwnedFileDescriptor {
public:
789
  FdConnectionReceiver(UnixEventPort& eventPort, int fd, uint flags)
790 791
      : OwnedFileDescriptor(fd, flags), eventPort(eventPort),
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ) {}
792 793 794 795

  Promise<Own<AsyncIoStream>> accept() override {
    int newFd;

796
  retry:
Kenton Varda's avatar
Kenton Varda committed
797
#if __linux__ && !__BIONIC__
798
    newFd = ::accept4(fd, nullptr, nullptr, SOCK_NONBLOCK | SOCK_CLOEXEC);
799
#else
800
    newFd = ::accept(fd, nullptr, nullptr);
801 802
#endif

803
    if (newFd >= 0) {
804
      return Own<AsyncIoStream>(heap<AsyncStreamFd>(eventPort, newFd, NEW_FD_FLAGS));
805 806 807 808 809 810 811 812 813
    } else {
      int error = errno;

      switch (error) {
        case EAGAIN:
#if EAGAIN != EWOULDBLOCK
        case EWOULDBLOCK:
#endif
          // Not ready yet.
814
          return observer.whenBecomesReadable().then([this]() {
815 816 817 818 819
            return accept();
          });

        case EINTR:
        case ENETDOWN:
820 821
#ifdef EPROTO
        // EPROTO is not defined on OpenBSD.
822
        case EPROTO:
823
#endif
824 825 826 827
        case EHOSTDOWN:
        case EHOSTUNREACH:
        case ENETUNREACH:
        case ECONNABORTED:
Kenton Varda's avatar
Kenton Varda committed
828 829 830 831 832
        case ETIMEDOUT:
          // According to the Linux man page, accept() may report an error if the accepted
          // connection is already broken.  In this case, we really ought to just ignore it and
          // keep waiting.  But it's hard to say exactly what errors are such network errors and
          // which ones are permanent errors.  We've made a guess here.
833 834 835 836 837 838
          goto retry;

        default:
          KJ_FAIL_SYSCALL("accept", error);
      }

839 840 841 842 843 844
    }
  }

  uint getPort() override {
    return SocketAddress::getLocalAddress(fd).getPort();
  }
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }
  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

public:
  UnixEventPort& eventPort;
  UnixEventPort::FdObserver observer;
};

class DatagramPortImpl final: public DatagramPort, public OwnedFileDescriptor {
public:
  DatagramPortImpl(LowLevelAsyncIoProvider& lowLevel, UnixEventPort& eventPort, int fd, uint flags)
      : OwnedFileDescriptor(fd, flags), lowLevel(lowLevel), eventPort(eventPort),
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ |
                                UnixEventPort::FdObserver::OBSERVE_WRITE) {}

  Promise<size_t> send(const void* buffer, size_t size, NetworkAddress& destination) override;
  Promise<size_t> send(
      ArrayPtr<const ArrayPtr<const byte>> pieces, NetworkAddress& destination) override;

  class ReceiverImpl;

  Own<DatagramReceiver> makeReceiver(DatagramReceiver::Capacity capacity) override;

  uint getPort() override {
    return SocketAddress::getLocalAddress(fd).getPort();
  }

  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }
  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

888
public:
889
  LowLevelAsyncIoProvider& lowLevel;
890
  UnixEventPort& eventPort;
891
  UnixEventPort::FdObserver observer;
892 893
};

894 895 896 897
class TimerImpl final: public Timer {
public:
  TimerImpl(UnixEventPort& eventPort): eventPort(eventPort) {}

898
  TimePoint now() override { return eventPort.steadyTime(); }
899

900
  Promise<void> atTime(TimePoint time) override {
901 902 903
    return eventPort.atSteadyTime(time);
  }

904
  Promise<void> afterDelay(Duration delay) override {
905 906 907 908 909 910 911
    return eventPort.atSteadyTime(eventPort.steadyTime() + delay);
  }

private:
  UnixEventPort& eventPort;
};

912 913
class LowLevelAsyncIoProviderImpl final: public LowLevelAsyncIoProvider {
public:
914 915
  LowLevelAsyncIoProviderImpl()
      : eventLoop(eventPort), timer(eventPort), waitScope(eventLoop) {}
916 917

  inline WaitScope& getWaitScope() { return waitScope; }
918 919 920 921 922 923 924 925 926 927 928 929

