common.h 46.2 KB
Newer Older
Kenton Varda's avatar
Kenton Varda committed
1 2
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
Kenton Varda's avatar
Kenton Varda committed
3
//
Kenton Varda's avatar
Kenton Varda committed
4 5 6 7 8 9
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
Kenton Varda's avatar
Kenton Varda committed
10
//
Kenton Varda's avatar
Kenton Varda committed
11 12
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
Kenton Varda's avatar
Kenton Varda committed
13
//
Kenton Varda's avatar
Kenton Varda committed
14 15 16 17 18 19 20
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
Kenton Varda's avatar
Kenton Varda committed
21 22 23 24 25 26 27 28

// Header that should be #included by everyone.
//
// This defines very simple utilities that are widely applicable.

#ifndef KJ_COMMON_H_
#define KJ_COMMON_H_

29 30 31 32
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

33
#ifndef KJ_NO_COMPILER_CHECK
34
#if __cplusplus < 201103L && !__CDT_PARSER__ && !_MSC_VER
Kenton Varda's avatar
Kenton Varda committed
35 36 37 38 39 40 41 42 43 44 45
  #error "This code requires C++11. Either your compiler does not support it or it is not enabled."
  #ifdef __GNUC__
    // Compiler claims compatibility with GCC, so presumably supports -std.
    #error "Pass -std=c++11 on the compiler command line to enable C++11."
  #endif
#endif

#ifdef __GNUC__
  #if __clang__
    #if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 2)
      #warning "This library requires at least Clang 3.2."
46 47 48 49
    #elif defined(__apple_build_version__) && __apple_build_version__ <= 4250028
      #warning "This library requires at least Clang 3.2.  XCode 4.6's Clang, which claims to be "\
               "version 4.2 (wat?), is actually built from some random SVN revision between 3.1 "\
               "and 3.2.  Unfortunately, it is insufficient for compiling this library.  You can "\
50 51 52
               "download the real Clang 3.2 (or newer) from the Clang web site.  Step-by-step "\
               "instructions can be found in Cap'n Proto's documentation: "\
               "http://kentonv.github.io/capnproto/install.html#clang_32_on_mac_osx"
53 54 55 56
    #elif __cplusplus >= 201103L && !__has_include(<initializer_list>)
      #warning "Your compiler supports C++11 but your C++ standard library does not.  If your "\
               "system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\
               "-stdlib=libc++ to your CXXFLAGS."
Kenton Varda's avatar
Kenton Varda committed
57 58 59 60 61 62
    #endif
  #else
    #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
      #warning "This library requires at least GCC 4.7."
    #endif
  #endif
Kenton Varda's avatar
Kenton Varda committed
63
#elif defined(_MSC_VER)
64 65 66 67 68 69
  #if _MSC_VER < 1900
    #error "You need Visual Studio 2015 or better to compile this code."
  #elif !CAPNP_LITE
    // TODO(cleanup): This is KJ, but we're talking about Cap'n Proto.
    #error "As of this writing, Cap'n Proto only supports Visual C++ in 'lite mode'; please #define CAPNP_LITE"
  #endif
70 71 72 73 74
#else
  #warning "I don't recognize your compiler.  As of this writing, Clang and GCC are the only "\
           "known compilers with enough C++11 support for this library.  "\
           "#define KJ_NO_COMPILER_CHECK to make this warning go away."
#endif
Kenton Varda's avatar
Kenton Varda committed
75 76
#endif

77 78 79
#include <stddef.h>
#include <initializer_list>

Kenton Varda's avatar
Kenton Varda committed
80 81 82 83 84 85 86 87 88 89
// =======================================================================================

namespace kj {

typedef unsigned int uint;
typedef unsigned char byte;

// =======================================================================================
// Common macros, especially for common yet compiler-specific features.

Kenton Varda's avatar
Kenton Varda committed
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
// Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific
// evidence to the contrary.  Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly
// to override these checks.
#ifdef __GNUC__
  #if !defined(KJ_NO_RTTI) && !__GXX_RTTI
    #define KJ_NO_RTTI 1
  #endif
  #if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS
    #define KJ_NO_EXCEPTIONS 1
  #endif
#elif defined(_MSC_VER)
  #if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI)
    #define KJ_NO_RTTI 1
  #endif
  #if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND)
    #define KJ_NO_EXCEPTIONS 1
106 107 108
  #endif
#endif

109 110 111
#if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG)
// Heuristically decide whether to enable debug mode.  If DEBUG or NDEBUG is defined, use that.
// Otherwise, fall back to checking whether optimization is enabled.
112
#if defined(DEBUG) || defined(_DEBUG)
113
#define KJ_DEBUG
114 115 116 117 118 119 120
#elif defined(NDEBUG)
#define KJ_NDEBUG
#elif __OPTIMIZE__
#define KJ_NDEBUG
#else
#define KJ_DEBUG
#endif
121 122
#endif

Kenton Varda's avatar
Kenton Varda committed
123 124 125
#define KJ_DISALLOW_COPY(classname) \
  classname(const classname&) = delete; \
  classname& operator=(const classname&) = delete
Kenton Varda's avatar
Kenton Varda committed
126
// Deletes the implicit copy constructor and assignment operator.
Kenton Varda's avatar
Kenton Varda committed
127

128
#ifdef __GNUC__
129 130
#define KJ_LIKELY(condition) __builtin_expect(condition, true)
#define KJ_UNLIKELY(condition) __builtin_expect(condition, false)
Kenton Varda's avatar
Kenton Varda committed
131 132 133
// Branch prediction macros.  Evaluates to the condition given, but also tells the compiler that we
// expect the condition to be true/false enough of the time that it's worth hard-coding branch
// prediction.
134 135 136 137
#else
#define KJ_LIKELY(condition) (condition)
#define KJ_UNLIKELY(condition) (condition)
#endif
Kenton Varda's avatar
Kenton Varda committed
138

