async-io.h 23.7 KB
Newer Older
Kenton Varda's avatar
Kenton Varda committed
1 2
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
3
//
Kenton Varda's avatar
Kenton Varda committed
4 5 6 7 8 9
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
10
//
Kenton Varda's avatar
Kenton Varda committed
11 12
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
13
//
Kenton Varda's avatar
Kenton Varda committed
14 15 16 17 18 19 20
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
21 22 23 24

#ifndef KJ_ASYNC_IO_H_
#define KJ_ASYNC_IO_H_

25 26 27 28
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

29
#include "async.h"
30
#include "function.h"
31
#include "thread.h"
32
#include "time.h"
33

34 35
struct sockaddr;

36 37
namespace kj {

38 39 40
#if _WIN32
class Win32EventPort;
#else
41
class UnixEventPort;
42 43
#endif

44
class NetworkAddress;
45
class AsyncOutputStream;
46 47 48

// =======================================================================================
// Streaming I/O
49

50
class AsyncInputStream {
51 52
  // Asynchronous equivalent of InputStream (from io.h).

53
public:
54
  virtual Promise<size_t> read(void* buffer, size_t minBytes, size_t maxBytes);
55 56
  virtual Promise<size_t> tryRead(void* buffer, size_t minBytes, size_t maxBytes) = 0;

57
  Promise<void> read(void* buffer, size_t bytes);
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  virtual Maybe<uint64_t> tryGetLength();
  // Get the remaining number of bytes that will be produced by this stream, if known.
  //
  // This is used e.g. to fill in the Content-Length header of an HTTP message. If unknown, the
  // HTTP implementation may need to fall back to Transfer-Encoding: chunked.
  //
  // The default implementation always returns null.

  virtual Promise<uint64_t> pumpTo(
      AsyncOutputStream& output, uint64_t amount = kj::maxValue);
  // Read `amount` bytes from this stream (or to EOF) and write them to `output`, returning the
  // total bytes actually pumped (which is only less than `amount` if EOF was reached).
  //
  // Override this if your stream type knows how to pump itself to certain kinds of output
  // streams more efficiently than via the naive approach. You can use
  // kj::dynamicDowncastIfAvailable() to test for stream types you recognize, and if none match,
  // delegate to the default implementation.
  //
  // The default implementation first tries calling output.tryPumpFrom(), but if that fails, it
  // performs a naive pump by allocating a buffer and reading to it / writing from it in a loop.

80 81 82
  Promise<Array<byte>> readAllBytes();
  Promise<String> readAllText();
  // Read until EOF and return as one big byte array or string.
83 84 85
};

class AsyncOutputStream {
86 87
  // Asynchronous equivalent of OutputStream (from io.h).

88 89 90
public:
  virtual Promise<void> write(const void* buffer, size_t size) = 0;
  virtual Promise<void> write(ArrayPtr<const ArrayPtr<const byte>> pieces) = 0;
91 92 93 94 95 96 97 98 99 100 101

  virtual Maybe<Promise<uint64_t>> tryPumpFrom(
      AsyncInputStream& input, uint64_t amount = kj::maxValue);
  // Implements double-dispatch for AsyncInputStream::pumpTo().
  //
  // This method should only be called from within an implementation of pumpTo().
  //
  // This method examines the type of `input` to find optimized ways to pump data from it to this
  // output stream. If it finds one, it performs the pump. Otherwise, it returns null.
  //
  // The default implementation always returns null.
102 103 104
};

class AsyncIoStream: public AsyncInputStream, public AsyncOutputStream {
105 106
  // A combination input and output stream.

107
public:
108 109
  virtual void shutdownWrite() = 0;
  // Cleanly shut down just the write end of the stream, while keeping the read end open.
110

111 112 113 114
  virtual void abortRead() {}
  // Similar to shutdownWrite, but this will shut down the read end of the stream, and should only
  // be called when an error has occurred.