  Own<AsyncInputStream> wrapInputFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
  Own<AsyncOutputStream> wrapOutputFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
  Own<AsyncIoStream> wrapSocketFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
  Promise<Own<AsyncIoStream>> wrapConnectingSocketFd(int fd, uint flags = 0) override {
    auto result = heap<AsyncStreamFd>(eventPort, fd, flags);
930 931 932 933 934 935 936 937 938 939 940

    auto connected = result->waitConnected();
    return connected.then(kj::mvCapture(result, [fd](Own<AsyncIoStream>&& stream) {
      int err;
      socklen_t errlen = sizeof(err);
      KJ_SYSCALL(getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen));
      if (err != 0) {
        KJ_FAIL_SYSCALL("connect()", err) { break; }
      }
      return kj::mv(stream);
    }));
941 942 943 944
  }
  Own<ConnectionReceiver> wrapListenSocketFd(int fd, uint flags = 0) override {
    return heap<FdConnectionReceiver>(eventPort, fd, flags);
  }
945 946 947
  Own<DatagramPort> wrapDatagramSocketFd(int fd, uint flags = 0) override {
    return heap<DatagramPortImpl>(*this, eventPort, fd, flags);
  }
948

949 950
  Timer& getTimer() override { return timer; }

951 952
  UnixEventPort& getEventPort() { return eventPort; }

953 954 955
private:
  UnixEventPort eventPort;
  EventLoop eventLoop;
956
  TimerImpl timer;
957
  WaitScope waitScope;
958 959
};

960 961
// =======================================================================================

Kenton Varda's avatar
Kenton Varda committed
962
class NetworkAddressImpl final: public NetworkAddress {
963
public:
Kenton Varda's avatar
Kenton Varda committed
964 965 966 967 968 969
  NetworkAddressImpl(LowLevelAsyncIoProvider& lowLevel, Array<SocketAddress> addrs)
      : lowLevel(lowLevel), addrs(kj::mv(addrs)) {}

  Promise<Own<AsyncIoStream>> connect() override {
    return connectImpl(0);
  }
970 971

  Own<ConnectionReceiver> listen() override {
Kenton Varda's avatar
Kenton Varda committed
972 973 974 975 976
    if (addrs.size() > 1) {
      KJ_LOG(WARNING, "Bind address resolved to multiple addresses.  Only the first address will "
          "be used.  If this is incorrect, specify the address numerically.  This may be fixed "
          "in the future.", addrs[0].toString());
    }
Kenton Varda's avatar
Kenton Varda committed
977 978

    int fd = addrs[0].socket(SOCK_STREAM);
979

980 981 982 983 984 985 986
    {
      KJ_ON_SCOPE_FAILURE(close(fd));

      // We always enable SO_REUSEADDR because having to take your server down for five minutes
      // before it can restart really sucks.
      int optval = 1;
      KJ_SYSCALL(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)));
987

Kenton Varda's avatar
Kenton Varda committed
988
      addrs[0].bind(fd);
989

990 991 992
      // TODO(someday):  Let queue size be specified explicitly in string addresses.
      KJ_SYSCALL(::listen(fd, SOMAXCONN));
    }
993

994
    return lowLevel.wrapListenSocketFd(fd, NEW_FD_FLAGS);
995 996
  }

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
  Own<DatagramPort> bindDatagramPort() override {
    if (addrs.size() > 1) {
      KJ_LOG(WARNING, "Bind address resolved to multiple addresses.  Only the first address will "
          "be used.  If this is incorrect, specify the address numerically.  This may be fixed "
          "in the future.", addrs[0].toString());
    }

    int fd = addrs[0].socket(SOCK_DGRAM);

    {
      KJ_ON_SCOPE_FAILURE(close(fd));

      // We always enable SO_REUSEADDR because having to take your server down for five minutes
      // before it can restart really sucks.
      int optval = 1;
      KJ_SYSCALL(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)));

      addrs[0].bind(fd);
    }

    return lowLevel.wrapDatagramSocketFd(fd, NEW_FD_FLAGS);
  }

  Own<NetworkAddress> clone() override {
    return kj::heap<NetworkAddressImpl>(lowLevel, kj::heapArray(addrs.asPtr()));
  }

