common.h 41 KB
Newer Older
Kenton Varda's avatar
Kenton Varda committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Header that should be #included by everyone.
//
// This defines very simple utilities that are widely applicable.

#ifndef KJ_COMMON_H_
#define KJ_COMMON_H_

31
#ifndef KJ_NO_COMPILER_CHECK
32
#if __cplusplus < 201103L && !__CDT_PARSER__
Kenton Varda's avatar
Kenton Varda committed
33 34 35 36 37 38 39 40 41 42 43
  #error "This code requires C++11. Either your compiler does not support it or it is not enabled."
  #ifdef __GNUC__
    // Compiler claims compatibility with GCC, so presumably supports -std.
    #error "Pass -std=c++11 on the compiler command line to enable C++11."
  #endif
#endif

#ifdef __GNUC__
  #if __clang__
    #if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 2)
      #warning "This library requires at least Clang 3.2."
44 45 46 47
    #elif defined(__apple_build_version__) && __apple_build_version__ <= 4250028
      #warning "This library requires at least Clang 3.2.  XCode 4.6's Clang, which claims to be "\
               "version 4.2 (wat?), is actually built from some random SVN revision between 3.1 "\
               "and 3.2.  Unfortunately, it is insufficient for compiling this library.  You can "\
48 49 50
               "download the real Clang 3.2 (or newer) from the Clang web site.  Step-by-step "\
               "instructions can be found in Cap'n Proto's documentation: "\
               "http://kentonv.github.io/capnproto/install.html#clang_32_on_mac_osx"
51 52 53 54
    #elif __cplusplus >= 201103L && !__has_include(<initializer_list>)
      #warning "Your compiler supports C++11 but your C++ standard library does not.  If your "\
               "system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\
               "-stdlib=libc++ to your CXXFLAGS."
Kenton Varda's avatar
Kenton Varda committed
55 56 57 58 59 60
    #endif
  #else
    #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
      #warning "This library requires at least GCC 4.7."
    #endif
  #endif
Kenton Varda's avatar
Kenton Varda committed
61 62
#elif defined(_MSC_VER)
  #warning "As of June 2013, Visual Studio's C++11 support was hopelessly behind what is needed to compile this code."
63 64 65 66 67
#else
  #warning "I don't recognize your compiler.  As of this writing, Clang and GCC are the only "\
           "known compilers with enough C++11 support for this library.  "\
           "#define KJ_NO_COMPILER_CHECK to make this warning go away."
#endif
Kenton Varda's avatar
Kenton Varda committed
68 69
#endif

70 71 72
#include <stddef.h>
#include <initializer_list>

Kenton Varda's avatar
Kenton Varda committed
73 74 75 76 77 78 79 80 81 82
// =======================================================================================

namespace kj {

typedef unsigned int uint;
typedef unsigned char byte;

// =======================================================================================
// Common macros, especially for common yet compiler-specific features.

Kenton Varda's avatar
Kenton Varda committed
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
// Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific
// evidence to the contrary.  Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly
// to override these checks.
#ifdef __GNUC__
  #if !defined(KJ_NO_RTTI) && !__GXX_RTTI
    #define KJ_NO_RTTI 1
  #endif
  #if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS
    #define KJ_NO_EXCEPTIONS 1
  #endif
#elif defined(_MSC_VER)
  #if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI)
    #define KJ_NO_RTTI 1
  #endif
  #if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND)
    #define KJ_NO_EXCEPTIONS 1
99 100 101
  #endif
#endif

102 103 104 105
#if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG)
// Heuristically decide whether to enable debug mode.  If DEBUG or NDEBUG is defined, use that.
// Otherwise, fall back to checking whether optimization is enabled.
#if defined(DEBUG)
106
#define KJ_DEBUG
107 108 109 110 111 112 113
#elif defined(NDEBUG)
#define KJ_NDEBUG
#elif __OPTIMIZE__
#define KJ_NDEBUG
#else
#define KJ_DEBUG
#endif
114 115
#endif

Kenton Varda's avatar
Kenton Varda committed
116 117 118
#define KJ_DISALLOW_COPY(classname) \
  classname(const classname&) = delete; \
  classname& operator=(const classname&) = delete
Kenton Varda's avatar
Kenton Varda committed
119
// Deletes the implicit copy constructor and assignment operator.
Kenton Varda's avatar
Kenton Varda committed
120

121 122
#define KJ_LIKELY(condition) __builtin_expect(condition, true)
#define KJ_UNLIKELY(condition) __builtin_expect(condition, false)
Kenton Varda's avatar
Kenton Varda committed
123 124 125 126
// Branch prediction macros.  Evaluates to the condition given, but also tells the compiler that we
// expect the condition to be true/false enough of the time that it's worth hard-coding branch
// prediction.