139
#if defined(KJ_DEBUG) || __NO_INLINE__
Kenton Varda's avatar
Kenton Varda committed
140 141
#define KJ_ALWAYS_INLINE(prototype) inline prototype
// Don't force inline in debug mode.
142
#else
143 144 145
#if defined(_MSC_VER)
#define KJ_ALWAYS_INLINE(prototype) __forceinline prototype
#else
146
#define KJ_ALWAYS_INLINE(prototype) inline prototype __attribute__((always_inline))
147
#endif
148
// Force a function to always be inlined.  Apply only to the prototype, not to the definition.
Kenton Varda's avatar
Kenton Varda committed
149 150
#endif

151 152
#if defined(_MSC_VER)
#define KJ_NORETURN(prototype) __declspec(noreturn) prototype
153 154 155 156 157
#define KJ_UNUSED
#define KJ_WARN_UNUSED_RESULT
// TODO(msvc): KJ_WARN_UNUSED_RESULT can use _Check_return_ on MSVC, but it's a prefix, so
//   wrapping the whole prototype is needed. http://msdn.microsoft.com/en-us/library/jj159529.aspx
//   Similarly, KJ_UNUSED could use __pragma(warning(suppress:...)), but again that's a prefix.
158 159
#else
#define KJ_NORETURN(prototype) prototype __attribute__((noreturn))
160
#define KJ_UNUSED __attribute__((unused))
161
#define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
162
#endif
163

Kenton Varda's avatar
Kenton Varda committed
164
#if __clang__
165
#define KJ_UNUSED_MEMBER __attribute__((unused))
Kenton Varda's avatar
Kenton Varda committed
166 167
// Inhibits "unused" warning for member variables.  Only Clang produces such a warning, while GCC
// complains if the attribute is set on members.
Kenton Varda's avatar
Kenton Varda committed
168
#else
Kenton Varda's avatar
Kenton Varda committed
169
#define KJ_UNUSED_MEMBER
Kenton Varda's avatar
Kenton Varda committed
170 171
#endif

172 173 174
#if __clang__
#define KJ_DEPRECATED(reason) \
    __attribute__((deprecated(reason)))
175
#elif __GNUC__
176 177
#define KJ_DEPRECATED(reason) \
    __attribute__((deprecated))
178 179 180
#else
#define KJ_DEPRECATED(reason)
// TODO(msvc): Again, here, MSVC prefers a prefix, __declspec(deprecated).
181 182
#endif

183
namespace _ {  // private
Kenton Varda's avatar
Kenton Varda committed
184

185
KJ_NORETURN(void inlineRequireFailure(
Kenton Varda's avatar
Kenton Varda committed
186
    const char* file, int line, const char* expectation, const char* macroArgs,
187
    const char* message = nullptr));
Kenton Varda's avatar
Kenton Varda committed
188

189
KJ_NORETURN(void unreachable());
Kenton Varda's avatar
Kenton Varda committed
190

191
}  // namespace _ (private)
Kenton Varda's avatar
Kenton Varda committed
192

193
#ifdef KJ_DEBUG
194 195 196
#if _MSC_VER
#define KJ_IREQUIRE(condition, ...) \
    if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
197
        __FILE__, __LINE__, #condition, "" #__VA_ARGS__, __VA_ARGS__)
198 199 200 201 202
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to
// check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that
// it will be enabled depending on whether the application is compiled in debug mode rather than
// whether libkj is.
#else
Kenton Varda's avatar
Kenton Varda committed
203
#define KJ_IREQUIRE(condition, ...) \
204
    if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
Kenton Varda's avatar
Kenton Varda committed
205
        __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
206
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to
Kenton Varda's avatar
Kenton Varda committed
207
// check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that
Kenton Varda's avatar
Kenton Varda committed
208 209
// it will be enabled depending on whether the application is compiled in debug mode rather than
// whether libkj is.
210
#endif
211 212
#else
#define KJ_IREQUIRE(condition, ...)
Kenton Varda's avatar
Kenton Varda committed
213 214
#endif

215 216
#define KJ_IASSERT KJ_IREQUIRE

Kenton Varda's avatar
Kenton Varda committed
217 218 219 220 221 222 223 224 225 226
#define KJ_UNREACHABLE ::kj::_::unreachable();
// Put this on code paths that cannot be reached to suppress compiler warnings about missing
// returns.

#if __clang__
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT
#else
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE
#endif

Kenton Varda's avatar
Kenton Varda committed
227 228 229 230 231 232
// #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack)
//
// Allocate an array, preferably on the stack, unless it is too big.  On GCC this will use
// variable-sized arrays.  For other compilers we could just use a fixed-size array.  `minStack`
// is the stack array size to use if variable-width arrays are not supported.  `maxStack` is the
// maximum stack array size if variable-width arrays *are* supported.
233
#if __GNUC__ && !__clang__
Kenton Varda's avatar
Kenton Varda committed
234 235
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
  size_t name##_size = (size); \
236 237
  bool name##_isOnStack = name##_size <= (maxStack); \
  type name##_stack[name##_isOnStack ? size : 0]; \
Kenton Varda's avatar
Kenton Varda committed
238
  ::kj::Array<type> name##_heap = name##_isOnStack ? \
Kenton Varda's avatar
Kenton Varda committed
239
      nullptr : kj::heapArray<type>(name##_size); \
Kenton Varda's avatar
Kenton Varda committed
240 241 242 243 244
  ::kj::ArrayPtr<type> name = name##_isOnStack ? \
      kj::arrayPtr(name##_stack, name##_size) : name##_heap
#else
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
  size_t name##_size = (size); \
245 246
  bool name##_isOnStack = name##_size <= (minStack); \
  type name##_stack[minStack]; \
Kenton Varda's avatar
Kenton Varda committed
247
  ::kj::Array<type> name##_heap = name##_isOnStack ? \
Kenton Varda's avatar
Kenton Varda committed
248
      nullptr : kj::heapArray<type>(name##_size); \
Kenton Varda's avatar
Kenton Varda committed
249 250 251 252
  ::kj::ArrayPtr<type> name = name##_isOnStack ? \
      kj::arrayPtr(name##_stack, name##_size) : name##_heap
#endif

253 254 255 256 257 258
#define KJ_CONCAT_(x, y) x##y
#define KJ_CONCAT(x, y) KJ_CONCAT_(x, y)
#define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__)
// Create a unique identifier name.  We use concatenate __LINE__ rather than __COUNTER__ so that
// the name can be used multiple times in the same macro.

