async-io-unix.c++ 45.4 KB
Newer Older
Kenton Varda's avatar
Kenton Varda committed
1 2
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
3
//
Kenton Varda's avatar
Kenton Varda committed
4 5 6 7 8 9
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
10
//
Kenton Varda's avatar
Kenton Varda committed
11 12
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
13
//
Kenton Varda's avatar
Kenton Varda committed
14 15 16 17 18 19 20
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
21

22 23 24
#if !_WIN32
// For Win32 implementation, see async-io-win32.c++.

25 26 27
#include "async-io.h"
#include "async-unix.h"
#include "debug.h"
28
#include "thread.h"
Kenton Varda's avatar
Kenton Varda committed
29
#include "io.h"
Tom Lee's avatar
Tom Lee committed
30
#include "miniposix.h"
31 32 33 34 35 36 37
#include <unistd.h>
#include <sys/uio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
38
#include <netinet/in.h>
39
#include <netinet/tcp.h>
40 41 42
#include <stddef.h>
#include <stdlib.h>
#include <arpa/inet.h>
Kenton Varda's avatar
Kenton Varda committed
43 44
#include <netdb.h>
#include <set>
45
#include <poll.h>
46 47
#include <limits.h>

48 49 50 51
namespace kj {

namespace {

52 53 54 55 56 57 58 59
void setNonblocking(int fd) {
  int flags;
  KJ_SYSCALL(flags = fcntl(fd, F_GETFL));
  if ((flags & O_NONBLOCK) == 0) {
    KJ_SYSCALL(fcntl(fd, F_SETFL, flags | O_NONBLOCK));
  }
}

60 61 62 63 64 65 66 67
void setCloseOnExec(int fd) {
  int flags;
  KJ_SYSCALL(flags = fcntl(fd, F_GETFD));
  if ((flags & FD_CLOEXEC) == 0) {
    KJ_SYSCALL(fcntl(fd, F_SETFD, flags | FD_CLOEXEC));
  }
}

Kenton Varda's avatar
Kenton Varda committed
68
static constexpr uint NEW_FD_FLAGS =
Kenton Varda's avatar
Kenton Varda committed
69
#if __linux__ && !__BIONIC__
70
    LowLevelAsyncIoProvider::ALREADY_CLOEXEC | LowLevelAsyncIoProvider::ALREADY_NONBLOCK |
Kenton Varda's avatar
Kenton Varda committed
71 72 73 74 75
#endif
    LowLevelAsyncIoProvider::TAKE_OWNERSHIP;
// We always try to open FDs with CLOEXEC and NONBLOCK already set on Linux, but on other platforms
// this is not possible.

76 77
class OwnedFileDescriptor {
public:
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  OwnedFileDescriptor(int fd, uint flags): fd(fd), flags(flags) {
    if (flags & LowLevelAsyncIoProvider::ALREADY_NONBLOCK) {
      KJ_DREQUIRE(fcntl(fd, F_GETFL) & O_NONBLOCK, "You claimed you set NONBLOCK, but you didn't.");
    } else {
      setNonblocking(fd);
    }

    if (flags & LowLevelAsyncIoProvider::TAKE_OWNERSHIP) {
      if (flags & LowLevelAsyncIoProvider::ALREADY_CLOEXEC) {
        KJ_DREQUIRE(fcntl(fd, F_GETFD) & FD_CLOEXEC,
                    "You claimed you set CLOEXEC, but you didn't.");
      } else {
        setCloseOnExec(fd);
      }
    }
93 94 95 96
  }

  ~OwnedFileDescriptor() noexcept(false) {
    // Don't use SYSCALL() here because close() should not be repeated on EINTR.
97
    if ((flags & LowLevelAsyncIoProvider::TAKE_OWNERSHIP) && close(fd) < 0) {
98 99 100 101 102 103 104 105 106
      KJ_FAIL_SYSCALL("close", errno, fd) {
        // Recoverable exceptions are safe in destructors.
        break;
      }
    }
  }

protected:
  const int fd;
107 108 109

private:
  uint flags;
110 111 112 113
};

// =======================================================================================

114
class AsyncStreamFd: public OwnedFileDescriptor, public AsyncIoStream {
115
public:
116
  AsyncStreamFd(UnixEventPort& eventPort, int fd, uint flags)
117
      : OwnedFileDescriptor(fd, flags),
118
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ_WRITE) {}
119
  virtual ~AsyncStreamFd() noexcept(false) {}
120 121 122 123 124 125 126

  Promise<size_t> tryRead(void* buffer, size_t minBytes, size_t maxBytes) override {
    return tryReadInternal(buffer, minBytes, maxBytes, 0);
  }

  Promise<void> write(const void* buffer, size_t size) override {
    ssize_t writeResult;
127
    KJ_NONBLOCKING_SYSCALL(writeResult = ::write(fd, buffer, size)) {
128 129 130 131 132 133 134 135 136 137 138
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
      return kj::READY_NOW;
139 140 141 142 143 144 145 146 147
    }

    // A negative result means EAGAIN, which we can treat the same as having written zero bytes.
    size_t n = writeResult < 0 ? 0 : writeResult;

    if (n == size) {
      return READY_NOW;
    }

148 149 150 151 152
    // Fewer than `size` bytes were written, therefore we must be out of buffer space. Wait until
    // the fd becomes writable again.
    buffer = reinterpret_cast<const byte*>(buffer) + n;
    size -= n;

153
    return observer.whenBecomesWritable().then([=]() {
154 155 156 157 158 159 160 161 162 163 164 165
      return write(buffer, size);
    });
  }

  Promise<void> write(ArrayPtr<const ArrayPtr<const byte>> pieces) override {
    if (pieces.size() == 0) {
      return writeInternal(nullptr, nullptr);
    } else {
      return writeInternal(pieces[0], pieces.slice(1, pieces.size()));
    }
  }

166 167 168
  void shutdownWrite() override {
    // There's no legitimate way to get an AsyncStreamFd that isn't a socket through the
    // UnixAsyncIoProvider interface.
169
    KJ_SYSCALL(shutdown(fd, SHUT_WR));
170 171
  }

172 173 174 175 176 177
  void abortRead() override {
    // There's no legitimate way to get an AsyncStreamFd that isn't a socket through the
    // UnixAsyncIoProvider interface.
    KJ_SYSCALL(shutdown(fd, SHUT_RD));
  }

178 179 180 181 182 183 184 185 186 187
  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }

  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

188 189 190 191 192 193 194 195 196 197 198 199
  void getsockname(struct sockaddr* addr, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockname(fd, addr, &socklen));
    *length = socklen;
  }

  void getpeername(struct sockaddr* addr, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getpeername(fd, addr, &socklen));
    *length = socklen;
  }

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
  Promise<void> waitConnected() {
    // Wait until initial connection has completed. This actually just waits until it is writable.