1024
  String toString() override {
Kenton Varda's avatar
Kenton Varda committed
1025
    return strArray(KJ_MAP(addr, addrs) { return addr.toString(); }, ",");
1026 1027
  }

1028 1029 1030 1031 1032
  const SocketAddress& chooseOneAddress() {
    KJ_REQUIRE(addrs.size() > 0, "No addresses available.");
    return addrs[counter++ % addrs.size()];
  }

1033
private:
1034
  LowLevelAsyncIoProvider& lowLevel;
Kenton Varda's avatar
Kenton Varda committed
1035
  Array<SocketAddress> addrs;
1036
  uint counter = 0;
1037

Kenton Varda's avatar
Kenton Varda committed
1038 1039
  Promise<Own<AsyncIoStream>> connectImpl(uint index) {
    KJ_ASSERT(index < addrs.size());
1040

Kenton Varda's avatar
Kenton Varda committed
1041
    int fd = addrs[index].socket(SOCK_STREAM);
1042

Kenton Varda's avatar
Kenton Varda committed
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    KJ_IF_MAYBE(exception, kj::runCatchingExceptions([&]() {
      addrs[index].connect(fd);
    })) {
      // Connect failed.
      close(fd);
      if (index + 1 < addrs.size()) {
        // Try the next address instead.
        return connectImpl(index + 1);
      } else {
        // No more addresses to try, so propagate the exception.
        return kj::mv(*exception);
      }
1055 1056
    }

Kenton Varda's avatar
Kenton Varda committed
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    return lowLevel.wrapConnectingSocketFd(fd, NEW_FD_FLAGS).then(
        [](Own<AsyncIoStream>&& stream) -> Promise<Own<AsyncIoStream>> {
      // Success, pass along.
      return kj::mv(stream);
    }, [this,index](Exception&& exception) -> Promise<Own<AsyncIoStream>> {
      // Connect failed.
      if (index + 1 < addrs.size()) {
        // Try the next address instead.
        return connectImpl(index + 1);
      } else {
        // No more addresses to try, so propagate the exception.
        return kj::mv(exception);
      }
    });
1071 1072 1073 1074 1075
  }
};

class SocketNetwork final: public Network {
public:
1076
  explicit SocketNetwork(LowLevelAsyncIoProvider& lowLevel): lowLevel(lowLevel) {}
1077

Kenton Varda's avatar
Kenton Varda committed
1078
  Promise<Own<NetworkAddress>> parseAddress(StringPtr addr, uint portHint = 0) override {
1079
    auto& lowLevelCopy = lowLevel;
1080
    return evalLater(mvCapture(heapString(addr),
Kenton Varda's avatar
Kenton Varda committed
1081 1082 1083 1084 1085
        [&lowLevelCopy,portHint](String&& addr) {
      return SocketAddress::parse(lowLevelCopy, addr, portHint);
    })).then([&lowLevelCopy](Array<SocketAddress> addresses) -> Own<NetworkAddress> {
      return heap<NetworkAddressImpl>(lowLevelCopy, kj::mv(addresses));
    });
1086 1087
  }

Kenton Varda's avatar
Kenton Varda committed
1088 1089 1090 1091
  Own<NetworkAddress> getSockaddr(const void* sockaddr, uint len) override {
    auto array = kj::heapArrayBuilder<SocketAddress>(1);
    array.add(SocketAddress(sockaddr, len));
    return Own<NetworkAddress>(heap<NetworkAddressImpl>(lowLevel, array.finish()));
1092 1093
  }

1094
private:
1095
  LowLevelAsyncIoProvider& lowLevel;
1096
};
1097

1098
// =======================================================================================
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
Promise<size_t> DatagramPortImpl::send(
    const void* buffer, size_t size, NetworkAddress& destination) {
  auto& addr = downcast<NetworkAddressImpl>(destination).chooseOneAddress();

  ssize_t n;
  KJ_NONBLOCKING_SYSCALL(n = sendto(fd, buffer, size, 0, addr.getRaw(), addr.getRawSize()));
  if (n < 0) {
    // Write buffer full.
    return observer.whenBecomesWritable().then([this, buffer, size, &destination]() {
      return send(buffer, size, destination);
    });
  } else {
    // If less than the whole message was sent, then it got truncated, and there's nothing we can
    // do about it.
    return n;
  }
}

