mutex.c++ 8.01 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "mutex.h"
#include "debug.h"

27 28 29 30 31 32 33
#if KJ_USE_FUTEX
#include <unistd.h>
#include <sys/syscall.h>
#include <linux/futex.h>
#include <limits.h>
#endif

34 35 36
namespace kj {
namespace _ {  // private

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
#if KJ_USE_FUTEX
// =======================================================================================
// Futex-based implementation (Linux-only)

Mutex::Mutex(): futex(0) {}
Mutex::~Mutex() {
  // This will crash anyway, might as well crash with a nice error message.
  KJ_ASSERT(futex == 0, "Mutex destroyed while locked.") { break; }
}

void Mutex::lock(Exclusivity exclusivity) {
  switch (exclusivity) {
    case EXCLUSIVE:
      for (;;) {
        uint state = 0;
        if (KJ_LIKELY(__atomic_compare_exchange_n(&futex, &state, EXCLUSIVE_HELD, false,
                                                  __ATOMIC_ACQUIRE, __ATOMIC_RELAXED))) {
          // Acquired.
          break;
        }

        // The mutex is contended.  Set the exclusive-requested bit and wait.
        if ((state & EXCLUSIVE_REQUESTED) == 0) {
          if (!__atomic_compare_exchange_n(&futex, &state, state | EXCLUSIVE_REQUESTED, false,
                                           __ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
            // Oops, the state changed before we could set the request bit.  Start over.
            continue;
          }

          state |= EXCLUSIVE_REQUESTED;
        }

        syscall(SYS_futex, &futex, FUTEX_WAIT_PRIVATE, state, NULL, NULL, 0);
      }
      break;
    case SHARED: {
      uint state = __atomic_add_fetch(&futex, 1, __ATOMIC_ACQUIRE);
      for (;;) {
        if (KJ_LIKELY((state & EXCLUSIVE_HELD) == 0)) {
          // Acquired.
          break;
        }

        // The mutex is exclusively locked by another thread.  Since we incremented the counter
        // already, we just have to wait for it to be unlocked.
        syscall(SYS_futex, &futex, FUTEX_WAIT_PRIVATE, state, NULL, NULL, 0);
        state = __atomic_load_n(&futex, __ATOMIC_ACQUIRE);
      }
      break;
    }
  }
}

void Mutex::unlock(Exclusivity exclusivity) {
  switch (exclusivity) {
    case EXCLUSIVE: {
      KJ_DASSERT(futex & EXCLUSIVE_HELD, "Unlocked a mutex that wasn't locked.");
      uint oldState = __atomic_fetch_and(
          &futex, ~(EXCLUSIVE_HELD | EXCLUSIVE_REQUESTED), __ATOMIC_RELEASE);

      if (KJ_UNLIKELY(oldState & ~EXCLUSIVE_HELD)) {
        // Other threads are waiting.  If there are any shared waiters, they now collectively hold
        // the lock, and we must wake them up.  If there are any exclusive waiters, we must wake
        // them up even if readers are waiting so that at the very least they may re-establish the
        // EXCLUSIVE_REQUESTED bit that we just removed.
        syscall(SYS_futex, &futex, FUTEX_WAKE_PRIVATE, INT_MAX, NULL, NULL, 0);
      }
      break;
    }

    case SHARED: {
      KJ_DASSERT(futex & SHARED_COUNT_MASK, "Unshared a mutex that wasn't shared.");
      uint state = __atomic_sub_fetch(&futex, 1, __ATOMIC_RELEASE);