    // Can't just go directly to writeObserver.whenBecomesWritable() because of edge triggering. We
    // need to explicitly check if the socket is already connected.

    struct pollfd pollfd;
    memset(&pollfd, 0, sizeof(pollfd));
    pollfd.fd = fd;
    pollfd.events = POLLOUT;

    int pollResult;
    KJ_SYSCALL(pollResult = poll(&pollfd, 1, 0));

    if (pollResult == 0) {
      // Not ready yet. We can safely use the edge-triggered observer.
216
      return observer.whenBecomesWritable();
217 218 219 220 221 222
    } else {
      // Ready now.
      return kj::READY_NOW;
    }
  }

223
private:
224
  UnixEventPort::FdObserver observer;
225 226 227 228 229 230 231 232

  Promise<size_t> tryReadInternal(void* buffer, size_t minBytes, size_t maxBytes,
                                  size_t alreadyRead) {
    // `alreadyRead` is the number of bytes we have already received via previous reads -- minBytes,
    // maxBytes, and buffer have already been adjusted to account for them, but this count must
    // be included in the final return value.

    ssize_t n;
233
    KJ_NONBLOCKING_SYSCALL(n = ::read(fd, buffer, maxBytes)) {
234 235 236 237 238 239 240 241 242 243
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
244 245 246 247 248
      return alreadyRead;
    }

    if (n < 0) {
      // Read would block.
249
      return observer.whenBecomesReadable().then([=]() {
250 251 252 253 254
        return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
      });
    } else if (n == 0) {
      // EOF -OR- maxBytes == 0.
      return alreadyRead;
255 256 257 258
    } else if (implicitCast<size_t>(n) >= minBytes) {
      // We read enough to stop here.
      return alreadyRead + n;
    } else {
259
      // The kernel returned fewer bytes than we asked for (and fewer than we need).
260 261 262 263 264 265

      buffer = reinterpret_cast<byte*>(buffer) + n;
      minBytes -= n;
      maxBytes -= n;
      alreadyRead += n;

266
      KJ_IF_MAYBE(atEnd, observer.atEndHint()) {
267 268 269 270 271 272 273 274 275 276 277 278
        if (*atEnd) {
          // We've already received an indication that the next read() will return EOF, so there's
          // nothing to wait for.
          return alreadyRead;
        } else {
          // As of the last time the event queue was checked, the kernel reported that we were
          // *not* at the end of the stream. It's unlikely that this has changed in the short time
          // it took to handle the event, therefore calling read() now will almost certainly fail
          // with EAGAIN. Moreover, since EOF had not been received as of the last check, we know
          // that even if it was received since then, whenBecomesReadable() will catch that. So,
          // let's go ahead and skip calling read() here and instead go straight to waiting for
          // more input.
279
          return observer.whenBecomesReadable().then([=]() {
280 281 282
            return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
          });
        }
283
      } else {
284 285 286 287
        // The kernel has not indicated one way or the other whether we are likely to be at EOF.
        // In this case we *must* keep calling read() until we either get a return of zero or
        // EAGAIN.
        return tryReadInternal(buffer, minBytes, maxBytes, alreadyRead);
288 289 290 291 292 293
      }
    }
  }

  Promise<void> writeInternal(ArrayPtr<const byte> firstPiece,
                              ArrayPtr<const ArrayPtr<const byte>> morePieces) {
Tom Lee's avatar
Tom Lee committed
294
    const size_t iovmax = kj::miniposix::iovMax(1 + morePieces.size());
295 296
    // If there are more than IOV_MAX pieces, we'll only write the first IOV_MAX for now, and
    // then we'll loop later.
297
    KJ_STACK_ARRAY(struct iovec, iov, kj::min(1 + morePieces.size(), iovmax), 16, 128);
298
    size_t iovTotal = 0;
299 300 301 302

    // writev() interface is not const-correct.  :(
    iov[0].iov_base = const_cast<byte*>(firstPiece.begin());
    iov[0].iov_len = firstPiece.size();
303 304 305 306 307
    iovTotal += iov[0].iov_len;
    for (uint i = 1; i < iov.size(); i++) {
      iov[i].iov_base = const_cast<byte*>(morePieces[i - 1].begin());
      iov[i].iov_len = morePieces[i - 1].size();
      iovTotal += iov[i].iov_len;
308 309 310
    }

    ssize_t writeResult;
311
    KJ_NONBLOCKING_SYSCALL(writeResult = ::writev(fd, iov.begin(), iov.size())) {
Kenton Varda's avatar
Kenton Varda committed
312 313 314 315 316 317 318 319 320 321 322
      // Error.

      // We can't "return kj::READY_NOW;" inside this block because it causes a memory leak due to
      // a bug that exists in both Clang and GCC:
      //   http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33799
      //   http://llvm.org/bugs/show_bug.cgi?id=12286
      goto error;
    }
    if (false) {
    error:
      return kj::READY_NOW;
323 324 325 326 327 328 329 330
    }

    // A negative result means EAGAIN, which we can treat the same as having written zero bytes.
    size_t n = writeResult < 0 ? 0 : writeResult;

    // Discard all data that was written, then issue a new write for what's left (if any).
    for (;;) {
      if (n < firstPiece.size()) {
331
        // Only part of the first piece was consumed.  Wait for buffer space and then write again.
332
        firstPiece = firstPiece.slice(n, firstPiece.size());
333 334 335 336 337 338 339
        iovTotal -= n;

        if (iovTotal == 0) {
          // Oops, what actually happened is that we hit the IOV_MAX limit. Don't wait.
          return writeInternal(firstPiece, morePieces);
        }

340
        return observer.whenBecomesWritable().then([=]() {
341 342 343 344
          return writeInternal(firstPiece, morePieces);
        });
      } else if (morePieces.size() == 0) {
        // First piece was fully-consumed and there are no more pieces, so we're done.
345
        KJ_DASSERT(n == firstPiece.size(), n);
346 347 348 349
        return READY_NOW;
      } else {
        // First piece was fully consumed, so move on to the next piece.
        n -= firstPiece.size();
350
        iovTotal -= firstPiece.size();
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        firstPiece = morePieces[0];
        morePieces = morePieces.slice(1, morePieces.size());
      }
    }
  }
};

// =======================================================================================

class SocketAddress {
public:
  SocketAddress(const void* sockaddr, uint len): addrlen(len) {
    KJ_REQUIRE(len <= sizeof(addr), "Sorry, your sockaddr is too big for me.");
    memcpy(&addr.generic, sockaddr, len);
  }

Kenton Varda's avatar
Kenton Varda committed
367 368 369 370 371 372 373 374 375 376 377 378
  bool operator<(const SocketAddress& other) const {
    // So we can use std::set<SocketAddress>...  see DNS lookup code.

    if (wildcard < other.wildcard) return true;
    if (wildcard > other.wildcard) return false;

    if (addrlen < other.addrlen) return true;
    if (addrlen > other.addrlen) return false;

    return memcmp(&addr.generic, &other.addr.generic, addrlen) < 0;
  }

379 380 381
  const struct sockaddr* getRaw() const { return &addr.generic; }
  socklen_t getRawSize() const { return addrlen; }