127
#if defined(KJ_DEBUG) || __NO_INLINE__
Kenton Varda's avatar
Kenton Varda committed
128 129
#define KJ_ALWAYS_INLINE(prototype) inline prototype
// Don't force inline in debug mode.
130 131 132
#else
#define KJ_ALWAYS_INLINE(prototype) inline prototype __attribute__((always_inline))
// Force a function to always be inlined.  Apply only to the prototype, not to the definition.
Kenton Varda's avatar
Kenton Varda committed
133 134
#endif

135 136
#define KJ_NORETURN __attribute__((noreturn))
#define KJ_UNUSED __attribute__((unused))
Kenton Varda's avatar
Kenton Varda committed
137

138 139
#define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result))

Kenton Varda's avatar
Kenton Varda committed
140
#if __clang__
141
#define KJ_UNUSED_MEMBER __attribute__((unused))
Kenton Varda's avatar
Kenton Varda committed
142 143
// Inhibits "unused" warning for member variables.  Only Clang produces such a warning, while GCC
// complains if the attribute is set on members.
Kenton Varda's avatar
Kenton Varda committed
144
#else
Kenton Varda's avatar
Kenton Varda committed
145
#define KJ_UNUSED_MEMBER
Kenton Varda's avatar
Kenton Varda committed
146 147
#endif

148
namespace _ {  // private
Kenton Varda's avatar
Kenton Varda committed
149

Kenton Varda's avatar
Kenton Varda committed
150
void inlineRequireFailure(
Kenton Varda's avatar
Kenton Varda committed
151 152
    const char* file, int line, const char* expectation, const char* macroArgs,
    const char* message = nullptr) KJ_NORETURN;
153 154 155
void inlineAssertFailure(
    const char* file, int line, const char* expectation, const char* macroArgs,
    const char* message = nullptr) KJ_NORETURN;
Kenton Varda's avatar
Kenton Varda committed
156

Kenton Varda's avatar
Kenton Varda committed
157 158
void unreachable() KJ_NORETURN;

159
}  // namespace _ (private)
Kenton Varda's avatar
Kenton Varda committed
160

161
#ifdef KJ_DEBUG
Kenton Varda's avatar
Kenton Varda committed
162
#define KJ_IREQUIRE(condition, ...) \
163
    if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
Kenton Varda's avatar
Kenton Varda committed
164
        __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
165
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users.  Used to
Kenton Varda's avatar
Kenton Varda committed
166
// check preconditions inside inline methods.  KJ_IREQUIRE is particularly useful in that
Kenton Varda's avatar
Kenton Varda committed
167 168
// it will be enabled depending on whether the application is compiled in debug mode rather than
// whether libkj is.
169 170 171 172 173 174

#define KJ_IASSERT(condition, ...) \
    if (KJ_LIKELY(condition)); else ::kj::_::inlineAssertFailure( \
        __FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
// Version of KJ_DASSERT() which is safe to use in headers that are #included by users.  Used to
// check state inside inline and templated methods.
175 176
#else
#define KJ_IREQUIRE(condition, ...)
177
#define KJ_IASSERT(condition, ...)
Kenton Varda's avatar
Kenton Varda committed
178 179
#endif

Kenton Varda's avatar
Kenton Varda committed
180 181 182 183 184 185 186 187 188 189
#define KJ_UNREACHABLE ::kj::_::unreachable();
// Put this on code paths that cannot be reached to suppress compiler warnings about missing
// returns.

#if __clang__
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT
#else
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE
#endif

Kenton Varda's avatar
Kenton Varda committed
190 191 192 193 194 195 196 197 198 199 200 201
// #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack)
//
// Allocate an array, preferably on the stack, unless it is too big.  On GCC this will use
// variable-sized arrays.  For other compilers we could just use a fixed-size array.  `minStack`
// is the stack array size to use if variable-width arrays are not supported.  `maxStack` is the
// maximum stack array size if variable-width arrays *are* supported.
#if __clang__
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
  size_t name##_size = (size); \
  bool name##_isOnStack = name##_size <= (minStack); \
  type name##_stack[minStack]; \
  ::kj::Array<type> name##_heap = name##_isOnStack ? \
Kenton Varda's avatar
Kenton Varda committed
202
      nullptr : kj::heapArray<type>(name##_size); \
Kenton Varda's avatar
Kenton Varda committed
203 204 205 206 207 208 209 210
  ::kj::ArrayPtr<type> name = name##_isOnStack ? \
      kj::arrayPtr(name##_stack, name##_size) : name##_heap
#else
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
  size_t name##_size = (size); \
  bool name##_isOnStack = name##_size <= (maxStack); \
  type name##_stack[name##_isOnStack ? size : 0]; \
  ::kj::Array<type> name##_heap = name##_isOnStack ? \
Kenton Varda's avatar
Kenton Varda committed
211
      nullptr : kj::heapArray<type>(name##_size); \
Kenton Varda's avatar
Kenton Varda committed
212 213 214 215
  ::kj::ArrayPtr<type> name = name##_isOnStack ? \
      kj::arrayPtr(name##_stack, name##_size) : name##_heap
#endif

216 217 218 219 220 221
#define KJ_CONCAT_(x, y) x##y
#define KJ_CONCAT(x, y) KJ_CONCAT_(x, y)
#define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__)
// Create a unique identifier name.  We use concatenate __LINE__ rather than __COUNTER__ so that
// the name can be used multiple times in the same macro.