Promise<size_t> DatagramPortImpl::send(
    ArrayPtr<const ArrayPtr<const byte>> pieces, NetworkAddress& destination) {
  struct msghdr msg;
  memset(&msg, 0, sizeof(msg));

  auto& addr = downcast<NetworkAddressImpl>(destination).chooseOneAddress();
  msg.msg_name = const_cast<void*>(implicitCast<const void*>(addr.getRaw()));
  msg.msg_namelen = addr.getRawSize();

Tom Lee's avatar
Tom Lee committed
1127
  const size_t iovmax = kj::miniposix::iovMax(pieces.size());
1128
  KJ_STACK_ARRAY(struct iovec, iov, kj::min(pieces.size(), iovmax), 16, 64);
1129 1130 1131 1132 1133 1134 1135

  for (size_t i: kj::indices(pieces)) {
    iov[i].iov_base = const_cast<void*>(implicitCast<const void*>(pieces[i].begin()));
    iov[i].iov_len = pieces[i].size();
  }

  Array<byte> extra;
1136
  if (pieces.size() > iovmax) {
1137 1138 1139 1140 1141
    // Too many pieces, but we can't use multiple syscalls because they'd send separate
    // datagrams. We'll have to copy the trailing pieces into a temporary array.
    //
    // TODO(perf): On Linux we could use multiple syscalls via MSG_MORE.
    size_t extraSize = 0;
1142
    for (size_t i = iovmax - 1; i < pieces.size(); i++) {
1143 1144 1145 1146
      extraSize += pieces[i].size();
    }
    extra = kj::heapArray<byte>(extraSize);
    extraSize = 0;
1147
    for (size_t i = iovmax - 1; i < pieces.size(); i++) {
1148 1149 1150
      memcpy(extra.begin() + extraSize, pieces[i].begin(), pieces[i].size());
      extraSize += pieces[i].size();
    }
1151 1152
    iov[iovmax - 1].iov_base = extra.begin();
    iov[iovmax - 1].iov_len = extra.size();
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
  }

  msg.msg_iov = iov.begin();
  msg.msg_iovlen = iov.size();

  ssize_t n;
  KJ_NONBLOCKING_SYSCALL(n = sendmsg(fd, &msg, 0));
  if (n < 0) {
    // Write buffer full.
    return observer.whenBecomesWritable().then([this, pieces, &destination]() {
      return send(pieces, destination);
    });
  } else {
    // If less than the whole message was sent, then it was truncated, and there's nothing we can
    // do about that now.
    return n;
  }
}

class DatagramPortImpl::ReceiverImpl final: public DatagramReceiver {
public:
  explicit ReceiverImpl(DatagramPortImpl& port, Capacity capacity)
      : port(port),
        contentBuffer(heapArray<byte>(capacity.content)),
        ancillaryBuffer(capacity.ancillary > 0 ? heapArray<byte>(capacity.ancillary)
                                               : Array<byte>(nullptr)) {}

  Promise<void> receive() override {
    struct msghdr msg;
    memset(&msg, 0, sizeof(msg));

    struct sockaddr_storage addr;
    memset(&addr, 0, sizeof(addr));
    msg.msg_name = &addr;
    msg.msg_namelen = sizeof(addr);

    struct iovec iov;
    iov.iov_base = contentBuffer.begin();
    iov.iov_len = contentBuffer.size();
    msg.msg_iov = &iov;
    msg.msg_iovlen = 1;
    msg.msg_control = ancillaryBuffer.begin();
    msg.msg_controllen = ancillaryBuffer.size();

    ssize_t n;
    KJ_NONBLOCKING_SYSCALL(n = recvmsg(port.fd, &msg, 0));

    if (n < 0) {
      // No data available. Wait.
      return port.observer.whenBecomesReadable().then([this]() {
        return receive();
      });
    } else {
      receivedSize = n;
      contentTruncated = msg.msg_flags & MSG_TRUNC;

      source.emplace(port.lowLevel, msg.msg_name, msg.msg_namelen);

      ancillaryList.resize(0);
      ancillaryTruncated = msg.msg_flags & MSG_CTRUNC;

      for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg != nullptr;
           cmsg = CMSG_NXTHDR(&msg, cmsg)) {
        // On some platforms (OSX), a cmsghdr's length may cross the end of the ancillary buffer
        // when truncated. On other platforms (Linux) the length in cmsghdr will itself be
        // truncated to fit within the buffer.