382
  int socket(int type) const {
383 384
    bool isStream = type == SOCK_STREAM;

385
    int result;
Kenton Varda's avatar
Kenton Varda committed
386
#if __linux__ && !__BIONIC__
387 388 389
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
#endif
    KJ_SYSCALL(result = ::socket(addr.generic.sa_family, type, 0));
390 391 392

    if (isStream && (addr.generic.sa_family == AF_INET ||
                     addr.generic.sa_family == AF_INET6)) {
393
      // TODO(perf):  As a hack for the 0.4 release we are always setting
394 395 396 397 398 399 400 401 402
      //   TCP_NODELAY because Nagle's algorithm pretty much kills Cap'n Proto's
      //   RPC protocol.  Later, we should extend the interface to provide more
      //   control over this.  Perhaps write() should have a flag which
      //   specifies whether to pass MSG_MORE.
      int one = 1;
      KJ_SYSCALL(setsockopt(
          result, IPPROTO_TCP, TCP_NODELAY, (char*)&one, sizeof(one)));
    }

403 404 405 406
    return result;
  }

  void bind(int sockfd) const {
407
#if !defined(__OpenBSD__)
408 409 410 411 412 413
    if (wildcard) {
      // Disable IPV6_V6ONLY because we want to handle both ipv4 and ipv6 on this socket.  (The
      // default value of this option varies across platforms.)
      int value = 0;
      KJ_SYSCALL(setsockopt(sockfd, IPPROTO_IPV6, IPV6_V6ONLY, &value, sizeof(value)));
    }
414
#endif
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

    KJ_SYSCALL(::bind(sockfd, &addr.generic, addrlen), toString());
  }

  uint getPort() const {
    switch (addr.generic.sa_family) {
      case AF_INET: return ntohs(addr.inet4.sin_port);
      case AF_INET6: return ntohs(addr.inet6.sin6_port);
      default: return 0;
    }
  }

  String toString() const {
    if (wildcard) {
      return str("*:", getPort());
    }

    switch (addr.generic.sa_family) {
      case AF_INET: {
        char buffer[INET6_ADDRSTRLEN];
        if (inet_ntop(addr.inet4.sin_family, &addr.inet4.sin_addr,
                      buffer, sizeof(buffer)) == nullptr) {
437 438
          KJ_FAIL_SYSCALL("inet_ntop", errno) { break; }
          return heapString("(inet_ntop error)");
439 440 441 442 443 444 445
        }
        return str(buffer, ':', ntohs(addr.inet4.sin_port));
      }
      case AF_INET6: {
        char buffer[INET6_ADDRSTRLEN];
        if (inet_ntop(addr.inet6.sin6_family, &addr.inet6.sin6_addr,
                      buffer, sizeof(buffer)) == nullptr) {
446 447
          KJ_FAIL_SYSCALL("inet_ntop", errno) { break; }
          return heapString("(inet_ntop error)");
448 449 450 451
        }
        return str('[', buffer, "]:", ntohs(addr.inet6.sin6_port));
      }
      case AF_UNIX: {
452 453 454 455 456
        if (addr.unixDomain.sun_path[0] == '\0') {
          return str("unix-abstract:", addr.unixDomain.sun_path + 1);
        } else {
          return str("unix:", addr.unixDomain.sun_path);
        }
457 458 459 460 461 462
      }
      default:
        return str("(unknown address family ", addr.generic.sa_family, ")");
    }
  }

Kenton Varda's avatar
Kenton Varda committed
463 464 465 466 467 468 469 470
  static Promise<Array<SocketAddress>> lookupHost(
      LowLevelAsyncIoProvider& lowLevel, kj::String host, kj::String service, uint portHint);
  // Perform a DNS lookup.

  static Promise<Array<SocketAddress>> parse(
      LowLevelAsyncIoProvider& lowLevel, StringPtr str, uint portHint) {
    // TODO(someday):  Allow commas in `str`.

471 472 473 474 475 476
    SocketAddress result;

    if (str.startsWith("unix:")) {
      StringPtr path = str.slice(strlen("unix:"));
      KJ_REQUIRE(path.size() < sizeof(addr.unixDomain.sun_path),
                 "Unix domain socket address is too long.", str);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
      KJ_REQUIRE(path.size() == strlen(path.cStr()),
                 "Unix domain socket address contains NULL. Use"
                 " 'unix-abstract:' for the abstract namespace.");
      result.addr.unixDomain.sun_family = AF_UNIX;
      strcpy(result.addr.unixDomain.sun_path, path.cStr());
      result.addrlen = offsetof(struct sockaddr_un, sun_path) + path.size() + 1;
      auto array = kj::heapArrayBuilder<SocketAddress>(1);
      array.add(result);
      return array.finish();
    }

    if (str.startsWith("unix-abstract:")) {
      StringPtr path = str.slice(strlen("unix-abstract:"));
      KJ_REQUIRE(path.size() + 1 < sizeof(addr.unixDomain.sun_path),
                 "Unix domain socket address is too long.", str);
492
      result.addr.unixDomain.sun_family = AF_UNIX;
493
      result.addr.unixDomain.sun_path[0] = '\0';
494 495 496
      // although not strictly required by Linux, also copy the trailing
      // NULL terminator so that we can safely read it back in toString
      memcpy(result.addr.unixDomain.sun_path + 1, path.cStr(), path.size() + 1);
497
      result.addrlen = offsetof(struct sockaddr_un, sun_path) + path.size() + 1;
Kenton Varda's avatar
Kenton Varda committed
498 499 500
      auto array = kj::heapArrayBuilder<SocketAddress>(1);
      array.add(result);
      return array.finish();
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
    }

    // Try to separate the address and port.
    ArrayPtr<const char> addrPart;
    Maybe<StringPtr> portPart;

    int af;

    if (str.startsWith("[")) {
      // Address starts with a bracket, which is a common way to write an ip6 address with a port,
      // since without brackets around the address part, the port looks like another segment of
      // the address.
      af = AF_INET6;
      size_t closeBracket = KJ_ASSERT_NONNULL(str.findLast(']'),
          "Unclosed '[' in address string.", str);

      addrPart = str.slice(1, closeBracket);
      if (str.size() > closeBracket + 1) {
        KJ_REQUIRE(str.slice(closeBracket + 1).startsWith(":"),
                   "Expected port suffix after ']'.", str);
        portPart = str.slice(closeBracket + 2);
      }
    } else {
      KJ_IF_MAYBE(colon, str.findFirst(':')) {
        if (str.slice(*colon + 1).findFirst(':') == nullptr) {
          // There is exactly one colon and no brackets, so it must be an ip4 address with port.
          af = AF_INET;
          addrPart = str.slice(0, *colon);
          portPart = str.slice(*colon + 1);
        } else {
          // There are two or more colons and no brackets, so the whole thing must be an ip6
          // address with no port.
          af = AF_INET6;
          addrPart = str;
        }
      } else {
        // No colons, so it must be an ip4 address without port.
        af = AF_INET;
        addrPart = str;
      }
    }