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
#if _MSC_VER

#define KJ_CONSTEXPR(...) __VA_ARGS__
// Use in cases where MSVC barfs on constexpr. A replacement keyword (e.g. "const") can be
// provided, or just leave blank to remove the keyword entirely.
//
// TODO(msvc): Remove this hack once MSVC fully supports constexpr.

#ifndef __restrict__
#define __restrict__ __restrict
// TODO(msvc): Would it be better to define a KJ_RESTRICT macro?
#endif

#pragma warning(disable: 4521 4522)
// This warning complains when there are two copy constructors, one for a const reference and
// one for a non-const reference. It is often quite necessary to do this in wrapper templates,
// therefore this warning is dumb and we disable it.

#pragma warning(disable: 4458)
// Warns when a parameter name shadows a class member. Unfortunately my code does this a lot,
// since I don't use a special name format for members.

#else  // _MSC_VER
#define KJ_CONSTEXPR(...) constexpr
#endif

Kenton Varda's avatar
Kenton Varda committed
285 286 287
// =======================================================================================
// Template metaprogramming helpers.

288 289 290 291
template <typename T> struct NoInfer_ { typedef T Type; };
template <typename T> using NoInfer = typename NoInfer_<T>::Type;
// Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of
// the type based on the parameter value.
Kenton Varda's avatar
Kenton Varda committed
292

293 294 295 296
template <typename T> struct RemoveConst_ { typedef T Type; };
template <typename T> struct RemoveConst_<const T> { typedef T Type; };
template <typename T> using RemoveConst = typename RemoveConst_<T>::Type;

Kenton Varda's avatar
Kenton Varda committed
297 298 299 300 301
template <typename> struct IsLvalueReference_ { static constexpr bool value = false; };
template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; };
template <typename T>
inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; }

Kenton Varda's avatar
Kenton Varda committed
302 303 304 305
template <typename T> struct Decay_ { typedef T Type; };
template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; };
306 307 308
template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; };
template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; };
template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; };
Kenton Varda's avatar
Kenton Varda committed
309 310 311 312
template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; };
template <typename T> using Decay = typename Decay_<T>::Type;

Kenton Varda's avatar
Kenton Varda committed
313 314 315 316 317 318 319 320
template <bool b> struct EnableIf_;
template <> struct EnableIf_<true> { typedef void Type; };
template <bool b> using EnableIf = typename EnableIf_<b>::Type;
// Use like:
//
//     template <typename T, typename = EnableIf<isValid<T>()>
//     void func(T&& t);

Kenton Varda's avatar
Kenton Varda committed
321 322 323 324 325
template <typename T>
T instance() noexcept;
// Like std::declval, but doesn't transform T into an rvalue reference.  If you want that, specify
// instance<T&&>().

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
struct DisallowConstCopy {
  // Inherit from this, or declare a member variable of this type, to prevent the class from being
  // copyable from a const reference -- instead, it will only be copyable from non-const references.
  // This is useful for enforcing transitive constness of contained pointers.
  //
  // For example, say you have a type T which contains a pointer.  T has non-const methods which
  // modify the value at that pointer, but T's const methods are designed to allow reading only.
  // Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and
  // then use it to modify the pointed-to value.  However, if T inherits DisallowConstCopy, then
  // callers will only be able to copy non-const instances of T.  Ideally, there is some
  // parallel type ImmutableT which is like a version of T that only has const methods, and can
  // be copied from a const T.
  //
  // Note that due to C++ rules about implicit copy constructors and assignment operators, any
  // type that contains or inherits from a type that disallows const copies will also automatically
  // disallow const copies.  Hey, cool, that's exactly what we want.

  DisallowConstCopy() = default;
  DisallowConstCopy(DisallowConstCopy&);
  DisallowConstCopy(DisallowConstCopy&&) = default;
  DisallowConstCopy& operator=(DisallowConstCopy&);
  DisallowConstCopy& operator=(DisallowConstCopy&&) = default;
};

// Apparently these cannot be defaulted inside the class due to some obscure C++ rule.
inline DisallowConstCopy::DisallowConstCopy(DisallowConstCopy&) = default;
inline DisallowConstCopy& DisallowConstCopy::operator=(DisallowConstCopy&) = default;

template <typename T>
struct DisallowConstCopyIfNotConst: public DisallowConstCopy {
  // Inherit from this when implementing a template that contains a pointer to T and which should
  // enforce transitive constness.  If T is a const type, this has no effect.  Otherwise, it is
  // an alias for DisallowConstCopy.
};

template <typename T>
struct DisallowConstCopyIfNotConst<const T> {};

364 365 366 367
template <typename T> struct IsConst_ { static constexpr bool value = false; };
template <typename T> struct IsConst_<const T> { static constexpr bool value = true; };
template <typename T> constexpr bool isConst() { return IsConst_<T>::value; }

368 369 370 371 372 373 374
template <typename T> struct EnableIfNotConst_ { typedef T Type; };
template <typename T> struct EnableIfNotConst_<const T>;
template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type;

template <typename T> struct EnableIfConst_;
template <typename T> struct EnableIfConst_<const T> { typedef T Type; };
template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type;
Kenton Varda's avatar
Kenton Varda committed
375