        const byte* pos = reinterpret_cast<const byte*>(cmsg);
        size_t available = ancillaryBuffer.end() - pos;
        if (available < CMSG_SPACE(0)) {
          // The buffer ends in the middle of the header. We can't use this message.
          // (On Linux, this never happens, because the message is not included if there isn't
          // space for a header. I'm not sure how other systems behave, though, so let's be safe.)
          break;
        }

        // OK, we know the cmsghdr is valid, at least.

        // Find the start of the message payload.
        const byte* begin = CMSG_DATA(cmsg);

        // Cap the message length to the available space.
        const byte* end = pos + kj::min(available, cmsg->cmsg_len);

        ancillaryList.add(AncillaryMessage(
            cmsg->cmsg_level, cmsg->cmsg_type, arrayPtr(begin, end)));
      }

      return READY_NOW;
    }
  }

  MaybeTruncated<ArrayPtr<const byte>> getContent() override {
    return { contentBuffer.slice(0, receivedSize), contentTruncated };
  }

  MaybeTruncated<ArrayPtr<const AncillaryMessage>> getAncillary() override {
    return { ancillaryList.asPtr(), ancillaryTruncated };
  }

  NetworkAddress& getSource() override {
    return KJ_REQUIRE_NONNULL(source, "Haven't sent a message yet.").abstract;
  }

private:
  DatagramPortImpl& port;
  Array<byte> contentBuffer;
  Array<byte> ancillaryBuffer;
  Vector<AncillaryMessage> ancillaryList;
  size_t receivedSize = 0;
  bool contentTruncated = false;
  bool ancillaryTruncated = false;

  struct StoredAddress {
    StoredAddress(LowLevelAsyncIoProvider& lowLevel, const void* sockaddr, uint length)
        : raw(sockaddr, length),
          abstract(lowLevel, Array<SocketAddress>(&raw, 1, NullArrayDisposer::instance)) {}

    SocketAddress raw;
    NetworkAddressImpl abstract;
  };

  kj::Maybe<StoredAddress> source;
};

Own<DatagramReceiver> DatagramPortImpl::makeReceiver(DatagramReceiver::Capacity capacity) {
  return kj::heap<ReceiverImpl>(*this, capacity);
}

// =======================================================================================

1284
class AsyncIoProviderImpl final: public AsyncIoProvider {
1285
public:
1286 1287
  AsyncIoProviderImpl(LowLevelAsyncIoProvider& lowLevel)
      : lowLevel(lowLevel), network(lowLevel) {}
Kenton Varda's avatar
Kenton Varda committed
1288

1289 1290
  OneWayPipe newOneWayPipe() override {
    int fds[2];
Kenton Varda's avatar
Kenton Varda committed
1291
#if __linux__ && !__BIONIC__
1292
    KJ_SYSCALL(pipe2(fds, O_NONBLOCK | O_CLOEXEC));
1293
#else
1294
    KJ_SYSCALL(pipe(fds));
1295
#endif
1296 1297 1298 1299
    return OneWayPipe {
      lowLevel.wrapInputFd(fds[0], NEW_FD_FLAGS),
      lowLevel.wrapOutputFd(fds[1], NEW_FD_FLAGS)
    };
1300
  }
1301

1302 1303 1304
  TwoWayPipe newTwoWayPipe() override {
    int fds[2];
    int type = SOCK_STREAM;
Kenton Varda's avatar
Kenton Varda committed
1305
#if __linux__ && !__BIONIC__
1306
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
1307
#endif
1308
    KJ_SYSCALL(socketpair(AF_UNIX, type, 0, fds));
1309 1310 1311 1312
    return TwoWayPipe { {
      lowLevel.wrapSocketFd(fds[0], NEW_FD_FLAGS),
      lowLevel.wrapSocketFd(fds[1], NEW_FD_FLAGS)
    } };
1313 1314 1315 1316 1317 1318
  }