    // Parse the port.
    unsigned long port;
    KJ_IF_MAYBE(portText, portPart) {
      char* endptr;
      port = strtoul(portText->cStr(), &endptr, 0);
      if (portText->size() == 0 || *endptr != '\0') {
Kenton Varda's avatar
Kenton Varda committed
549 550
        // Not a number.  Maybe it's a service name.  Fall back to DNS.
        return lookupHost(lowLevel, kj::heapString(addrPart), kj::heapString(*portText), portHint);
551 552 553 554 555 556
      }
      KJ_REQUIRE(port < 65536, "Port number too large.");
    } else {
      port = portHint;
    }

Kenton Varda's avatar
Kenton Varda committed
557 558 559
    // Check for wildcard.
    if (addrPart.size() == 1 && addrPart[0] == '*') {
      result.wildcard = true;
560 561 562 563 564 565 566 567
#if defined(__OpenBSD__)
      // On OpenBSD, all sockets are either v4-only or v6-only, so use v4 as a
      // temporary workaround for wildcards.
      result.addrlen = sizeof(addr.inet4);
      result.addr.inet4.sin_family = AF_INET;
      result.addr.inet4.sin_port = htons(port);
#else
      // Create an ip6 socket and set IPV6_V6ONLY to 0 later.
Kenton Varda's avatar
Kenton Varda committed
568 569 570
      result.addrlen = sizeof(addr.inet6);
      result.addr.inet6.sin6_family = AF_INET6;
      result.addr.inet6.sin6_port = htons(port);
571
#endif
Kenton Varda's avatar
Kenton Varda committed
572 573 574 575 576
      auto array = kj::heapArrayBuilder<SocketAddress>(1);
      array.add(result);
      return array.finish();
    }

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
    void* addrTarget;
    if (af == AF_INET6) {
      result.addrlen = sizeof(addr.inet6);
      result.addr.inet6.sin6_family = AF_INET6;
      result.addr.inet6.sin6_port = htons(port);
      addrTarget = &result.addr.inet6.sin6_addr;
    } else {
      result.addrlen = sizeof(addr.inet4);
      result.addr.inet4.sin_family = AF_INET;
      result.addr.inet4.sin_port = htons(port);
      addrTarget = &result.addr.inet4.sin_addr;
    }

    // addrPart is not necessarily NUL-terminated so we have to make a copy.  :(
    KJ_REQUIRE(addrPart.size() < INET6_ADDRSTRLEN - 1, "IP address too long.", addrPart);
    char buffer[INET6_ADDRSTRLEN];
    memcpy(buffer, addrPart.begin(), addrPart.size());
    buffer[addrPart.size()] = '\0';

    // OK, parse it!
    switch (inet_pton(af, buffer, addrTarget)) {
Kenton Varda's avatar
Kenton Varda committed
598
      case 1: {
599
        // success.
Kenton Varda's avatar
Kenton Varda committed
600 601 602 603
        auto array = kj::heapArrayBuilder<SocketAddress>(1);
        array.add(result);
        return array.finish();
      }
604
      case 0:
Kenton Varda's avatar
Kenton Varda committed
605 606
        // It's apparently not a simple address...  fall back to DNS.
        return lookupHost(lowLevel, kj::heapString(addrPart), nullptr, port);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
      default:
        KJ_FAIL_SYSCALL("inet_pton", errno, af, addrPart);
    }
  }

  static SocketAddress getLocalAddress(int sockfd) {
    SocketAddress result;
    result.addrlen = sizeof(addr);
    KJ_SYSCALL(getsockname(sockfd, &result.addr.generic, &result.addrlen));
    return result;
  }

private:
  SocketAddress(): addrlen(0) {
    memset(&addr, 0, sizeof(addr));
  }

  socklen_t addrlen;
  bool wildcard = false;
  union {
    struct sockaddr generic;
    struct sockaddr_in inet4;
    struct sockaddr_in6 inet6;
    struct sockaddr_un unixDomain;
    struct sockaddr_storage storage;
  } addr;
Kenton Varda's avatar
Kenton Varda committed
633 634 635

  struct LookupParams;
  class LookupReader;
636 637
};

Kenton Varda's avatar
Kenton Varda committed
638 639 640
class SocketAddress::LookupReader {
  // Reads SocketAddresses off of a pipe coming from another thread that is performing
  // getaddrinfo.
641

Kenton Varda's avatar
Kenton Varda committed
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
public:
  LookupReader(kj::Own<Thread>&& thread, kj::Own<AsyncInputStream>&& input)
      : thread(kj::mv(thread)), input(kj::mv(input)) {}

  ~LookupReader() {
    if (thread) thread->detach();
  }

  Promise<Array<SocketAddress>> read() {
    return input->tryRead(&current, sizeof(current), sizeof(current)).then(
        [this](size_t n) -> Promise<Array<SocketAddress>> {
      if (n < sizeof(current)) {
        thread = nullptr;
        // getaddrinfo()'s docs seem to say it will never return an empty list, but let's check
        // anyway.
        KJ_REQUIRE(addresses.size() > 0, "DNS lookup returned no addresses.") { break; }
        return addresses.releaseAsArray();
      } else {
        // getaddrinfo() can return multiple copies of the same address for several reasons.
        // A major one is that we don't give it a socket type (SOCK_STREAM vs. SOCK_DGRAM), so
        // it may return two copies of the same address, one for each type, unless it explicitly
        // knows that the service name given is specific to one type.  But we can't tell it a type,
        // because we don't actually know which one the user wants, and if we specify SOCK_STREAM
        // while the user specified a UDP service name then they'll get a resolution error which
        // is lame.  (At least, I think that's how it works.)
        //
        // So we instead resort to de-duping results.
        if (alreadySeen.insert(current).second) {
          addresses.add(current);
        }
        return read();
      }
    });
  }

private:
  kj::Own<Thread> thread;
  kj::Own<AsyncInputStream> input;
  SocketAddress current;
  kj::Vector<SocketAddress> addresses;
  std::set<SocketAddress> alreadySeen;
};

struct SocketAddress::LookupParams {
  kj::String host;
  kj::String service;
};

Promise<Array<SocketAddress>> SocketAddress::lookupHost(
    LowLevelAsyncIoProvider& lowLevel, kj::String host, kj::String service, uint portHint) {
  // This shitty function spawns a thread to run getaddrinfo().  Unfortunately, getaddrinfo() is
  // the only cross-platform DNS API and it is blocking.
  //
  // TODO(perf):  Use a thread pool?  Maybe kj::Thread should use a thread pool automatically?
  //   Maybe use the various platform-specific asynchronous DNS libraries?  Please do not implement
  //   a custom DNS resolver...