376 377 378
template <typename T> struct RemoveConstOrDisable_ { struct Type; };
template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; };
template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type;
379

380 381 382 383
template <typename T> struct IsReference_ { static constexpr bool value = false; };
template <typename T> struct IsReference_<T&> { static constexpr bool value = true; };
template <typename T> constexpr bool isReference() { return IsReference_<T>::value; }

384 385 386 387 388 389 390
template <typename From, typename To>
struct PropagateConst_ { typedef To Type; };
template <typename From, typename To>
struct PropagateConst_<const From, To> { typedef const To Type; };
template <typename From, typename To>
using PropagateConst = typename PropagateConst_<From, To>::Type;

Kenton Varda's avatar
Kenton Varda committed
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
namespace _ {  // private

template <typename T>
T refIfLvalue(T&&);

}  // namespace _ (private)

#define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp))
// Like decltype(exp), but if exp is an lvalue, produces a reference type.
//
//     int i;
//     decltype(i) i1(i);                         // i1 has type int.
//     KJ_DECLTYPE_REF(i + 1) i2(i + 1);          // i2 has type int.
//     KJ_DECLTYPE_REF(i) i3(i);                  // i3 has type int&.
//     KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i));  // i4 has type int.

407 408 409 410 411 412 413 414 415 416 417
template <typename T>
struct CanConvert_ {
  static int sfinae(T);
  static bool sfinae(...);
};

template <typename T, typename U>
constexpr bool canConvert() {
  return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int);
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
#if __clang__
template <typename T>
constexpr bool canMemcpy() {
  // Returns true if T can be copied using memcpy instead of using the copy constructor or
  // assignment operator.

  // Clang unhelpfully defines __has_trivial_{copy,assign}(T) to be true if the copy constructor /
  // assign operator are deleted, on the basis that a strict reading of the definition of "trivial"
  // according to the standard says that deleted functions are in fact trivial.  Meanwhile Clang
  // provides these admittedly-better intrinsics, but GCC does not.
  return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&);
}
#else
template <typename T>
constexpr bool canMemcpy() {
  // Returns true if T can be copied using memcpy instead of using the copy constructor or
  // assignment operator.

  // GCC defines these to mean what we want them to mean.
  return __has_trivial_copy(T) && __has_trivial_assign(T);
}
#endif

Kenton Varda's avatar
Kenton Varda committed
441 442 443 444 445 446 447 448 449
// =======================================================================================
// Equivalents to std::move() and std::forward(), since these are very commonly needed and the
// std header <utility> pulls in lots of other stuff.
//
// We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used
// that the cost of typing more letters outweighs the cost of being slightly harder to understand
// when first encountered.

template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); }
450
template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); }
Kenton Varda's avatar
Kenton Varda committed
451

452 453 454 455
template<typename T> constexpr T cp(T& t) noexcept { return t; }
template<typename T> constexpr T cp(const T& t) noexcept { return t; }
// Useful to force a copy, particularly to pass into a function that expects T&&.

456 457 458 459 460 461 462 463
template <typename T, typename U, bool takeT> struct MinType_;
template <typename T, typename U> struct MinType_<T, U, true> { typedef T Type; };
template <typename T, typename U> struct MinType_<T, U, false> { typedef U Type; };

template <typename T, typename U>
using MinType = typename MinType_<T, U, sizeof(T) <= sizeof(U)>::Type;
// Resolves to the smaller of the two input types.

464
template <typename T, typename U>
465
inline KJ_CONSTEXPR() auto min(T&& a, U&& b) -> MinType<Decay<T>, Decay<U>> {
466
  return a < b ? MinType<Decay<T>, Decay<U>>(a) : MinType<Decay<T>, Decay<U>>(b);
467 468
}

469 470 471 472 473 474 475 476
template <typename T, typename U, bool takeT> struct MaxType_;
template <typename T, typename U> struct MaxType_<T, U, true> { typedef T Type; };
template <typename T, typename U> struct MaxType_<T, U, false> { typedef U Type; };

template <typename T, typename U>
using MaxType = typename MaxType_<T, U, sizeof(T) >= sizeof(U)>::Type;
// Resolves to the larger of the two input types.

477
template <typename T, typename U>
478 479
inline KJ_CONSTEXPR() auto max(T&& a, U&& b) -> MaxType<Decay<T>, Decay<U>> {
  return a > b ? MaxType<Decay<T>, Decay<U>>(a) : MaxType<Decay<T>, Decay<U>>(b);
480
}
481

482 483 484 485 486 487 488
template <typename T, size_t s>
inline constexpr size_t size(T (&arr)[s]) { return s; }
template <typename T>
inline constexpr size_t size(T&& arr) { return arr.size(); }
// Returns the size of the parameter, whether the parameter is a regular C array or a container
// with a `.size()` method.

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
class MaxValue_ {
private:
  template <typename T>
  inline constexpr T maxSigned() const {
    return (1ull << (sizeof(T) * 8 - 1)) - 1;
  }
  template <typename T>
  inline constexpr T maxUnsigned() const {
    return ~static_cast<T>(0u);
  }

public:
#define _kJ_HANDLE_TYPE(T) \
  inline constexpr operator   signed T() const { return MaxValue_::maxSigned  <  signed T>(); } \
  inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); }
  _kJ_HANDLE_TYPE(char)
  _kJ_HANDLE_TYPE(short)
  _kJ_HANDLE_TYPE(int)
  _kJ_HANDLE_TYPE(long)
  _kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE
Kenton Varda's avatar
Kenton Varda committed
510 511 512 513 514 515 516

