string.c++ 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "string.h"
Kenton Varda's avatar
Kenton Varda committed
25
#include "debug.h"
Kenton Varda's avatar
Kenton Varda committed
26 27 28 29 30
#include <stdio.h>
#include <float.h>
#include <limits>
#include <errno.h>
#include <stdlib.h>
31 32 33

namespace kj {

Kenton Varda's avatar
Kenton Varda committed
34
String heapString(size_t size) {
35
  char* buffer = _::HeapArrayDisposer::allocate<char>(size + 1);
Kenton Varda's avatar
Kenton Varda committed
36
  buffer[size] = '\0';
37
  return String(buffer, size, _::HeapArrayDisposer::instance);
38 39
}

Kenton Varda's avatar
Kenton Varda committed
40
String heapString(const char* value, size_t size) {
41
  char* buffer = _::HeapArrayDisposer::allocate<char>(size + 1);
42 43
  memcpy(buffer, value, size);
  buffer[size] = '\0';
44
  return String(buffer, size, _::HeapArrayDisposer::instance);
45 46
}

Kenton Varda's avatar
Kenton Varda committed
47 48 49 50 51 52 53 54 55 56 57 58 59 60
#define HEXIFY_INT(type, format) \
CappedArray<char, sizeof(type) * 4> hex(type i) { \
  CappedArray<char, sizeof(type) * 4> result; \
  result.setSize(sprintf(result.begin(), format, i)); \
  return result; \
}

HEXIFY_INT(unsigned short, "%x");
HEXIFY_INT(unsigned int, "%x");
HEXIFY_INT(unsigned long, "%lx");
HEXIFY_INT(unsigned long long, "%llx");

#undef HEXIFY_INT

61
namespace _ {  // private
Kenton Varda's avatar
Kenton Varda committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

StringPtr Stringifier::operator*(bool b) const {
  return b ? StringPtr("true") : StringPtr("false");
}

#define STRINGIFY_INT(type, format) \
CappedArray<char, sizeof(type) * 4> Stringifier::operator*(type i) const { \
  CappedArray<char, sizeof(type) * 4> result; \
  result.setSize(sprintf(result.begin(), format, i)); \
  return result; \
}

STRINGIFY_INT(short, "%d");
STRINGIFY_INT(unsigned short, "%u");
STRINGIFY_INT(int, "%d");
STRINGIFY_INT(unsigned int, "%u");
STRINGIFY_INT(long, "%ld");
STRINGIFY_INT(unsigned long, "%lu");
STRINGIFY_INT(long long, "%lld");
STRINGIFY_INT(unsigned long long, "%llu");
STRINGIFY_INT(const void*, "%p");

#undef STRINGIFY_INT

namespace {

// ----------------------------------------------------------------------
// DoubleToBuffer()
// FloatToBuffer()
//    Copied from Protocol Buffers, (C) Google, BSD license.
//    Kenton wrote this code originally.  The following commentary is
//    from the original.
//
//    Description: converts a double or float to a string which, if
//    passed to NoLocaleStrtod(), will produce the exact same original double
//    (except in case of NaN; all NaNs are considered the same value).
//    We try to keep the string short but it's not guaranteed to be as
//    short as possible.
//
//    DoubleToBuffer() and FloatToBuffer() write the text to the given
//    buffer and return it.  The buffer must be at least
//    kDoubleToBufferSize bytes for doubles and kFloatToBufferSize
//    bytes for floats.  kFastToBufferSize is also guaranteed to be large
//    enough to hold either.
//
//    We want to print the value without losing precision, but we also do
//    not want to print more digits than necessary.  This turns out to be
//    trickier than it sounds.  Numbers like 0.2 cannot be represented
//    exactly in binary.  If we print 0.2 with a very large precision,
//    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
//    On the other hand, if we set the precision too low, we lose
//    significant digits when printing numbers that actually need them.
//    It turns out there is no precision value that does the right thing
//    for all numbers.
//
//    Our strategy is to first try printing with a precision that is never
//    over-precise, then parse the result with strtod() to see if it
//    matches.  If not, we print again with a precision that will always
//    give a precise result, but may use more digits than necessary.
//
//    An arguably better strategy would be to use the algorithm described
//    in "How to Print Floating-Point Numbers Accurately" by Steele &
//    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
//    however, that the following implementation is about as fast as
//    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
//    will not scale well on multi-core machines.  DMG's code is slightly
//    more accurate (in that it will never use more digits than
//    necessary), but this is probably irrelevant for most users.
//
//    Rob Pike and Ken Thompson also have an implementation of dtoa() in
//    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
//    one in that it makes guesses and then uses strtod() to check them.
//    Their implementation is faster because they use their own code to
//    generate the digits in the first place rather than use snprintf(),
//    thus avoiding format string parsing overhead.  However, this makes
//    it considerably more complicated than the following implementation,
//    and it is embedded in a larger library.  If speed turns out to be
//    an issue, we could re-implement this in terms of their
//    implementation.
// ----------------------------------------------------------------------