  int fds[2];
Kenton Varda's avatar
Kenton Varda committed
700
#if __linux__ && !__BIONIC__
Kenton Varda's avatar
Kenton Varda committed
701 702 703
  KJ_SYSCALL(pipe2(fds, O_NONBLOCK | O_CLOEXEC));
#else
  KJ_SYSCALL(pipe(fds));
704
#endif
Kenton Varda's avatar
Kenton Varda committed
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

  auto input = lowLevel.wrapInputFd(fds[0], NEW_FD_FLAGS);

  int outFd = fds[1];

  LookupParams params = { kj::mv(host), kj::mv(service) };

  auto thread = heap<Thread>(kj::mvCapture(params, [outFd,portHint](LookupParams&& params) {
    FdOutputStream output((AutoCloseFd(outFd)));

    struct addrinfo* list;
    int status = getaddrinfo(
        params.host == "*" ? nullptr : params.host.cStr(),
        params.service == nullptr ? nullptr : params.service.cStr(),
        nullptr, &list);
    if (status == 0) {
      KJ_DEFER(freeaddrinfo(list));

      struct addrinfo* cur = list;
      while (cur != nullptr) {
        if (params.service == nullptr) {
          switch (cur->ai_addr->sa_family) {
            case AF_INET:
              ((struct sockaddr_in*)cur->ai_addr)->sin_port = htons(portHint);
              break;
            case AF_INET6:
              ((struct sockaddr_in6*)cur->ai_addr)->sin6_port = htons(portHint);
              break;
            default:
              break;
          }
        }

        SocketAddress addr;
Kenton Varda's avatar
Kenton Varda committed
739
        memset(&addr, 0, sizeof(addr));  // mollify valgrind
Kenton Varda's avatar
Kenton Varda committed
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
        if (params.host == "*") {
          // Set up a wildcard SocketAddress.  Only use the port number returned by getaddrinfo().
          addr.wildcard = true;
          addr.addrlen = sizeof(addr.addr.inet6);
          addr.addr.inet6.sin6_family = AF_INET6;
          switch (cur->ai_addr->sa_family) {
            case AF_INET:
              addr.addr.inet6.sin6_port = ((struct sockaddr_in*)cur->ai_addr)->sin_port;
              break;
            case AF_INET6:
              addr.addr.inet6.sin6_port = ((struct sockaddr_in6*)cur->ai_addr)->sin6_port;
              break;
            default:
              addr.addr.inet6.sin6_port = portHint;
              break;
          }
        } else {
          addr.addrlen = cur->ai_addrlen;
          memcpy(&addr.addr.generic, cur->ai_addr, cur->ai_addrlen);
        }
760
        KJ_ASSERT_CAN_MEMCPY(SocketAddress);
Kenton Varda's avatar
Kenton Varda committed
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
        output.write(&addr, sizeof(addr));
        cur = cur->ai_next;
      }
    } else if (status == EAI_SYSTEM) {
      KJ_FAIL_SYSCALL("getaddrinfo", errno, params.host, params.service) {
        return;
      }
    } else {
      KJ_FAIL_REQUIRE("DNS lookup failed.",
                      params.host, params.service, gai_strerror(status)) {
        return;
      }
    }
  }));

  auto reader = heap<LookupReader>(kj::mv(thread), kj::mv(input));
777
  return reader->read().attach(kj::mv(reader));
Kenton Varda's avatar
Kenton Varda committed
778 779 780
}

// =======================================================================================
781

782 783
class FdConnectionReceiver final: public ConnectionReceiver, public OwnedFileDescriptor {
public:
784
  FdConnectionReceiver(UnixEventPort& eventPort, int fd, uint flags)
785 786
      : OwnedFileDescriptor(fd, flags), eventPort(eventPort),
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ) {}
787 788 789 790

  Promise<Own<AsyncIoStream>> accept() override {
    int newFd;

791
  retry:
Kenton Varda's avatar
Kenton Varda committed
792
#if __linux__ && !__BIONIC__
793
    newFd = ::accept4(fd, nullptr, nullptr, SOCK_NONBLOCK | SOCK_CLOEXEC);
794
#else
795
    newFd = ::accept(fd, nullptr, nullptr);
796 797
#endif

798
    if (newFd >= 0) {
799
      return Own<AsyncIoStream>(heap<AsyncStreamFd>(eventPort, newFd, NEW_FD_FLAGS));
800 801 802 803 804 805 806 807 808
    } else {
      int error = errno;

      switch (error) {
        case EAGAIN:
#if EAGAIN != EWOULDBLOCK
        case EWOULDBLOCK:
#endif
          // Not ready yet.
809
          return observer.whenBecomesReadable().then([this]() {
810 811 812 813 814
            return accept();
          });

        case EINTR:
        case ENETDOWN:
815 816
#ifdef EPROTO
        // EPROTO is not defined on OpenBSD.
817
        case EPROTO:
818
#endif
819 820 821 822
        case EHOSTDOWN:
        case EHOSTUNREACH:
        case ENETUNREACH:
        case ECONNABORTED:
Kenton Varda's avatar
Kenton Varda committed
823 824 825 826 827
        case ETIMEDOUT:
          // According to the Linux man page, accept() may report an error if the accepted
          // connection is already broken.  In this case, we really ought to just ignore it and
          // keep waiting.  But it's hard to say exactly what errors are such network errors and
          // which ones are permanent errors.  We've made a guess here.
828 829 830 831 832 833
          goto retry;

        default:
          KJ_FAIL_SYSCALL("accept", error);
      }

834 835 836 837 838 839
    }
  }

  uint getPort() override {
    return SocketAddress::getLocalAddress(fd).getPort();
  }
840

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }
  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

public:
  UnixEventPort& eventPort;
  UnixEventPort::FdObserver observer;
};

class DatagramPortImpl final: public DatagramPort, public OwnedFileDescriptor {
public:
  DatagramPortImpl(LowLevelAsyncIoProvider& lowLevel, UnixEventPort& eventPort, int fd, uint flags)
      : OwnedFileDescriptor(fd, flags), lowLevel(lowLevel), eventPort(eventPort),
        observer(eventPort, fd, UnixEventPort::FdObserver::OBSERVE_READ |
                                UnixEventPort::FdObserver::OBSERVE_WRITE) {}

  Promise<size_t> send(const void* buffer, size_t size, NetworkAddress& destination) override;
  Promise<size_t> send(
      ArrayPtr<const ArrayPtr<const byte>> pieces, NetworkAddress& destination) override;

  class ReceiverImpl;

  Own<DatagramReceiver> makeReceiver(DatagramReceiver::Capacity capacity) override;

  uint getPort() override {
    return SocketAddress::getLocalAddress(fd).getPort();
  }

  void getsockopt(int level, int option, void* value, uint* length) override {
    socklen_t socklen = *length;
    KJ_SYSCALL(::getsockopt(fd, level, option, value, &socklen));
    *length = socklen;
  }
  void setsockopt(int level, int option, const void* value, uint length) override {
    KJ_SYSCALL(::setsockopt(fd, level, option, value, length));
  }