  inline constexpr operator char() const {
    // `char` is different from both `signed char` and `unsigned char`, and may be signed or
    // unsigned on different platforms.  Ugh.
    return char(-1) < 0 ? MaxValue_::maxSigned<char>()
                        : MaxValue_::maxUnsigned<char>();
  }
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
};

class MinValue_ {
private:
  template <typename T>
  inline constexpr T minSigned() const {
    return 1ull << (sizeof(T) * 8 - 1);
  }
  template <typename T>
  inline constexpr T minUnsigned() const {
    return 0u;
  }

public:
#define _kJ_HANDLE_TYPE(T) \
  inline constexpr operator   signed T() const { return MinValue_::minSigned  <  signed T>(); } \
  inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); }
  _kJ_HANDLE_TYPE(char)
  _kJ_HANDLE_TYPE(short)
  _kJ_HANDLE_TYPE(int)
  _kJ_HANDLE_TYPE(long)
  _kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE
Kenton Varda's avatar
Kenton Varda committed
540 541 542 543 544 545 546

  inline constexpr operator char() const {
    // `char` is different from both `signed char` and `unsigned char`, and may be signed or
    // unsigned on different platforms.  Ugh.
    return char(-1) < 0 ? MinValue_::minSigned<char>()
                        : MinValue_::minUnsigned<char>();
  }
547 548
};

549
static KJ_CONSTEXPR(const) MaxValue_ maxValue = MaxValue_();
550 551 552 553 554 555
// A special constant which, when cast to an integer type, takes on the maximum possible value of
// that type.  This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.

556
static KJ_CONSTEXPR(const) MinValue_ minValue = MinValue_();
557 558 559 560 561 562
// A special constant which, when cast to an integer type, takes on the minimum possible value
// of that type.  This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.

563
#if __GNUC__
564 565
inline constexpr float inf() { return __builtin_huge_valf(); }
inline constexpr float nan() { return __builtin_nanf(""); }
566

567
#elif _MSC_VER
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

// Do what MSVC math.h does
#pragma warning(push)
#pragma warning(disable: 4756)  // "overflow in constant arithmetic"
inline constexpr float inf() { return (float)(1e300 * 1e300); }
#pragma warning(pop)

float nan();
// Unfortunatley, inf() * 0.0f produces a NaN with the sign bit set, whereas our preferred
// canonical NaN should not have the sign bit set. std::numeric_limits<float>::quiet_NaN()
// returns the correct NaN, but we don't want to #include that here. So, we give up and make
// this out-of-line on MSVC.
//
// TODO(msvc): Can we do better?

583 584 585
#else
#error "Not sure how to support your compiler."
#endif
586

Kenton Varda's avatar
Kenton Varda committed
587 588 589 590 591 592 593 594 595 596 597 598 599
// =======================================================================================
// Useful fake containers

template <typename T>
class Range {
public:
  inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {}

  class Iterator {
  public:
    Iterator() = default;
    inline Iterator(const T& value): value(value) {}

600 601
    inline const T&  operator* () const { return value; }
    inline const T&  operator[](size_t index) const { return value + index; }
Kenton Varda's avatar
Kenton Varda committed
602
    inline Iterator& operator++() { ++value; return *this; }
603 604 605 606 607 608 609 610 611
    inline Iterator  operator++(int) { return Iterator(value++); }
    inline Iterator& operator--() { --value; return *this; }
    inline Iterator  operator--(int) { return Iterator(value--); }
    inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; }
    inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; }
    inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value + amount); }
    inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value - amount); }
    inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; }

Kenton Varda's avatar
Kenton Varda committed
612 613
    inline bool operator==(const Iterator& other) const { return value == other.value; }
    inline bool operator!=(const Iterator& other) const { return value != other.value; }
614 615 616 617
    inline bool operator<=(const Iterator& other) const { return value <= other.value; }
    inline bool operator>=(const Iterator& other) const { return value >= other.value; }
    inline bool operator< (const Iterator& other) const { return value <  other.value; }
    inline bool operator> (const Iterator& other) const { return value >  other.value; }
Kenton Varda's avatar
Kenton Varda committed
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

  private:
    T value;
  };

  inline Iterator begin() const { return Iterator(begin_); }
  inline Iterator end() const { return Iterator(end_); }

  inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; }

private:
  T begin_;
  T end_;
};

template <typename T>
634
inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); }
Kenton Varda's avatar
Kenton Varda committed
635 636 637 638 639 640
// Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end`
// (exclusive).  Example:
//
//     // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9.
//     for (int i: kj::range(1, 10)) { print(i); }

641 642 643 644 645 646 647 648 649
template <typename T>
inline constexpr Range<size_t> indices(T&& container) {
  // Shortcut for iterating over the indices of a container:
  //
  //     for (size_t i: kj::indices(myArray)) { handle(myArray[i]); }

  return range<size_t>(0, kj::size(container));
}

Kenton Varda's avatar
Kenton Varda committed
650 651 652 653 654 655 656 657 658 659
template <typename T>
class Repeat {
public:
  inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {}

  class Iterator {
  public:
    Iterator() = default;
    inline Iterator(const T& value, size_t index): value(value), index(index) {}

660 661
    inline const T&  operator* () const { return value; }
    inline const T&  operator[](ptrdiff_t index) const { return value; }
Kenton Varda's avatar
Kenton Varda committed
662
    inline Iterator& operator++() { ++index; return *this; }
663 664 665 666 667 668 669 670 671
    inline Iterator  operator++(int) { return Iterator(value, index++); }
    inline Iterator& operator--() { --index; return *this; }
    inline Iterator  operator--(int) { return Iterator(value, index--); }
    inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; }
    inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; }
    inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); }
    inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); }
    inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; }