      // The only case where anyone is waiting is if EXCLUSIVE_REQUESTED is set, and the only time
      // it makes sense to wake up that waiter is if the shared count has reached zero.
      if (KJ_UNLIKELY(state == EXCLUSIVE_REQUESTED)) {
        if (__atomic_compare_exchange_n(
            &futex, &state, 0, false, __ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
          // Wake all exclusive waiters.  We have to wake all of them because one of them will
          // grab the lock while the others will re-establish the exclusive-requested bit.
          syscall(SYS_futex, &futex, FUTEX_WAKE_PRIVATE, INT_MAX, NULL, NULL, 0);
        }
      }
      break;
    }
  }
}

void Once::runOnce(Initializer& init) {
  uint state = UNINITIALIZED;
  if (__atomic_compare_exchange_n(&futex, &state, INITIALIZING, false,
                                  __ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
    // It's our job to initialize!
    init.run();
    if (__atomic_exchange_n(&futex, INITIALIZED, __ATOMIC_RELEASE) ==
        INITIALIZING_WITH_WAITERS) {
      // Someone was waiting for us to finish.
      syscall(SYS_futex, &futex, FUTEX_WAKE_PRIVATE, INT_MAX, NULL, NULL, 0);
    }
  } else {
    for (;;) {
      if (state == INITIALIZED) {
        break;
      } else if (state == INITIALIZING) {
        // Initialization is taking place in another thread.  Indicate that we're waiting.
        if (!__atomic_compare_exchange_n(&futex, &state, INITIALIZING_WITH_WAITERS, true,
                                         __ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
          // State changed, retry.
          continue;
        }
      }

      // Wait for initialization.
      syscall(SYS_futex, &futex, FUTEX_WAIT_PRIVATE, INITIALIZING_WITH_WAITERS, NULL, NULL, 0);
      state = __atomic_load_n(&futex, __ATOMIC_ACQUIRE);
    }

    // The docs for __atomic_compare_exchange_n claim that the memmodel for the failure case cannot
    // be stronger than the success case.  That's disappointing, because what we really want is
    // for the two cmpxchg calls above to do an acquire barrier in the failure case only, while
    // being relaxed if successful, so that once the state is INITIALIZED we know we've acquired
    // it.  Oh well, we'll just do an acquire barrier on the way out instead.
    KJ_ASSERT(__atomic_load_n(&futex, __ATOMIC_ACQUIRE) == INITIALIZED);
  }
}

#else
// =======================================================================================
// Generic pthreads-based implementation

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
#define KJ_PTHREAD_CALL(code) \
  { \
    int pthreadError = code; \
    if (pthreadError != 0) { \
      KJ_FAIL_SYSCALL(#code, pthreadError); \
    } \
  }

#define KJ_PTHREAD_CLEANUP(code) \
  { \
    int pthreadError = code; \
    if (pthreadError != 0) { \
      KJ_LOG(ERROR, #code, strerror(pthreadError)); \
    } \
  }

Mutex::Mutex() {
  KJ_PTHREAD_CALL(pthread_rwlock_init(&mutex, nullptr));
}
Mutex::~Mutex() {
  KJ_PTHREAD_CLEANUP(pthread_rwlock_destroy(&mutex));
}

191 192 193 194 195 196 197 198 199
void Mutex::lock(Exclusivity exclusivity) {
  switch (exclusivity) {
    case EXCLUSIVE:
      KJ_PTHREAD_CALL(pthread_rwlock_wrlock(&mutex));
      break;
    case SHARED:
      KJ_PTHREAD_CALL(pthread_rwlock_rdlock(&mutex));
      break;
  }
200 201
}

202
void Mutex::unlock(Exclusivity exclusivity) {
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  KJ_PTHREAD_CALL(pthread_rwlock_unlock(&mutex));
}

Once::Once(): initialized(false) {
  KJ_PTHREAD_CALL(pthread_mutex_init(&mutex, nullptr));
}
Once::~Once() {
  KJ_PTHREAD_CLEANUP(pthread_mutex_destroy(&mutex));
}

void Once::runOnce(Initializer& init) {
  KJ_PTHREAD_CALL(pthread_mutex_lock(&mutex));
  KJ_DEFER(KJ_PTHREAD_CALL(pthread_mutex_unlock(&mutex)));

  if (initialized) {
    return;
  }

  init.run();

  __atomic_store_n(&initialized, true, __ATOMIC_RELEASE);
}

226 227
#endif

228 229
}  // namespace _ (private)
}  // namespace kj