883
public:
884
  LowLevelAsyncIoProvider& lowLevel;
885
  UnixEventPort& eventPort;
886
  UnixEventPort::FdObserver observer;
887 888
};

889 890
class LowLevelAsyncIoProviderImpl final: public LowLevelAsyncIoProvider {
public:
891
  LowLevelAsyncIoProviderImpl()
892
      : eventLoop(eventPort), waitScope(eventLoop) {}
893 894

  inline WaitScope& getWaitScope() { return waitScope; }
895 896 897 898 899 900 901 902 903 904

  Own<AsyncInputStream> wrapInputFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
  Own<AsyncOutputStream> wrapOutputFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
  Own<AsyncIoStream> wrapSocketFd(int fd, uint flags = 0) override {
    return heap<AsyncStreamFd>(eventPort, fd, flags);
  }
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
  Promise<Own<AsyncIoStream>> wrapConnectingSocketFd(
      int fd, const struct sockaddr* addr, uint addrlen, uint flags = 0) override {
    // Unfortunately connect() doesn't fit the mold of KJ_NONBLOCKING_SYSCALL, since it indicates
    // non-blocking using EINPROGRESS.
    for (;;) {
      if (::connect(fd, addr, addrlen) < 0) {
        int error = errno;
        if (error == EINPROGRESS) {
          // Fine.
          break;
        } else if (error != EINTR) {
          KJ_FAIL_SYSCALL("connect()", error) { break; }
          return Own<AsyncIoStream>();
        }
      } else {
        // no error
        break;
      }
    }

925
    auto result = heap<AsyncStreamFd>(eventPort, fd, flags);
926 927 928 929 930 931 932 933 934 935 936

    auto connected = result->waitConnected();
    return connected.then(kj::mvCapture(result, [fd](Own<AsyncIoStream>&& stream) {
      int err;
      socklen_t errlen = sizeof(err);
      KJ_SYSCALL(getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen));
      if (err != 0) {
        KJ_FAIL_SYSCALL("connect()", err) { break; }
      }
      return kj::mv(stream);
    }));
937 938 939 940
  }
  Own<ConnectionReceiver> wrapListenSocketFd(int fd, uint flags = 0) override {
    return heap<FdConnectionReceiver>(eventPort, fd, flags);
  }
941 942 943
  Own<DatagramPort> wrapDatagramSocketFd(int fd, uint flags = 0) override {
    return heap<DatagramPortImpl>(*this, eventPort, fd, flags);
  }
944

945
  Timer& getTimer() override { return eventPort.getTimer(); }
946

947 948
  UnixEventPort& getEventPort() { return eventPort; }

949 950 951
private:
  UnixEventPort eventPort;
  EventLoop eventLoop;
952
  WaitScope waitScope;
953 954
};

955 956
// =======================================================================================

Kenton Varda's avatar
Kenton Varda committed
957
class NetworkAddressImpl final: public NetworkAddress {
958
public:
Kenton Varda's avatar
Kenton Varda committed
959 960 961 962
  NetworkAddressImpl(LowLevelAsyncIoProvider& lowLevel, Array<SocketAddress> addrs)
      : lowLevel(lowLevel), addrs(kj::mv(addrs)) {}

  Promise<Own<AsyncIoStream>> connect() override {
963 964 965
    auto addrsCopy = heapArray(addrs.asPtr());
    auto promise = connectImpl(lowLevel, addrsCopy);
    return promise.attach(kj::mv(addrsCopy));
Kenton Varda's avatar
Kenton Varda committed
966
  }
967 968

  Own<ConnectionReceiver> listen() override {
Kenton Varda's avatar
Kenton Varda committed
969 970 971 972 973
    if (addrs.size() > 1) {
      KJ_LOG(WARNING, "Bind address resolved to multiple addresses.  Only the first address will "
          "be used.  If this is incorrect, specify the address numerically.  This may be fixed "
          "in the future.", addrs[0].toString());
    }
Kenton Varda's avatar
Kenton Varda committed
974 975

    int fd = addrs[0].socket(SOCK_STREAM);
976

977 978 979 980 981 982 983
    {
      KJ_ON_SCOPE_FAILURE(close(fd));

      // We always enable SO_REUSEADDR because having to take your server down for five minutes
      // before it can restart really sucks.
      int optval = 1;
      KJ_SYSCALL(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)));
984

Kenton Varda's avatar
Kenton Varda committed
985
      addrs[0].bind(fd);
986

987 988 989
      // TODO(someday):  Let queue size be specified explicitly in string addresses.
      KJ_SYSCALL(::listen(fd, SOMAXCONN));
    }
990

991
    return lowLevel.wrapListenSocketFd(fd, NEW_FD_FLAGS);
992 993
  }

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
  Own<DatagramPort> bindDatagramPort() override {
    if (addrs.size() > 1) {
      KJ_LOG(WARNING, "Bind address resolved to multiple addresses.  Only the first address will "
          "be used.  If this is incorrect, specify the address numerically.  This may be fixed "
          "in the future.", addrs[0].toString());
    }

    int fd = addrs[0].socket(SOCK_DGRAM);

    {
      KJ_ON_SCOPE_FAILURE(close(fd));

      // We always enable SO_REUSEADDR because having to take your server down for five minutes
      // before it can restart really sucks.
      int optval = 1;
      KJ_SYSCALL(setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)));

      addrs[0].bind(fd);
    }

    return lowLevel.wrapDatagramSocketFd(fd, NEW_FD_FLAGS);
  }

  Own<NetworkAddress> clone() override {
    return kj::heap<NetworkAddressImpl>(lowLevel, kj::heapArray(addrs.asPtr()));
  }

1021
  String toString() override {
Kenton Varda's avatar
Kenton Varda committed
1022
    return strArray(KJ_MAP(addr, addrs) { return addr.toString(); }, ",");
1023 1024
  }

1025 1026 1027 1028 1029
  const SocketAddress& chooseOneAddress() {
    KJ_REQUIRE(addrs.size() > 0, "No addresses available.");
    return addrs[counter++ % addrs.size()];
  }

1030
private:
1031
  LowLevelAsyncIoProvider& lowLevel;
Kenton Varda's avatar
Kenton Varda committed
1032
  Array<SocketAddress> addrs;
1033
  uint counter = 0;
1034

1035 1036 1037
  static Promise<Own<AsyncIoStream>> connectImpl(
      LowLevelAsyncIoProvider& lowLevel, ArrayPtr<SocketAddress> addrs) {
    KJ_ASSERT(addrs.size() > 0);
1038