115 116 117 118 119
  virtual void getsockopt(int level, int option, void* value, uint* length);
  virtual void setsockopt(int level, int option, const void* value, uint length);
  // Corresponds to getsockopt() and setsockopt() syscalls. Will throw an "unimplemented" exception
  // if the stream is not a socket or the option is not appropriate for the socket type. The
  // default implementations always throw "unimplemented".
120 121 122 123 124 125 126 127 128 129

  virtual void getsockname(struct sockaddr* addr, uint* length);
  virtual void getpeername(struct sockaddr* addr, uint* length);
  // Corresponds to getsockname() and getpeername() syscalls. Will throw an "unimplemented"
  // exception if the stream is not a socket. The default implementations always throw
  // "unimplemented".
  //
  // Note that we don't provide methods that return NetworkAddress because it usually wouldn't
  // be useful. You can't connect() to or listen() on these addresses, obviously, because they are
  // ephemeral addresses for a single connection.
130 131 132 133 134 135 136 137 138 139 140 141 142 143
};

struct OneWayPipe {
  // A data pipe with an input end and an output end.  (Typically backed by pipe() system call.)

  Own<AsyncInputStream> in;
  Own<AsyncOutputStream> out;
};

struct TwoWayPipe {
  // A data pipe that supports sending in both directions.  Each end's output sends data to the
  // other end's input.  (Typically backed by socketpair() system call.)

  Own<AsyncIoStream> ends[2];
144 145 146
};

class ConnectionReceiver {
147 148
  // Represents a server socket listening on a port.

149 150
public:
  virtual Promise<Own<AsyncIoStream>> accept() = 0;
151
  // Accept the next incoming connection.
152 153 154

  virtual uint getPort() = 0;
  // Gets the port number, if applicable (i.e. if listening on IP).  This is useful if you didn't
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  // specify a port when constructing the NetworkAddress -- one will have been assigned
  // automatically.

  virtual void getsockopt(int level, int option, void* value, uint* length);
  virtual void setsockopt(int level, int option, const void* value, uint length);
  // Same as the methods of AsyncIoStream.
};

// =======================================================================================
// Datagram I/O

class AncillaryMessage {
  // Represents an ancillary message (aka control message) received using the recvmsg() system
  // call (or equivalent). Most apps will not use this.

public:
  inline AncillaryMessage(int level, int type, ArrayPtr<const byte> data);
  AncillaryMessage() = default;

  inline int getLevel() const;
  // Originating protocol / socket level.

  inline int getType() const;
  // Protocol-specific message type.

  template <typename T>
  inline Maybe<const T&> as();
  // Interpret the ancillary message as the given struct type. Most ancillary messages are some
  // sort of struct, so this is a convenient way to access it. Returns nullptr if the message
  // is smaller than the struct -- this can happen if the message was truncated due to
  // insufficient ancillary buffer space.

  template <typename T>
  inline ArrayPtr<const T> asArray();
  // Interpret the ancillary message as an array of items. If the message size does not evenly
  // divide into elements of type T, the remainder is discarded -- this can happen if the message
  // was truncated due to insufficient ancillary buffer space.

private:
  int level;
  int type;
  ArrayPtr<const byte> data;
  // Message data. In most cases you should use `as()` or `asArray()`.
};

class DatagramReceiver {
  // Class encapsulating the recvmsg() system call. You must specify the DatagramReceiver's
  // capacity in advance; if a received packet is larger than the capacity, it will be truncated.

public:
  virtual Promise<void> receive() = 0;
  // Receive a new message, overwriting this object's content.
  //
  // receive() may reuse the same buffers for content and ancillary data with each call.

  template <typename T>
  struct MaybeTruncated {
    T value;

    bool isTruncated;
    // True if the Receiver's capacity was insufficient to receive the value and therefore the
    // value is truncated.
  };

  virtual MaybeTruncated<ArrayPtr<const byte>> getContent() = 0;
  // Get the content of the datagram.

  virtual MaybeTruncated<ArrayPtr<const AncillaryMessage>> getAncillary() = 0;
  // Ancilarry messages received with the datagram. See the recvmsg() system call and the cmsghdr
  // struct. Most apps don't need this.
  //
  // If the returned value is truncated, then the last message in the array may itself be
  // truncated, meaning its as<T>() method will return nullptr or its asArray<T>() method will
  // return fewer elements than expected. Truncation can also mean that additional messages were
  // available but discarded.

  virtual NetworkAddress& getSource() = 0;
  // Get the datagram sender's address.

  struct Capacity {
    size_t content = 8192;
    // How much space to allocate for the datagram content. If a datagram is received that is
    // larger than this, it will be truncated, with no way to recover the tail.