Kenton Varda's avatar
Kenton Varda committed
672 673
    inline bool operator==(const Iterator& other) const { return index == other.index; }
    inline bool operator!=(const Iterator& other) const { return index != other.index; }
674 675 676 677
    inline bool operator<=(const Iterator& other) const { return index <= other.index; }
    inline bool operator>=(const Iterator& other) const { return index >= other.index; }
    inline bool operator< (const Iterator& other) const { return index <  other.index; }
    inline bool operator> (const Iterator& other) const { return index >  other.index; }
Kenton Varda's avatar
Kenton Varda committed
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

  private:
    T value;
    size_t index;
  };

  inline Iterator begin() const { return Iterator(value, 0); }
  inline Iterator end() const { return Iterator(value, count); }

  inline size_t size() const { return count; }

private:
  T value;
  size_t count;
};

template <typename T>
inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) {
  // Returns a fake iterable which contains `count` repeats of `value`.  Useful for e.g. creating
  // a bunch of spaces:  `kj::repeat(' ', indent * 2)`

  return Repeat<Decay<T>>(value, count);
}

702 703 704 705 706 707 708 709 710
// =======================================================================================
// Manually invoking constructors and destructors
//
// ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively.

// We want placement new, but we don't want to #include <new>.  operator new cannot be defined in
// a namespace, and defining it globally conflicts with the definition in <new>.  So we have to
// define a dummy type and an operator new that uses it.

711
namespace _ {  // private
712
struct PlacementNew {};
713
}  // namespace _ (private)
714 715
} // namespace kj

716
inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept {
717 718 719
  return __p;
}

720 721
inline void operator delete(void*, kj::_::PlacementNew, void* __p) noexcept {}

722 723 724 725
namespace kj {

template <typename T, typename... Params>
inline void ctor(T& location, Params&&... params) {
726
  new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
}

template <typename T>
inline void dtor(T& location) {
  location.~T();
}

// =======================================================================================
// Maybe
//
// Use in cases where you want to indicate that a value may be null.  Using Maybe<T&> instead of T*
// forces the caller to handle the null case in order to satisfy the compiler, thus reliably
// preventing null pointer dereferences at runtime.
//
// Maybe<T> can be implicitly constructed from T and from nullptr.  Additionally, it can be
// implicitly constructed from T*, in which case the pointer is checked for nullness at runtime.
// To read the value of a Maybe<T>, do:
//
//    KJ_IF_MAYBE(value, someFuncReturningMaybe()) {
//      doSomething(*value);
//    } else {
//      maybeWasNull();
//    }
//
// KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following
// block.  The variable will behave like a (guaranteed non-null) pointer to the Maybe's value,
// though it may or may not actually be a pointer.
//
// Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean
// indicating nullness.

template <typename T>
class Maybe;

761
namespace _ {  // private
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

template <typename T>
class NullableValue {
  // Class whose interface behaves much like T*, but actually contains an instance of T and a
  // boolean flag indicating nullness.

public:
  inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>())))
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, kj::mv(other.value));
    }
  }
  inline NullableValue(const NullableValue& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
781 782 783 784 785 786
  inline NullableValue(NullableValue& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
787
  inline ~NullableValue() noexcept(noexcept(instance<T&>().~T())) {
788 789 790 791 792 793 794 795 796 797 798 799
    if (isSet) {
      dtor(value);
    }
  }

  inline T& operator*() { return value; }
  inline const T& operator*() const { return value; }
  inline T* operator->() { return &value; }
  inline const T* operator->() const { return &value; }
  inline operator T*() { return isSet ? &value : nullptr; }
  inline operator const T*() const { return isSet ? &value : nullptr; }

800 801 802 803 804 805 806 807 808 809
  template <typename... Params>
  inline void emplace(Params&&... params) {
    if (isSet) {
      isSet = false;
      dtor(value);
    }
    ctor(value, kj::fwd<Params>(params)...);
    isSet = true;
  }

810 811 812 813 814 815
private:  // internal interface used by friends only
  inline NullableValue() noexcept: isSet(false) {}
  inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>())))
      : isSet(true) {
    ctor(value, kj::mv(t));
  }
816 817 818 819
  inline NullableValue(T& t)
      : isSet(true) {
    ctor(value, t);
  }
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
  inline NullableValue(const T& t)
      : isSet(true) {
    ctor(value, t);
  }
  inline NullableValue(const T* t)
      : isSet(t != nullptr) {
    if (isSet) ctor(value, *t);
  }
  template <typename U>
  inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>())))
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, kj::mv(other.value));
    }
  }
  template <typename U>
  inline NullableValue(const NullableValue<U>& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
  template <typename U>
  inline NullableValue(const NullableValue<U&>& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, *other.ptr);
    }
  }
  inline NullableValue(decltype(nullptr)): isSet(false) {}

  inline NullableValue& operator=(NullableValue&& other) {
    if (&other != this) {
853
      // Careful about throwing destructors/constructors here.
854
      if (isSet) {
855
        isSet = false;
856 857
        dtor(value);
      }
858
      if (other.isSet) {
859
        ctor(value, kj::mv(other.value));
860
        isSet = true;
861 862 863 864 865
      }
    }
    return *this;
  }

866 867
  inline NullableValue& operator=(NullableValue& other) {
    if (&other != this) {
868
      // Careful about throwing destructors/constructors here.
869
      if (isSet) {
870
        isSet = false;
871 872
        dtor(value);
      }
873
      if (other.isSet) {
874
        ctor(value, other.value);
875
        isSet = true;
876 877 878 879 880
      }
    }
    return *this;
  }

881 882
  inline NullableValue& operator=(const NullableValue& other) {
    if (&other != this) {
883
      // Careful about throwing destructors/constructors here.
884
      if (isSet) {
885
        isSet = false;
886 887
        dtor(value);
      }
888
      if (other.isSet) {
889
        ctor(value, other.value);
890
        isSet = true;
891 892 893 894 895 896 897 898 899 900
      }
    }
    return *this;
  }

  inline bool operator==(decltype(nullptr)) const { return !isSet; }
  inline bool operator!=(decltype(nullptr)) const { return isSet; }

private:
  bool isSet;
901 902 903 904 905 906 907 908

#if _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4624)
// Warns that the anonymous union has a deleted destructor when T is non-trivial. This warning
// seems broken.
#endif

909 910 911 912
  union {
    T value;
  };

913 914 915 916
#if _MSC_VER
#pragma warning(pop)
#endif

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
  friend class kj::Maybe<T>;
  template <typename U>
  friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe);
};

template <typename T>
inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); }
template <typename T>
inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; }

933 934 935 936
template <typename T>
inline T* readMaybe(T* ptr) { return ptr; }
// Allow KJ_IF_MAYBE to work on regular pointers.