  Network& getNetwork() override {
    return network;
  }

1319
  PipeThread newPipeThread(
1320
      Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)> startFunc) override {
1321 1322
    int fds[2];
    int type = SOCK_STREAM;
Kenton Varda's avatar
Kenton Varda committed
1323
#if __linux__ && !__BIONIC__
1324 1325 1326 1327 1328
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
#endif
    KJ_SYSCALL(socketpair(AF_UNIX, type, 0, fds));

    int threadFd = fds[1];
1329
    KJ_ON_SCOPE_FAILURE(close(threadFd));
1330

1331 1332 1333
    auto pipe = lowLevel.wrapSocketFd(fds[0], NEW_FD_FLAGS);

    auto thread = heap<Thread>(kj::mvCapture(startFunc,
1334
        [threadFd](Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)>&& startFunc) {
1335 1336 1337
      LowLevelAsyncIoProviderImpl lowLevel;
      auto stream = lowLevel.wrapSocketFd(threadFd, NEW_FD_FLAGS);
      AsyncIoProviderImpl ioProvider(lowLevel);
1338
      startFunc(ioProvider, *stream, lowLevel.getWaitScope());
1339
    }));
1340

1341
    return { kj::mv(thread), kj::mv(pipe) };
1342
  }
1343

1344 1345
  Timer& getTimer() override { return lowLevel.getTimer(); }

1346
private:
1347
  LowLevelAsyncIoProvider& lowLevel;
1348 1349 1350 1351 1352 1353 1354 1355
  SocketNetwork network;
};

}  // namespace

Promise<void> AsyncInputStream::read(void* buffer, size_t bytes) {
  return read(buffer, bytes, bytes).then([](size_t) {});
}
1356

1357 1358 1359 1360 1361 1362
void AsyncIoStream::getsockopt(int level, int option, void* value, uint* length) {
  KJ_UNIMPLEMENTED("Not a socket.");
}
void AsyncIoStream::setsockopt(int level, int option, const void* value, uint length) {
  KJ_UNIMPLEMENTED("Not a socket.");
}
1363 1364 1365 1366 1367 1368
void AsyncIoStream::getsockname(struct sockaddr* addr, uint* length) {
  KJ_UNIMPLEMENTED("Not a socket.");
}
void AsyncIoStream::getpeername(struct sockaddr* addr, uint* length) {
  KJ_UNIMPLEMENTED("Not a socket.");
}
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
void ConnectionReceiver::getsockopt(int level, int option, void* value, uint* length) {
  KJ_UNIMPLEMENTED("Not a socket.");
}
void ConnectionReceiver::setsockopt(int level, int option, const void* value, uint length) {
  KJ_UNIMPLEMENTED("Not a socket.");
}
void DatagramPort::getsockopt(int level, int option, void* value, uint* length) {
  KJ_UNIMPLEMENTED("Not a socket.");
}
void DatagramPort::setsockopt(int level, int option, const void* value, uint length) {
  KJ_UNIMPLEMENTED("Not a socket.");
}
Own<DatagramPort> NetworkAddress::bindDatagramPort() {
  KJ_UNIMPLEMENTED("Datagram sockets not implemented.");
}
Own<DatagramPort> LowLevelAsyncIoProvider::wrapDatagramSocketFd(int fd, uint flags) {
  KJ_UNIMPLEMENTED("Datagram sockets not implemented.");
}

1388 1389 1390 1391 1392 1393 1394
Own<AsyncIoProvider> newAsyncIoProvider(LowLevelAsyncIoProvider& lowLevel) {
  return kj::heap<AsyncIoProviderImpl>(lowLevel);
}

AsyncIoContext setupAsyncIo() {
  auto lowLevel = heap<LowLevelAsyncIoProviderImpl>();
  auto ioProvider = kj::heap<AsyncIoProviderImpl>(*lowLevel);
1395
  auto& waitScope = lowLevel->getWaitScope();
1396 1397
  auto& eventPort = lowLevel->getEventPort();
  return { kj::mv(lowLevel), kj::mv(ioProvider), waitScope, eventPort };
1398 1399
}

1400
}  // namespace kj