#ifdef _WIN32
// MSVC has only _snprintf, not snprintf.
//
// MinGW has both snprintf and _snprintf, but they appear to be different
// functions.  The former is buggy.  When invoked like so:
//   char buffer[32];
//   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
// it prints "1.23000e+10".  This is plainly wrong:  %g should never print
// trailing zeros after the decimal point.  For some reason this bug only
// occurs with some input values, not all.  In any case, _snprintf does the
// right thing, so we use it.
#define snprintf _snprintf
#endif

inline bool IsNaN(double value) {
  // NaN is never equal to anything, even itself.
  return value != value;
}

// In practice, doubles should never need more than 24 bytes and floats
// should never need more than 14 (including null terminators), but we
// overestimate to be safe.
static const int kDoubleToBufferSize = 32;
static const int kFloatToBufferSize = 24;

static inline bool IsValidFloatChar(char c) {
  return ('0' <= c && c <= '9') ||
         c == 'e' || c == 'E' ||
         c == '+' || c == '-';
}

void DelocalizeRadix(char* buffer) {
  // Fast check:  if the buffer has a normal decimal point, assume no
  // translation is needed.
  if (strchr(buffer, '.') != NULL) return;

  // Find the first unknown character.
  while (IsValidFloatChar(*buffer)) ++buffer;

  if (*buffer == '\0') {
    // No radix character found.
    return;
  }

  // We are now pointing at the locale-specific radix character.  Replace it
  // with '.'.
  *buffer = '.';
  ++buffer;

  if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
    // It appears the radix was a multi-byte character.  We need to remove the
    // extra bytes.
    char* target = buffer;
    do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
    memmove(target, buffer, strlen(buffer) + 1);
  }
}

void RemovePlus(char* buffer) {
  // Remove any + characters because they are redundant and ugly.

  for (;;) {
    buffer = strchr(buffer, '+');
    if (buffer == NULL) {
      return;
    }
    memmove(buffer, buffer + 1, strlen(buffer + 1) + 1);
  }
}

char* DoubleToBuffer(double value, char* buffer) {
  // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
  // platforms these days.  Just in case some system exists where DBL_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  static_assert(DBL_DIG < 20, "DBL_DIG is too big.");

  if (value == std::numeric_limits<double>::infinity()) {
    strcpy(buffer, "inf");
    return buffer;
  } else if (value == -std::numeric_limits<double>::infinity()) {
    strcpy(buffer, "-inf");
    return buffer;
  } else if (IsNaN(value)) {
    strcpy(buffer, "nan");
    return buffer;
  }

  int snprintf_result =
    snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);

  // The snprintf should never overflow because the buffer is significantly
  // larger than the precision we asked for.
236
  KJ_DASSERT(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
Kenton Varda's avatar
Kenton Varda committed
237 238 239 240 241 242 243 244 245 246 247 248 249

  // We need to make parsed_value volatile in order to force the compiler to
  // write it out to the stack.  Otherwise, it may keep the value in a
  // register, and if it does that, it may keep it as a long double instead
  // of a double.  This long double may have extra bits that make it compare
  // unequal to "value" even though it would be exactly equal if it were
  // truncated to a double.
  volatile double parsed_value = strtod(buffer, NULL);
  if (parsed_value != value) {
    int snprintf_result =
      snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);

    // Should never overflow; see above.
250
    KJ_DASSERT(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
Kenton Varda's avatar
Kenton Varda committed
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  }

  DelocalizeRadix(buffer);
  RemovePlus(buffer);
  return buffer;
}

bool safe_strtof(const char* str, float* value) {
  char* endptr;
  errno = 0;  // errno only gets set on errors
#if defined(_WIN32) || defined (__hpux)  // has no strtof()
  *value = strtod(str, &endptr);
#else
  *value = strtof(str, &endptr);
#endif
  return *str != 0 && *endptr == 0 && errno == 0;
}

char* FloatToBuffer(float value, char* buffer) {
  // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
  // platforms these days.  Just in case some system exists where FLT_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  static_assert(FLT_DIG < 10, "FLT_DIG is too big");

  if (value == std::numeric_limits<double>::infinity()) {
    strcpy(buffer, "inf");
    return buffer;
  } else if (value == -std::numeric_limits<double>::infinity()) {
    strcpy(buffer, "-inf");
    return buffer;
  } else if (IsNaN(value)) {
    strcpy(buffer, "nan");
    return buffer;
  }

  int snprintf_result =
    snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);

  // The snprintf should never overflow because the buffer is significantly
  // larger than the precision we asked for.
292
  KJ_DASSERT(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
Kenton Varda's avatar
Kenton Varda committed
293 294 295 296 297 298 299

  float parsed_value;
  if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
    int snprintf_result =
      snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);

    // Should never overflow; see above.
300
    KJ_DASSERT(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
Kenton Varda's avatar
Kenton Varda committed
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  }

  DelocalizeRadix(buffer);
  RemovePlus(buffer);
  return buffer;
}

}  // namespace

CappedArray<char, kFloatToBufferSize> Stringifier::operator*(float f) const {
  CappedArray<char, kFloatToBufferSize> result;
  result.setSize(strlen(FloatToBuffer(f, result.begin())));
  return result;
}

CappedArray<char, kDoubleToBufferSize> Stringifier::operator*(double f) const {
  CappedArray<char, kDoubleToBufferSize> result;
  result.setSize(strlen(DoubleToBuffer(f, result.begin())));
  return result;
}

322
}  // namespace _ (private)
323
}  // namespace kj