1039
    int fd = addrs[0].socket(SOCK_STREAM);
1040

1041 1042 1043 1044
    return kj::evalNow([&]() {
      return lowLevel.wrapConnectingSocketFd(
          fd, addrs[0].getRaw(), addrs[0].getRawSize(), NEW_FD_FLAGS);
    }).then([](Own<AsyncIoStream>&& stream) -> Promise<Own<AsyncIoStream>> {
Kenton Varda's avatar
Kenton Varda committed
1045 1046
      // Success, pass along.
      return kj::mv(stream);
1047
    }, [&lowLevel,addrs](Exception&& exception) mutable -> Promise<Own<AsyncIoStream>> {
Kenton Varda's avatar
Kenton Varda committed
1048
      // Connect failed.
1049
      if (addrs.size() > 1) {
Kenton Varda's avatar
Kenton Varda committed
1050
        // Try the next address instead.
1051
        return connectImpl(lowLevel, addrs.slice(1, addrs.size()));
Kenton Varda's avatar
Kenton Varda committed
1052 1053 1054 1055 1056
      } else {
        // No more addresses to try, so propagate the exception.
        return kj::mv(exception);
      }
    });
1057 1058 1059 1060 1061
  }
};

class SocketNetwork final: public Network {
public:
1062
  explicit SocketNetwork(LowLevelAsyncIoProvider& lowLevel): lowLevel(lowLevel) {}
1063

Kenton Varda's avatar
Kenton Varda committed
1064
  Promise<Own<NetworkAddress>> parseAddress(StringPtr addr, uint portHint = 0) override {
1065
    auto& lowLevelCopy = lowLevel;
1066
    return evalLater(mvCapture(heapString(addr),
Kenton Varda's avatar
Kenton Varda committed
1067 1068 1069 1070 1071
        [&lowLevelCopy,portHint](String&& addr) {
      return SocketAddress::parse(lowLevelCopy, addr, portHint);
    })).then([&lowLevelCopy](Array<SocketAddress> addresses) -> Own<NetworkAddress> {
      return heap<NetworkAddressImpl>(lowLevelCopy, kj::mv(addresses));
    });
1072 1073
  }

Kenton Varda's avatar
Kenton Varda committed
1074 1075 1076 1077
  Own<NetworkAddress> getSockaddr(const void* sockaddr, uint len) override {
    auto array = kj::heapArrayBuilder<SocketAddress>(1);
    array.add(SocketAddress(sockaddr, len));
    return Own<NetworkAddress>(heap<NetworkAddressImpl>(lowLevel, array.finish()));
1078 1079
  }

1080
private:
1081
  LowLevelAsyncIoProvider& lowLevel;
1082
};
1083

1084
// =======================================================================================
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
Promise<size_t> DatagramPortImpl::send(
    const void* buffer, size_t size, NetworkAddress& destination) {
  auto& addr = downcast<NetworkAddressImpl>(destination).chooseOneAddress();

  ssize_t n;
  KJ_NONBLOCKING_SYSCALL(n = sendto(fd, buffer, size, 0, addr.getRaw(), addr.getRawSize()));
  if (n < 0) {
    // Write buffer full.
    return observer.whenBecomesWritable().then([this, buffer, size, &destination]() {
      return send(buffer, size, destination);
    });
  } else {
    // If less than the whole message was sent, then it got truncated, and there's nothing we can
    // do about it.
    return n;
  }
}

Promise<size_t> DatagramPortImpl::send(
    ArrayPtr<const ArrayPtr<const byte>> pieces, NetworkAddress& destination) {
  struct msghdr msg;
  memset(&msg, 0, sizeof(msg));

  auto& addr = downcast<NetworkAddressImpl>(destination).chooseOneAddress();
  msg.msg_name = const_cast<void*>(implicitCast<const void*>(addr.getRaw()));
  msg.msg_namelen = addr.getRawSize();

Tom Lee's avatar
Tom Lee committed
1113
  const size_t iovmax = kj::miniposix::iovMax(pieces.size());
1114
  KJ_STACK_ARRAY(struct iovec, iov, kj::min(pieces.size(), iovmax), 16, 64);
1115 1116 1117 1118 1119 1120 1121

  for (size_t i: kj::indices(pieces)) {
    iov[i].iov_base = const_cast<void*>(implicitCast<const void*>(pieces[i].begin()));
    iov[i].iov_len = pieces[i].size();
  }

  Array<byte> extra;
1122
  if (pieces.size() > iovmax) {
1123 1124 1125 1126 1127
    // Too many pieces, but we can't use multiple syscalls because they'd send separate
    // datagrams. We'll have to copy the trailing pieces into a temporary array.
    //
    // TODO(perf): On Linux we could use multiple syscalls via MSG_MORE.
    size_t extraSize = 0;
1128
    for (size_t i = iovmax - 1; i < pieces.size(); i++) {
1129 1130 1131 1132
      extraSize += pieces[i].size();
    }
    extra = kj::heapArray<byte>(extraSize);
    extraSize = 0;
1133
    for (size_t i = iovmax - 1; i < pieces.size(); i++) {
1134 1135 1136
      memcpy(extra.begin() + extraSize, pieces[i].begin(), pieces[i].size());
      extraSize += pieces[i].size();
    }
1137 1138
    iov[iovmax - 1].iov_base = extra.begin();
    iov[iovmax - 1].iov_len = extra.size();
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
  }

  msg.msg_iov = iov.begin();
  msg.msg_iovlen = iov.size();

  ssize_t n;
  KJ_NONBLOCKING_SYSCALL(n = sendmsg(fd, &msg, 0));
  if (n < 0) {
    // Write buffer full.
    return observer.whenBecomesWritable().then([this, pieces, &destination]() {
      return send(pieces, destination);
    });
  } else {
    // If less than the whole message was sent, then it was truncated, and there's nothing we can
    // do about that now.
    return n;
  }
}

class DatagramPortImpl::ReceiverImpl final: public DatagramReceiver {
public:
  explicit ReceiverImpl(DatagramPortImpl& port, Capacity capacity)
      : port(port),
        contentBuffer(heapArray<byte>(capacity.content)),
        ancillaryBuffer(capacity.ancillary > 0 ? heapArray<byte>(capacity.ancillary)
                                               : Array<byte>(nullptr)) {}

  Promise<void> receive() override {
    struct msghdr msg;
    memset(&msg, 0, sizeof(msg));

    struct sockaddr_storage addr;
    memset(&addr, 0, sizeof(addr));
    msg.msg_name = &addr;
    msg.msg_namelen = sizeof(addr);

    struct iovec iov;
    iov.iov_base = contentBuffer.begin();
    iov.iov_len = contentBuffer.size();
    msg.msg_iov = &iov;
    msg.msg_iovlen = 1;
    msg.msg_control = ancillaryBuffer.begin();
    msg.msg_controllen = ancillaryBuffer.size();

    ssize_t n;
    KJ_NONBLOCKING_SYSCALL(n = recvmsg(port.fd, &msg, 0));

    if (n < 0) {
      // No data available. Wait.
      return port.observer.whenBecomesReadable().then([this]() {
        return receive();
      });
    } else {
      receivedSize = n;
      contentTruncated = msg.msg_flags & MSG_TRUNC;

      source.emplace(port.lowLevel, msg.msg_name, msg.msg_namelen);

      ancillaryList.resize(0);
      ancillaryTruncated = msg.msg_flags & MSG_CTRUNC;

      for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg != nullptr;
           cmsg = CMSG_NXTHDR(&msg, cmsg)) {
        // On some platforms (OSX), a cmsghdr's length may cross the end of the ancillary buffer
        // when truncated. On other platforms (Linux) the length in cmsghdr will itself be
        // truncated to fit within the buffer.