Kenton Varda's avatar
Kenton Varda committed
222 223 224
// =======================================================================================
// Template metaprogramming helpers.

225 226 227 228
template <typename T> struct NoInfer_ { typedef T Type; };
template <typename T> using NoInfer = typename NoInfer_<T>::Type;
// Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of
// the type based on the parameter value.
Kenton Varda's avatar
Kenton Varda committed
229

230 231 232 233
template <typename T> struct RemoveConst_ { typedef T Type; };
template <typename T> struct RemoveConst_<const T> { typedef T Type; };
template <typename T> using RemoveConst = typename RemoveConst_<T>::Type;

Kenton Varda's avatar
Kenton Varda committed
234 235 236 237 238
template <typename> struct IsLvalueReference_ { static constexpr bool value = false; };
template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; };
template <typename T>
inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; }

Kenton Varda's avatar
Kenton Varda committed
239 240 241 242
template <typename T> struct Decay_ { typedef T Type; };
template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; };
243 244 245
template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; };
template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; };
template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; };
Kenton Varda's avatar
Kenton Varda committed
246 247 248 249
template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; };
template <typename T> using Decay = typename Decay_<T>::Type;

Kenton Varda's avatar
Kenton Varda committed
250 251 252 253 254 255 256 257
template <bool b> struct EnableIf_;
template <> struct EnableIf_<true> { typedef void Type; };
template <bool b> using EnableIf = typename EnableIf_<b>::Type;
// Use like:
//
//     template <typename T, typename = EnableIf<isValid<T>()>
//     void func(T&& t);

Kenton Varda's avatar
Kenton Varda committed
258 259 260 261 262
template <typename T>
T instance() noexcept;
// Like std::declval, but doesn't transform T into an rvalue reference.  If you want that, specify
// instance<T&&>().

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
struct DisallowConstCopy {
  // Inherit from this, or declare a member variable of this type, to prevent the class from being
  // copyable from a const reference -- instead, it will only be copyable from non-const references.
  // This is useful for enforcing transitive constness of contained pointers.
  //
  // For example, say you have a type T which contains a pointer.  T has non-const methods which
  // modify the value at that pointer, but T's const methods are designed to allow reading only.
  // Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and
  // then use it to modify the pointed-to value.  However, if T inherits DisallowConstCopy, then
  // callers will only be able to copy non-const instances of T.  Ideally, there is some
  // parallel type ImmutableT which is like a version of T that only has const methods, and can
  // be copied from a const T.
  //
  // Note that due to C++ rules about implicit copy constructors and assignment operators, any
  // type that contains or inherits from a type that disallows const copies will also automatically
  // disallow const copies.  Hey, cool, that's exactly what we want.

  DisallowConstCopy() = default;
  DisallowConstCopy(DisallowConstCopy&);
  DisallowConstCopy(DisallowConstCopy&&) = default;
  DisallowConstCopy& operator=(DisallowConstCopy&);
  DisallowConstCopy& operator=(DisallowConstCopy&&) = default;
};

// Apparently these cannot be defaulted inside the class due to some obscure C++ rule.
inline DisallowConstCopy::DisallowConstCopy(DisallowConstCopy&) = default;
inline DisallowConstCopy& DisallowConstCopy::operator=(DisallowConstCopy&) = default;

template <typename T>
struct DisallowConstCopyIfNotConst: public DisallowConstCopy {
  // Inherit from this when implementing a template that contains a pointer to T and which should
  // enforce transitive constness.  If T is a const type, this has no effect.  Otherwise, it is
  // an alias for DisallowConstCopy.
};

template <typename T>
struct DisallowConstCopyIfNotConst<const T> {};

301 302 303 304
template <typename T> struct IsConst_ { static constexpr bool value = false; };
template <typename T> struct IsConst_<const T> { static constexpr bool value = true; };
template <typename T> constexpr bool isConst() { return IsConst_<T>::value; }

305 306 307 308 309 310 311
template <typename T> struct EnableIfNotConst_ { typedef T Type; };
template <typename T> struct EnableIfNotConst_<const T>;
template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type;

template <typename T> struct EnableIfConst_;
template <typename T> struct EnableIfConst_<const T> { typedef T Type; };
template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type;
Kenton Varda's avatar
Kenton Varda committed
312

313 314 315
template <typename T> struct RemoveConstOrDisable_ { struct Type; };
template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; };
template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type;
316

317 318 319 320
template <typename T> struct IsReference_ { static constexpr bool value = false; };
template <typename T> struct IsReference_<T&> { static constexpr bool value = true; };
template <typename T> constexpr bool isReference() { return IsReference_<T>::value; }

Kenton Varda's avatar
Kenton Varda committed
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
namespace _ {  // private

template <typename T>
T refIfLvalue(T&&);

}  // namespace _ (private)

#define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp))
// Like decltype(exp), but if exp is an lvalue, produces a reference type.
//
//     int i;
//     decltype(i) i1(i);                         // i1 has type int.
//     KJ_DECLTYPE_REF(i + 1) i2(i + 1);          // i2 has type int.
//     KJ_DECLTYPE_REF(i) i3(i);                  // i3 has type int&.
//     KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i));  // i4 has type int.