937
}  // namespace _ (private)
938

939
#define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp))
940 941 942

template <typename T>
class Maybe {
943 944 945 946
  // A T, or nullptr.

  // IF YOU CHANGE THIS CLASS:  Note that there is a specialization of it in memory.h.

947 948 949
public:
  Maybe(): ptr(nullptr) {}
  Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {}
950
  Maybe(T& t): ptr(t) {}
951 952 953 954
  Maybe(const T& t): ptr(t) {}
  Maybe(const T* t) noexcept: ptr(t) {}
  Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {}
  Maybe(const Maybe& other): ptr(other.ptr) {}
955
  Maybe(Maybe& other): ptr(other.ptr) {}
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

  template <typename U>
  Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) {
    KJ_IF_MAYBE(val, kj::mv(other)) {
      ptr = *val;
    }
  }
  template <typename U>
  Maybe(const Maybe<U>& other) {
    KJ_IF_MAYBE(val, other) {
      ptr = *val;
    }
  }

  Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}

972 973 974 975 976 977 978 979
  template <typename... Params>
  inline void emplace(Params&&... params) {
    // Replace this Maybe's content with a new value constructed by passing the given parametrs to
    // T's constructor. This can be used to initialize a Maybe without copying or even moving a T.

    ptr.emplace(kj::fwd<Params>(params)...);
  }

980
  inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
981
  inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; }
982 983 984 985 986
  inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; }

  inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
  T& orDefault(T& defaultValue) {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }
  const T& orDefault(const T& defaultValue) const {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
  template <typename Func>
  auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }

  template <typename Func>
  auto map(Func&& f) const -> Maybe<decltype(f(instance<const T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }

  // TODO(someday):  Once it's safe to require GCC 4.8, use ref qualifiers to provide a version of
  //   map() that uses move semantics if *this is an rvalue.
1022 1023

private:
1024
  _::NullableValue<T> ptr;
1025 1026 1027 1028

  template <typename U>
  friend class Maybe;
  template <typename U>
1029
  friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe);
1030
  template <typename U>
1031
  friend U* _::readMaybe(Maybe<U>& maybe);
1032
  template <typename U>
1033
  friend const U* _::readMaybe(const Maybe<U>& maybe);
1034 1035 1036
};

template <typename T>
1037
class Maybe<T&>: public DisallowConstCopyIfNotConst<T> {
1038
public:
1039
  Maybe() noexcept: ptr(nullptr) {}
1040 1041 1042
  Maybe(T& t) noexcept: ptr(&t) {}
  Maybe(T* t) noexcept: ptr(t) {}

1043 1044 1045 1046 1047
  template <typename U>
  inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {}
  template <typename U>
  inline Maybe(const Maybe<const U&>& other) noexcept: ptr(other.ptr) {}
  inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
1048

1049 1050
  inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; }
  inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; }
1051 1052 1053 1054
  template <typename U>
  inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; }
  template <typename U>
  inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; }
1055 1056 1057 1058

  inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
  T& orDefault(T& defaultValue) {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }
  const T& orDefault(const T& defaultValue) const {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }

1074 1075 1076 1077 1078 1079 1080 1081
  template <typename Func>
  auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }
1082 1083 1084 1085 1086 1087 1088

private:
  T* ptr;

  template <typename U>
  friend class Maybe;
  template <typename U>
1089
  friend U* _::readMaybe(Maybe<U&>&& maybe);
1090
  template <typename U>
1091
  friend U* _::readMaybe(const Maybe<U&>& maybe);
1092 1093
};

1094 1095 1096 1097 1098 1099
// =======================================================================================
// ArrayPtr
//
// So common that we put it in common.h rather than array.h.

template <typename T>
1100
class ArrayPtr: public DisallowConstCopyIfNotConst<T> {
1101 1102 1103 1104 1105 1106 1107 1108
  // A pointer to an array.  Includes a size.  Like any pointer, it doesn't own the target data,
  // and passing by value only copies the pointer, not the target.

public:
  inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {}
  inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {}
  inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {}
  inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {}
1109
  inline KJ_CONSTEXPR() ArrayPtr(::std::initializer_list<RemoveConstOrDisable<T>> init)
1110
      : ptr(init.begin()), size_(init.size()) {}
1111

1112 1113 1114 1115
  template <size_t size>
  inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) {}
  // Construct an ArrayPtr from a native C-style array.