    size_t ancillary = 0;
    // How much space to allocate for ancillary messages. As with content, if the ancillary data
    // is larger than this, it will be truncated.
  };
};

class DatagramPort {
public:
  virtual Promise<size_t> send(const void* buffer, size_t size, NetworkAddress& destination) = 0;
  virtual Promise<size_t> send(ArrayPtr<const ArrayPtr<const byte>> pieces,
                               NetworkAddress& destination) = 0;

  virtual Own<DatagramReceiver> makeReceiver(
      DatagramReceiver::Capacity capacity = DatagramReceiver::Capacity()) = 0;
  // Create a new `Receiver` that can be used to receive datagrams. `capacity` specifies how much
  // space to allocate for the received message. The `DatagramPort` must outlive the `Receiver`.

  virtual uint getPort() = 0;
  // Gets the port number, if applicable (i.e. if listening on IP).  This is useful if you didn't
  // specify a port when constructing the NetworkAddress -- one will have been assigned
  // automatically.

  virtual void getsockopt(int level, int option, void* value, uint* length);
  virtual void setsockopt(int level, int option, const void* value, uint length);
  // Same as the methods of AsyncIoStream.
264 265
};

266 267 268
// =======================================================================================
// Networks

Kenton Varda's avatar
Kenton Varda committed
269
class NetworkAddress {
270 271 272 273
  // Represents a remote address to which the application can connect.

public:
  virtual Promise<Own<AsyncIoStream>> connect() = 0;
274
  // Make a new connection to this address.
Kenton Varda's avatar
Kenton Varda committed
275 276 277 278 279 280 281
  //
  // The address must not be a wildcard ("*").  If it is an IP address, it must have a port number.

  virtual Own<ConnectionReceiver> listen() = 0;
  // Listen for incoming connections on this address.
  //
  // The address must be local.
282

283 284 285 286 287 288 289 290
  virtual Own<DatagramPort> bindDatagramPort();
  // Open this address as a datagram (e.g. UDP) port.
  //
  // The address must be local.

  virtual Own<NetworkAddress> clone() = 0;
  // Returns an equivalent copy of this NetworkAddress.

291
  virtual String toString() = 0;
292
  // Produce a human-readable string which hopefully can be passed to Network::parseAddress()
293 294 295 296 297 298
  // to reproduce this address, although whether or not that works of course depends on the Network
  // implementation.  This should be called only to display the address to human users, who will
  // hopefully know what they are able to do with it.
};

class Network {
299 300
  // Factory for NetworkAddress instances, representing the network services offered by the
  // operating system.
301 302 303
  //
  // This interface typically represents broad authority, and well-designed code should limit its
  // use to high-level startup code and user interaction.  Low-level APIs should accept
304
  // NetworkAddress instances directly and work from there, if at all possible.
305 306

public:
Kenton Varda's avatar
Kenton Varda committed
307 308
  virtual Promise<Own<NetworkAddress>> parseAddress(StringPtr addr, uint portHint = 0) = 0;
  // Construct a network address from a user-provided string.  The format of the address
309 310 311 312 313 314
  // strings is not specified at the API level, and application code should make no assumptions
  // about them.  These strings should always be provided by humans, and said humans will know
  // what format to use in their particular context.
  //
  // `portHint`, if provided, specifies the "standard" IP port number for the application-level
  // service in play.  If the address turns out to be an IP address (v4 or v6), and it lacks a
Kenton Varda's avatar
Kenton Varda committed
315
  // port number, this port will be used.  If `addr` lacks a port number *and* `portHint` is
316 317
  // omitted, then the returned address will only support listen() and bindDatagramPort()
  // (not connect()), and an unused port will be chosen each time one of those methods is called.
318

Kenton Varda's avatar
Kenton Varda committed
319 320
  virtual Own<NetworkAddress> getSockaddr(const void* sockaddr, uint len) = 0;
  // Construct a network address from a legacy struct sockaddr.
321 322
};

323 324
// =======================================================================================
// I/O Provider
325

326 327 328 329 330 331
class AsyncIoProvider {
  // Class which constructs asynchronous wrappers around the operating system's I/O facilities.
  //
  // Generally, the implementation of this interface must integrate closely with a particular
  // `EventLoop` implementation.  Typically, the EventLoop implementation itself will provide
  // an AsyncIoProvider.
332 333

public:
334 335 336
  virtual OneWayPipe newOneWayPipe() = 0;
  // Creates an input/output stream pair representing the ends of a one-way pipe (e.g. created with
  // the pipe(2) system call).
337