337 338 339 340 341 342 343 344 345 346 347
template <typename T>
struct CanConvert_ {
  static int sfinae(T);
  static bool sfinae(...);
};

template <typename T, typename U>
constexpr bool canConvert() {
  return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int);
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
#if __clang__
template <typename T>
constexpr bool canMemcpy() {
  // Returns true if T can be copied using memcpy instead of using the copy constructor or
  // assignment operator.

  // Clang unhelpfully defines __has_trivial_{copy,assign}(T) to be true if the copy constructor /
  // assign operator are deleted, on the basis that a strict reading of the definition of "trivial"
  // according to the standard says that deleted functions are in fact trivial.  Meanwhile Clang
  // provides these admittedly-better intrinsics, but GCC does not.
  return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&);
}
#else
template <typename T>
constexpr bool canMemcpy() {
  // Returns true if T can be copied using memcpy instead of using the copy constructor or
  // assignment operator.

  // GCC defines these to mean what we want them to mean.
  return __has_trivial_copy(T) && __has_trivial_assign(T);
}
#endif

Kenton Varda's avatar
Kenton Varda committed
371 372 373 374 375 376 377 378 379
// =======================================================================================
// Equivalents to std::move() and std::forward(), since these are very commonly needed and the
// std header <utility> pulls in lots of other stuff.
//
// We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used
// that the cost of typing more letters outweighs the cost of being slightly harder to understand
// when first encountered.

template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); }
380
template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); }
Kenton Varda's avatar
Kenton Varda committed
381

382 383 384 385
template<typename T> constexpr T cp(T& t) noexcept { return t; }
template<typename T> constexpr T cp(const T& t) noexcept { return t; }
// Useful to force a copy, particularly to pass into a function that expects T&&.

386
template <typename T, typename U>
387
inline constexpr auto min(T&& a, U&& b) -> decltype(a < b ? a : b) { return a < b ? a : b; }
388
template <typename T, typename U>
389
inline constexpr auto max(T&& a, U&& b) -> decltype(a > b ? a : b) { return a > b ? a : b; }
390

391 392 393 394 395 396 397
template <typename T, size_t s>
inline constexpr size_t size(T (&arr)[s]) { return s; }
template <typename T>
inline constexpr size_t size(T&& arr) { return arr.size(); }
// Returns the size of the parameter, whether the parameter is a regular C array or a container
// with a `.size()` method.

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
class MaxValue_ {
private:
  template <typename T>
  inline constexpr T maxSigned() const {
    return (1ull << (sizeof(T) * 8 - 1)) - 1;
  }
  template <typename T>
  inline constexpr T maxUnsigned() const {
    return ~static_cast<T>(0u);
  }

public:
#define _kJ_HANDLE_TYPE(T) \
  inline constexpr operator   signed T() const { return MaxValue_::maxSigned  <  signed T>(); } \
  inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); }
  _kJ_HANDLE_TYPE(char)
  _kJ_HANDLE_TYPE(short)
  _kJ_HANDLE_TYPE(int)
  _kJ_HANDLE_TYPE(long)
  _kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE
Kenton Varda's avatar
Kenton Varda committed
419 420 421 422 423 424 425

  inline constexpr operator char() const {
    // `char` is different from both `signed char` and `unsigned char`, and may be signed or
    // unsigned on different platforms.  Ugh.
    return char(-1) < 0 ? MaxValue_::maxSigned<char>()
                        : MaxValue_::maxUnsigned<char>();
  }
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
};

class MinValue_ {
private:
  template <typename T>
  inline constexpr T minSigned() const {
    return 1ull << (sizeof(T) * 8 - 1);
  }
  template <typename T>
  inline constexpr T minUnsigned() const {
    return 0u;
  }

public:
#define _kJ_HANDLE_TYPE(T) \
  inline constexpr operator   signed T() const { return MinValue_::minSigned  <  signed T>(); } \
  inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); }
  _kJ_HANDLE_TYPE(char)
  _kJ_HANDLE_TYPE(short)
  _kJ_HANDLE_TYPE(int)
  _kJ_HANDLE_TYPE(long)
  _kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE
Kenton Varda's avatar
Kenton Varda committed
449 450 451 452 453 454 455

  inline constexpr operator char() const {
    // `char` is different from both `signed char` and `unsigned char`, and may be signed or
    // unsigned on different platforms.  Ugh.
    return char(-1) < 0 ? MinValue_::minSigned<char>()
                        : MinValue_::minUnsigned<char>();
  }
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
};

static constexpr MaxValue_ maxValue = MaxValue_();
// A special constant which, when cast to an integer type, takes on the maximum possible value of
// that type.  This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.

static constexpr MinValue_ minValue = MinValue_();
// A special constant which, when cast to an integer type, takes on the minimum possible value
// of that type.  This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.