        const byte* pos = reinterpret_cast<const byte*>(cmsg);
        size_t available = ancillaryBuffer.end() - pos;
        if (available < CMSG_SPACE(0)) {
          // The buffer ends in the middle of the header. We can't use this message.
          // (On Linux, this never happens, because the message is not included if there isn't
          // space for a header. I'm not sure how other systems behave, though, so let's be safe.)
          break;
        }

        // OK, we know the cmsghdr is valid, at least.

        // Find the start of the message payload.
1218
        const byte* begin = (const byte *)CMSG_DATA(cmsg);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

        // Cap the message length to the available space.
        const byte* end = pos + kj::min(available, cmsg->cmsg_len);

        ancillaryList.add(AncillaryMessage(
            cmsg->cmsg_level, cmsg->cmsg_type, arrayPtr(begin, end)));
      }

      return READY_NOW;
    }
  }

  MaybeTruncated<ArrayPtr<const byte>> getContent() override {
    return { contentBuffer.slice(0, receivedSize), contentTruncated };
  }

  MaybeTruncated<ArrayPtr<const AncillaryMessage>> getAncillary() override {
    return { ancillaryList.asPtr(), ancillaryTruncated };
  }

  NetworkAddress& getSource() override {
    return KJ_REQUIRE_NONNULL(source, "Haven't sent a message yet.").abstract;
  }

private:
  DatagramPortImpl& port;
  Array<byte> contentBuffer;
  Array<byte> ancillaryBuffer;
  Vector<AncillaryMessage> ancillaryList;
  size_t receivedSize = 0;
  bool contentTruncated = false;
  bool ancillaryTruncated = false;

  struct StoredAddress {
    StoredAddress(LowLevelAsyncIoProvider& lowLevel, const void* sockaddr, uint length)
        : raw(sockaddr, length),
          abstract(lowLevel, Array<SocketAddress>(&raw, 1, NullArrayDisposer::instance)) {}

    SocketAddress raw;
    NetworkAddressImpl abstract;
  };

  kj::Maybe<StoredAddress> source;
};

Own<DatagramReceiver> DatagramPortImpl::makeReceiver(DatagramReceiver::Capacity capacity) {
  return kj::heap<ReceiverImpl>(*this, capacity);
}

// =======================================================================================

1270
class AsyncIoProviderImpl final: public AsyncIoProvider {
1271
public:
1272 1273
  AsyncIoProviderImpl(LowLevelAsyncIoProvider& lowLevel)
      : lowLevel(lowLevel), network(lowLevel) {}
Kenton Varda's avatar
Kenton Varda committed
1274

1275 1276
  OneWayPipe newOneWayPipe() override {
    int fds[2];
Kenton Varda's avatar
Kenton Varda committed
1277
#if __linux__ && !__BIONIC__
1278
    KJ_SYSCALL(pipe2(fds, O_NONBLOCK | O_CLOEXEC));
1279
#else
1280
    KJ_SYSCALL(pipe(fds));
1281
#endif
1282 1283 1284 1285
    return OneWayPipe {
      lowLevel.wrapInputFd(fds[0], NEW_FD_FLAGS),
      lowLevel.wrapOutputFd(fds[1], NEW_FD_FLAGS)
    };
1286
  }
1287

1288 1289 1290
  TwoWayPipe newTwoWayPipe() override {
    int fds[2];
    int type = SOCK_STREAM;
Kenton Varda's avatar
Kenton Varda committed
1291
#if __linux__ && !__BIONIC__
1292
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
1293
#endif
1294
    KJ_SYSCALL(socketpair(AF_UNIX, type, 0, fds));
1295 1296 1297 1298
    return TwoWayPipe { {
      lowLevel.wrapSocketFd(fds[0], NEW_FD_FLAGS),
      lowLevel.wrapSocketFd(fds[1], NEW_FD_FLAGS)
    } };
1299 1300 1301 1302 1303 1304
  }

  Network& getNetwork() override {
    return network;
  }

1305
  PipeThread newPipeThread(
1306
      Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)> startFunc) override {
1307 1308
    int fds[2];
    int type = SOCK_STREAM;
Kenton Varda's avatar
Kenton Varda committed
1309
#if __linux__ && !__BIONIC__
1310 1311 1312 1313 1314
    type |= SOCK_NONBLOCK | SOCK_CLOEXEC;
#endif
    KJ_SYSCALL(socketpair(AF_UNIX, type, 0, fds));

    int threadFd = fds[1];
1315
    KJ_ON_SCOPE_FAILURE(close(threadFd));
1316

1317 1318 1319
    auto pipe = lowLevel.wrapSocketFd(fds[0], NEW_FD_FLAGS);

    auto thread = heap<Thread>(kj::mvCapture(startFunc,
1320
        [threadFd](Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)>&& startFunc) {
1321 1322 1323
      LowLevelAsyncIoProviderImpl lowLevel;
      auto stream = lowLevel.wrapSocketFd(threadFd, NEW_FD_FLAGS);
      AsyncIoProviderImpl ioProvider(lowLevel);
1324
      startFunc(ioProvider, *stream, lowLevel.getWaitScope());
1325
    }));
1326

1327
    return { kj::mv(thread), kj::mv(pipe) };
1328
  }
1329

1330 1331
  Timer& getTimer() override { return lowLevel.getTimer(); }

1332
private:
1333
  LowLevelAsyncIoProvider& lowLevel;
1334 1335 1336 1337 1338
  SocketNetwork network;
};

}  // namespace

1339 1340 1341 1342 1343 1344 1345
Own<AsyncIoProvider> newAsyncIoProvider(LowLevelAsyncIoProvider& lowLevel) {
  return kj::heap<AsyncIoProviderImpl>(lowLevel);
}

AsyncIoContext setupAsyncIo() {
  auto lowLevel = heap<LowLevelAsyncIoProviderImpl>();
  auto ioProvider = kj::heap<AsyncIoProviderImpl>(*lowLevel);
1346
  auto& waitScope = lowLevel->getWaitScope();
1347 1348
  auto& eventPort = lowLevel->getEventPort();
  return { kj::mv(lowLevel), kj::mv(ioProvider), waitScope, eventPort };
1349 1350
}

1351
}  // namespace kj
1352 1353

#endif  // !_WIN32