Kenton Varda's avatar
Kenton Varda committed
1116 1117 1118 1119
  inline operator ArrayPtr<const T>() const {
    return ArrayPtr<const T>(ptr, size_);
  }
  inline ArrayPtr<const T> asConst() const {
1120 1121 1122 1123
    return ArrayPtr<const T>(ptr, size_);
  }

  inline size_t size() const { return size_; }
1124 1125 1126 1127 1128
  inline const T& operator[](size_t index) const {
    KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
    return ptr[index];
  }
  inline T& operator[](size_t index) {
Kenton Varda's avatar
Kenton Varda committed
1129
    KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
1130 1131 1132
    return ptr[index];
  }

1133 1134 1135 1136 1137 1138 1139 1140
  inline T* begin() { return ptr; }
  inline T* end() { return ptr + size_; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(ptr + size_ - 1); }
  inline const T* begin() const { return ptr; }
  inline const T* end() const { return ptr + size_; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(ptr + size_ - 1); }
1141

1142 1143 1144 1145 1146
  inline ArrayPtr<const T> slice(size_t start, size_t end) const {
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
    return ArrayPtr<const T>(ptr + start, end - start);
  }
  inline ArrayPtr slice(size_t start, size_t end) {
Kenton Varda's avatar
Kenton Varda committed
1147
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
1148 1149 1150
    return ArrayPtr(ptr + start, end - start);
  }

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
  inline ArrayPtr<PropagateConst<T, byte>> asBytes() const {
    // Reinterpret the array as a byte array. This is explicitly legal under C++ aliasing
    // rules.
    return { reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_ * sizeof(T) };
  }
  inline ArrayPtr<PropagateConst<T, char>> asChars() const {
    // Reinterpret the array as a char array. This is explicitly legal under C++ aliasing
    // rules.
    return { reinterpret_cast<PropagateConst<T, char>*>(ptr), size_ * sizeof(T) };
  }

1162 1163
  inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
  inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
1164

Kenton Varda's avatar
Kenton Varda committed
1165 1166 1167 1168 1169 1170 1171 1172 1173
  inline bool operator==(const ArrayPtr& other) const {
    if (size_ != other.size_) return false;
    for (size_t i = 0; i < size_; i++) {
      if (ptr[i] != other[i]) return false;
    }
    return true;
  }
  inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); }

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
private:
  T* ptr;
  size_t size_;
};

template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) {
  // Use this function to construct ArrayPtrs without writing out the type name.
  return ArrayPtr<T>(ptr, size);
}

template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) {
  // Use this function to construct ArrayPtrs without writing out the type name.
  return ArrayPtr<T>(begin, end);
}

Kenton Varda's avatar
Kenton Varda committed
1191
// =======================================================================================
1192
// Casts
Kenton Varda's avatar
Kenton Varda committed
1193 1194

template <typename To, typename From>
1195 1196 1197
To implicitCast(From&& from) {
  // `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit.  Useful
  // for e.g. resolving ambiguous overloads without sacrificing type-safety.
Kenton Varda's avatar
Kenton Varda committed
1198 1199 1200 1201
  return kj::fwd<From>(from);
}

template <typename To, typename From>
1202
Maybe<To&> dynamicDowncastIfAvailable(From& from) {
Kenton Varda's avatar
Kenton Varda committed
1203 1204 1205 1206 1207 1208
  // If RTTI is disabled, always returns nullptr.  Otherwise, works like dynamic_cast.  Useful
  // in situations where dynamic_cast could allow an optimization, but isn't strictly necessary
  // for correctness.  It is highly recommended that you try to arrange all your dynamic_casts
  // this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface
  // design.

1209 1210 1211
  // Force a compile error if To is not a subtype of From.  Cross-casting is rare; if it is needed
  // we should have a separate cast function like dynamicCrosscastIfAvailable().
  if (false) {
1212
    kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
1213 1214
  }

Kenton Varda's avatar
Kenton Varda committed
1215 1216 1217
#if KJ_NO_RTTI
  return nullptr;
#else
1218
  return dynamic_cast<To*>(&from);
Kenton Varda's avatar
Kenton Varda committed
1219 1220 1221 1222
#endif
}

template <typename To, typename From>
1223
To& downcast(From& from) {
Kenton Varda's avatar
Kenton Varda committed
1224 1225 1226 1227 1228 1229
  // Down-cast a value to a sub-type, asserting that the cast is valid.  In opt mode this is a
  // static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify
  // that the value really has the requested type.

  // Force a compile error if To is not a subtype of From.
  if (false) {
1230
    kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
Kenton Varda's avatar
Kenton Varda committed
1231 1232 1233
  }

#if !KJ_NO_RTTI
1234
  KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type.");
Kenton Varda's avatar
Kenton Varda committed
1235 1236
#endif

1237
  return static_cast<To&>(from);
Kenton Varda's avatar
Kenton Varda committed
1238 1239
}

1240 1241 1242 1243 1244 1245 1246 1247
// =======================================================================================
// Defer

namespace _ {  // private

template <typename Func>
class Deferred {
public:
1248
  inline Deferred(Func func): func(func), canceled(false) {}
1249
  inline ~Deferred() noexcept(false) { if (!canceled) func(); }
1250 1251
  KJ_DISALLOW_COPY(Deferred);

Kenton Varda's avatar
Kenton Varda committed
1252
  // This move constructor is usually optimized away by the compiler.
1253
  inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) {
1254 1255
    other.canceled = true;
  }
1256 1257
private:
  Func func;
1258
  bool canceled;
1259 1260
};

Kenton Varda's avatar
Kenton Varda committed
1261 1262
}  // namespace _ (private)

1263
template <typename Func>
Kenton Varda's avatar
Kenton Varda committed
1264 1265 1266 1267 1268 1269 1270
_::Deferred<Decay<Func>> defer(Func&& func) {
  // Returns an object which will invoke the given functor in its destructor.  The object is not
  // copyable but is movable with the semantics you'd expect.  Since the return type is private,
  // you need to assign to an `auto` variable.
  //
  // The KJ_DEFER macro provides slightly more convenient syntax for the common case where you
  // want some code to run at function exit.
1271

Kenton Varda's avatar
Kenton Varda committed
1272 1273
  return _::Deferred<Decay<Func>>(kj::fwd<Func>(func));
}
1274

Kenton Varda's avatar
Kenton Varda committed
1275 1276
#define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;})
// Run the given code when the function exits, whether by return or exception.
1277

Kenton Varda's avatar
Kenton Varda committed
1278 1279 1280
}  // namespace kj

#endif  // KJ_COMMON_H_