472 473
inline constexpr float inf() { return __builtin_huge_valf(); }
inline constexpr float nan() { return __builtin_nanf(""); }
474

Kenton Varda's avatar
Kenton Varda committed
475 476 477 478 479 480 481 482 483 484 485 486 487
// =======================================================================================
// Useful fake containers

template <typename T>
class Range {
public:
  inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {}

  class Iterator {
  public:
    Iterator() = default;
    inline Iterator(const T& value): value(value) {}

488 489
    inline const T&  operator* () const { return value; }
    inline const T&  operator[](size_t index) const { return value + index; }
Kenton Varda's avatar
Kenton Varda committed
490
    inline Iterator& operator++() { ++value; return *this; }
491 492 493 494 495 496 497 498 499
    inline Iterator  operator++(int) { return Iterator(value++); }
    inline Iterator& operator--() { --value; return *this; }
    inline Iterator  operator--(int) { return Iterator(value--); }
    inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; }
    inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; }
    inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value + amount); }
    inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value - amount); }
    inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; }

Kenton Varda's avatar
Kenton Varda committed
500 501
    inline bool operator==(const Iterator& other) const { return value == other.value; }
    inline bool operator!=(const Iterator& other) const { return value != other.value; }
502 503 504 505
    inline bool operator<=(const Iterator& other) const { return value <= other.value; }
    inline bool operator>=(const Iterator& other) const { return value >= other.value; }
    inline bool operator< (const Iterator& other) const { return value <  other.value; }
    inline bool operator> (const Iterator& other) const { return value >  other.value; }
Kenton Varda's avatar
Kenton Varda committed
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

  private:
    T value;
  };

  inline Iterator begin() const { return Iterator(begin_); }
  inline Iterator end() const { return Iterator(end_); }

  inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; }

private:
  T begin_;
  T end_;
};

template <typename T>
522
inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); }
Kenton Varda's avatar
Kenton Varda committed
523 524 525 526 527 528
// Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end`
// (exclusive).  Example:
//
//     // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9.
//     for (int i: kj::range(1, 10)) { print(i); }

529 530 531 532 533 534 535 536 537
template <typename T>
inline constexpr Range<size_t> indices(T&& container) {
  // Shortcut for iterating over the indices of a container:
  //
  //     for (size_t i: kj::indices(myArray)) { handle(myArray[i]); }

  return range<size_t>(0, kj::size(container));
}

Kenton Varda's avatar
Kenton Varda committed
538 539 540 541 542 543 544 545 546 547
template <typename T>
class Repeat {
public:
  inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {}

  class Iterator {
  public:
    Iterator() = default;
    inline Iterator(const T& value, size_t index): value(value), index(index) {}

548 549
    inline const T&  operator* () const { return value; }
    inline const T&  operator[](ptrdiff_t index) const { return value; }
Kenton Varda's avatar
Kenton Varda committed
550
    inline Iterator& operator++() { ++index; return *this; }
551 552 553 554 555 556 557 558 559
    inline Iterator  operator++(int) { return Iterator(value, index++); }
    inline Iterator& operator--() { --index; return *this; }
    inline Iterator  operator--(int) { return Iterator(value, index--); }
    inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; }
    inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; }
    inline Iterator  operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); }
    inline Iterator  operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); }
    inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; }

Kenton Varda's avatar
Kenton Varda committed
560 561
    inline bool operator==(const Iterator& other) const { return index == other.index; }
    inline bool operator!=(const Iterator& other) const { return index != other.index; }
562 563 564 565
    inline bool operator<=(const Iterator& other) const { return index <= other.index; }
    inline bool operator>=(const Iterator& other) const { return index >= other.index; }
    inline bool operator< (const Iterator& other) const { return index <  other.index; }
    inline bool operator> (const Iterator& other) const { return index >  other.index; }
Kenton Varda's avatar
Kenton Varda committed
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

  private:
    T value;
    size_t index;
  };

  inline Iterator begin() const { return Iterator(value, 0); }
  inline Iterator end() const { return Iterator(value, count); }

  inline size_t size() const { return count; }

private:
  T value;
  size_t count;
};

template <typename T>
inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) {
  // Returns a fake iterable which contains `count` repeats of `value`.  Useful for e.g. creating
  // a bunch of spaces:  `kj::repeat(' ', indent * 2)`

  return Repeat<Decay<T>>(value, count);
}

590 591 592 593 594 595 596 597 598
// =======================================================================================
// Manually invoking constructors and destructors
//
// ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively.

// We want placement new, but we don't want to #include <new>.  operator new cannot be defined in
// a namespace, and defining it globally conflicts with the definition in <new>.  So we have to
// define a dummy type and an operator new that uses it.

599
namespace _ {  // private
600
struct PlacementNew {};
601
}  // namespace _ (private)
602 603
} // namespace kj

604
inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept {
605 606 607 608 609 610 611
  return __p;
}

namespace kj {

template <typename T, typename... Params>
inline void ctor(T& location, Params&&... params) {
612
  new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
}

template <typename T>
inline void dtor(T& location) {
  location.~T();
}

// =======================================================================================
// Maybe
//
// Use in cases where you want to indicate that a value may be null.  Using Maybe<T&> instead of T*
// forces the caller to handle the null case in order to satisfy the compiler, thus reliably
// preventing null pointer dereferences at runtime.
//
// Maybe<T> can be implicitly constructed from T and from nullptr.  Additionally, it can be
// implicitly constructed from T*, in which case the pointer is checked for nullness at runtime.
// To read the value of a Maybe<T>, do:
//
//    KJ_IF_MAYBE(value, someFuncReturningMaybe()) {
//      doSomething(*value);
//    } else {
//      maybeWasNull();
//    }
//
// KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following
// block.  The variable will behave like a (guaranteed non-null) pointer to the Maybe's value,
// though it may or may not actually be a pointer.
//
// Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean
// indicating nullness.

template <typename T>
class Maybe;

647
namespace _ {  // private
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

template <typename T>
class NullableValue {
  // Class whose interface behaves much like T*, but actually contains an instance of T and a
  // boolean flag indicating nullness.

public:
  inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>())))
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, kj::mv(other.value));
    }
  }
  inline NullableValue(const NullableValue& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
667 668 669 670 671 672
  inline NullableValue(NullableValue& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
673
  inline ~NullableValue() noexcept(noexcept(instance<T&>().~T())) {
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    if (isSet) {
      dtor(value);
    }
  }

  inline T& operator*() { return value; }
  inline const T& operator*() const { return value; }
  inline T* operator->() { return &value; }
  inline const T* operator->() const { return &value; }
  inline operator T*() { return isSet ? &value : nullptr; }
  inline operator const T*() const { return isSet ? &value : nullptr; }

private:  // internal interface used by friends only
  inline NullableValue() noexcept: isSet(false) {}
  inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>())))
      : isSet(true) {
    ctor(value, kj::mv(t));
  }
692 693 694 695
  inline NullableValue(T& t)
      : isSet(true) {
    ctor(value, t);
  }
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
  inline NullableValue(const T& t)
      : isSet(true) {
    ctor(value, t);
  }
  inline NullableValue(const T* t)
      : isSet(t != nullptr) {
    if (isSet) ctor(value, *t);
  }
  template <typename U>
  inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>())))
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, kj::mv(other.value));
    }
  }
  template <typename U>
  inline NullableValue(const NullableValue<U>& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, other.value);
    }
  }
  template <typename U>
  inline NullableValue(const NullableValue<U&>& other)
      : isSet(other.isSet) {
    if (isSet) {
      ctor(value, *other.ptr);
    }
  }
  inline NullableValue(decltype(nullptr)): isSet(false) {}

  inline NullableValue& operator=(NullableValue&& other) {
    if (&other != this) {
729
      // Careful about throwing destructors/constructors here.
730
      if (isSet) {
731
        isSet = false;
732 733
        dtor(value);
      }
734
      if (other.isSet) {
735
        ctor(value, kj::mv(other.value));
736
        isSet = true;
737 738 739 740 741
      }
    }
    return *this;
  }

742 743
  inline NullableValue& operator=(NullableValue& other) {
    if (&other != this) {
744
      // Careful about throwing destructors/constructors here.
745
      if (isSet) {
746
        isSet = false;
747 748
        dtor(value);
      }
749
      if (other.isSet) {
750
        ctor(value, other.value);
751
        isSet = true;
752 753 754 755 756
      }
    }
    return *this;
  }

757 758
  inline NullableValue& operator=(const NullableValue& other) {
    if (&other != this) {
759
      // Careful about throwing destructors/constructors here.
760
      if (isSet) {
761
        isSet = false;
762 763
        dtor(value);
      }
764
      if (other.isSet) {
765
        ctor(value, other.value);
766
        isSet = true;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
      }
    }
    return *this;
  }

  inline bool operator==(decltype(nullptr)) const { return !isSet; }
  inline bool operator!=(decltype(nullptr)) const { return isSet; }

private:
  bool isSet;
  union {
    T value;
  };

  friend class kj::Maybe<T>;
  template <typename U>
  friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe);
};

template <typename T>
inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); }
template <typename T>
inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; }

797 798 799 800
template <typename T>
inline T* readMaybe(T* ptr) { return ptr; }
// Allow KJ_IF_MAYBE to work on regular pointers.

801
}  // namespace _ (private)
802

803
#define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp))
804 805 806

template <typename T>
class Maybe {
807 808 809 810
  // A T, or nullptr.

  // IF YOU CHANGE THIS CLASS:  Note that there is a specialization of it in memory.h.

811 812 813
public:
  Maybe(): ptr(nullptr) {}
  Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {}
814
  Maybe(T& t): ptr(t) {}
815 816 817 818
  Maybe(const T& t): ptr(t) {}
  Maybe(const T* t) noexcept: ptr(t) {}
  Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {}
  Maybe(const Maybe& other): ptr(other.ptr) {}
819
  Maybe(Maybe& other): ptr(other.ptr) {}
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

  template <typename U>
  Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) {
    KJ_IF_MAYBE(val, kj::mv(other)) {
      ptr = *val;
    }
  }
  template <typename U>
  Maybe(const Maybe<U>& other) {
    KJ_IF_MAYBE(val, other) {
      ptr = *val;
    }
  }

  Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}

  inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
837
  inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; }
838 839 840 841 842
  inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; }

  inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
  T& orDefault(T& defaultValue) {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }
  const T& orDefault(const T& defaultValue) const {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
  template <typename Func>
  auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }

  template <typename Func>
  auto map(Func&& f) const -> Maybe<decltype(f(instance<const T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }

  // TODO(someday):  Once it's safe to require GCC 4.8, use ref qualifiers to provide a version of
  //   map() that uses move semantics if *this is an rvalue.
878 879

private:
880
  _::NullableValue<T> ptr;
881 882 883 884

  template <typename U>
  friend class Maybe;
  template <typename U>
885
  friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe);
886
  template <typename U>
887
  friend U* _::readMaybe(Maybe<U>& maybe);
888
  template <typename U>
889
  friend const U* _::readMaybe(const Maybe<U>& maybe);
890 891 892
};

template <typename T>
893
class Maybe<T&>: public DisallowConstCopyIfNotConst<T> {
894
public:
895
  Maybe() noexcept: ptr(nullptr) {}
896 897 898
  Maybe(T& t) noexcept: ptr(&t) {}
  Maybe(T* t) noexcept: ptr(t) {}

899 900 901 902 903
  template <typename U>
  inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {}
  template <typename U>
  inline Maybe(const Maybe<const U&>& other) noexcept: ptr(other.ptr) {}
  inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
904

905 906
  inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; }
  inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; }
907 908 909 910
  template <typename U>
  inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; }
  template <typename U>
  inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; }
911 912 913 914

  inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
  T& orDefault(T& defaultValue) {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }
  const T& orDefault(const T& defaultValue) const {
    if (ptr == nullptr) {
      return defaultValue;
    } else {
      return *ptr;
    }
  }

930 931 932 933 934 935 936 937
  template <typename Func>
  auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
    if (ptr == nullptr) {
      return nullptr;
    } else {
      return f(*ptr);
    }
  }
938 939 940 941 942 943 944

private:
  T* ptr;

  template <typename U>
  friend class Maybe;
  template <typename U>
945
  friend U* _::readMaybe(Maybe<U&>&& maybe);
946
  template <typename U>
947
  friend U* _::readMaybe(const Maybe<U&>& maybe);
948 949
};

950 951 952 953 954 955
// =======================================================================================
// ArrayPtr
//
// So common that we put it in common.h rather than array.h.

template <typename T>
956
class ArrayPtr: public DisallowConstCopyIfNotConst<T> {
957 958 959 960 961 962 963 964
  // A pointer to an array.  Includes a size.  Like any pointer, it doesn't own the target data,
  // and passing by value only copies the pointer, not the target.

public:
  inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {}
  inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {}
  inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {}
  inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {}
965 966
  inline constexpr ArrayPtr(std::initializer_list<RemoveConstOrDisable<T>> init)
      : ptr(init.begin()), size_(init.size()) {}
967

968 969 970 971
  template <size_t size>
  inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) {}
  // Construct an ArrayPtr from a native C-style array.

Kenton Varda's avatar
Kenton Varda committed
972 973 974 975
  inline operator ArrayPtr<const T>() const {
    return ArrayPtr<const T>(ptr, size_);
  }
  inline ArrayPtr<const T> asConst() const {
976 977 978 979
    return ArrayPtr<const T>(ptr, size_);
  }

  inline size_t size() const { return size_; }
980 981 982 983 984
  inline const T& operator[](size_t index) const {
    KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
    return ptr[index];
  }
  inline T& operator[](size_t index) {
Kenton Varda's avatar
Kenton Varda committed
985
    KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
986 987 988
    return ptr[index];
  }

989 990 991 992 993 994 995 996
  inline T* begin() { return ptr; }
  inline T* end() { return ptr + size_; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(ptr + size_ - 1); }
  inline const T* begin() const { return ptr; }
  inline const T* end() const { return ptr + size_; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(ptr + size_ - 1); }
997

998 999 1000 1001 1002
  inline ArrayPtr<const T> slice(size_t start, size_t end) const {
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
    return ArrayPtr<const T>(ptr + start, end - start);
  }
  inline ArrayPtr slice(size_t start, size_t end) {
Kenton Varda's avatar
Kenton Varda committed
1003
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
1004 1005 1006
    return ArrayPtr(ptr + start, end - start);
  }

1007 1008
  inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
  inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
1009

Kenton Varda's avatar
Kenton Varda committed
1010 1011 1012 1013 1014 1015 1016 1017 1018
  inline bool operator==(const ArrayPtr& other) const {
    if (size_ != other.size_) return false;
    for (size_t i = 0; i < size_; i++) {
      if (ptr[i] != other[i]) return false;
    }
    return true;
  }
  inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); }

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
private:
  T* ptr;
  size_t size_;
};

template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) {
  // Use this function to construct ArrayPtrs without writing out the type name.
  return ArrayPtr<T>(ptr, size);
}

template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) {
  // Use this function to construct ArrayPtrs without writing out the type name.
  return ArrayPtr<T>(begin, end);
}

Kenton Varda's avatar
Kenton Varda committed
1036
// =======================================================================================
1037
// Casts
Kenton Varda's avatar
Kenton Varda committed
1038 1039

template <typename To, typename From>
1040 1041 1042
To implicitCast(From&& from) {
  // `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit.  Useful
  // for e.g. resolving ambiguous overloads without sacrificing type-safety.
Kenton Varda's avatar
Kenton Varda committed
1043 1044 1045 1046
  return kj::fwd<From>(from);
}

template <typename To, typename From>
1047
Maybe<To&> dynamicDowncastIfAvailable(From& from) {
Kenton Varda's avatar
Kenton Varda committed
1048 1049 1050 1051 1052 1053
  // If RTTI is disabled, always returns nullptr.  Otherwise, works like dynamic_cast.  Useful
  // in situations where dynamic_cast could allow an optimization, but isn't strictly necessary
  // for correctness.  It is highly recommended that you try to arrange all your dynamic_casts
  // this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface
  // design.

1054 1055 1056
  // Force a compile error if To is not a subtype of From.  Cross-casting is rare; if it is needed
  // we should have a separate cast function like dynamicCrosscastIfAvailable().
  if (false) {
1057
    kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
1058 1059
  }

Kenton Varda's avatar
Kenton Varda committed
1060 1061 1062
#if KJ_NO_RTTI
  return nullptr;
#else
1063
  return dynamic_cast<To*>(&from);
Kenton Varda's avatar
Kenton Varda committed
1064 1065 1066 1067
#endif
}

template <typename To, typename From>
1068
To& downcast(From& from) {
Kenton Varda's avatar
Kenton Varda committed
1069 1070 1071 1072 1073 1074
  // Down-cast a value to a sub-type, asserting that the cast is valid.  In opt mode this is a
  // static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify
  // that the value really has the requested type.

  // Force a compile error if To is not a subtype of From.
  if (false) {
1075
    kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
Kenton Varda's avatar
Kenton Varda committed
1076 1077 1078
  }

#if !KJ_NO_RTTI
1079
  KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type.");
Kenton Varda's avatar
Kenton Varda committed
1080 1081
#endif

1082
  return static_cast<To&>(from);
Kenton Varda's avatar
Kenton Varda committed
1083 1084
}

1085 1086 1087 1088 1089 1090 1091 1092
// =======================================================================================
// Defer

namespace _ {  // private

template <typename Func>
class Deferred {
public:
1093 1094 1095 1096
  inline Deferred(Func func): func(func), canceled(false) {}
  inline ~Deferred() { if (!canceled) func(); }
  KJ_DISALLOW_COPY(Deferred);

Kenton Varda's avatar
Kenton Varda committed
1097
  // This move constructor is usually optimized away by the compiler.
1098
  inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) {
1099 1100
    other.canceled = true;
  }
1101 1102
private:
  Func func;
1103
  bool canceled;
1104 1105
};

Kenton Varda's avatar
Kenton Varda committed
1106 1107
}  // namespace _ (private)

1108
template <typename Func>
Kenton Varda's avatar
Kenton Varda committed
1109 1110 1111 1112 1113 1114 1115
_::Deferred<Decay<Func>> defer(Func&& func) {
  // Returns an object which will invoke the given functor in its destructor.  The object is not
  // copyable but is movable with the semantics you'd expect.  Since the return type is private,
  // you need to assign to an `auto` variable.
  //
  // The KJ_DEFER macro provides slightly more convenient syntax for the common case where you
  // want some code to run at function exit.
1116

Kenton Varda's avatar
Kenton Varda committed
1117 1118
  return _::Deferred<Decay<Func>>(kj::fwd<Func>(func));
}
1119

Kenton Varda's avatar
Kenton Varda committed
1120 1121
#define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;})
// Run the given code when the function exits, whether by return or exception.
1122

Kenton Varda's avatar
Kenton Varda committed
1123 1124 1125
}  // namespace kj

#endif  // KJ_COMMON_H_