338 339 340
  virtual TwoWayPipe newTwoWayPipe() = 0;
  // Creates two AsyncIoStreams representing the two ends of a two-way pipe (e.g. created with
  // socketpair(2) system call).  Data written to one end can be read from the other.
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  virtual Network& getNetwork() = 0;
  // Creates a new `Network` instance representing the networks exposed by the operating system.
  //
  // DO NOT CALL THIS except at the highest levels of your code, ideally in the main() function.  If
  // you call this from low-level code, then you are preventing higher-level code from injecting an
  // alternative implementation.  Instead, if your code needs to use network functionality, it
  // should ask for a `Network` as a constructor or method parameter, so that higher-level code can
  // chose what implementation to use.  The system network is essentially a singleton.  See:
  //     http://www.object-oriented-security.org/lets-argue/singletons
  //
  // Code that uses the system network should not make any assumptions about what kinds of
  // addresses it will parse, as this could differ across platforms.  String addresses should come
  // strictly from the user, who will know how to write them correctly for their system.
  //
  // With that said, KJ currently supports the following string address formats:
  // - IPv4: "1.2.3.4", "1.2.3.4:80"
  // - IPv6: "1234:5678::abcd", "[1234:5678::abcd]:80"
Kenton Varda's avatar
Kenton Varda committed
359 360
  // - Local IP wildcard (covers both v4 and v6):  "*", "*:80"
  // - Symbolic names:  "example.com", "example.com:80", "example.com:http", "1.2.3.4:http"
361 362
  // - Unix domain: "unix:/path/to/socket"

363 364 365 366 367 368 369 370 371 372 373 374
  struct PipeThread {
    // A combination of a thread and a two-way pipe that communicates with that thread.
    //
    // The fields are intentionally ordered so that the pipe will be destroyed (and therefore
    // disconnected) before the thread is destroyed (and therefore joined).  Thus if the thread
    // arranges to exit when it detects disconnect, destruction should be clean.

    Own<Thread> thread;
    Own<AsyncIoStream> pipe;
  };

  virtual PipeThread newPipeThread(
375
      Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)> startFunc) = 0;
376
  // Create a new thread and set up a two-way pipe (socketpair) which can be used to communicate
377
  // with it.  One end of the pipe is passed to the thread's start function and the other end of
378 379 380 381 382
  // the pipe is returned.  The new thread also gets its own `AsyncIoProvider` instance and will
  // already have an active `EventLoop` when `startFunc` is called.
  //
  // TODO(someday):  I'm not entirely comfortable with this interface.  It seems to be doing too
  //   much at once but I'm not sure how to cleanly break it down.
383 384

  virtual Timer& getTimer() = 0;
385 386 387 388 389 390
  // Returns a `Timer` based on real time.  Time does not pass while event handlers are running --
  // it only updates when the event loop polls for system events.  This means that calling `now()`
  // on this timer does not require a system call.
  //
  // This timer is not affected by changes to the system date.  It is unspecified whether the timer
  // continues to count while the system is suspended.
391
};
392

393 394 395 396 397 398 399 400
class LowLevelAsyncIoProvider {
  // Similar to `AsyncIoProvider`, but represents a lower-level interface that may differ on
  // different operating systems.  You should prefer to use `AsyncIoProvider` over this interface
  // whenever possible, as `AsyncIoProvider` is portable and friendlier to dependency-injection.
  //
  // On Unix, this interface can be used to import native file descriptors into the async framework.
  // Different implementations of this interface might work on top of different event handling
  // primitives, such as poll vs. epoll vs. kqueue vs. some higher-level event library.
401
  //
402 403 404 405 406
  // On Windows, this interface can be used to import native HANDLEs into the async framework.
  // Different implementations of this interface might work on top of different event handling
  // primitives, such as I/O completion ports vs. completion routines.
  //
  // TODO(port):  Actually implement Windows support.
407

408 409 410 411 412 413 414 415 416 417 418 419 420 421
public:
  // ---------------------------------------------------------------------------
  // Unix-specific stuff

  enum Flags {
    // Flags controlling how to wrap a file descriptor.

    TAKE_OWNERSHIP = 1 << 0,
    // The returned object should own the file descriptor, automatically closing it when destroyed.
    // The close-on-exec flag will be set on the descriptor if it is not already.
    //
    // If this flag is not used, then the file descriptor is not automatically closed and the
    // close-on-exec flag is not modified.

422
#if !_WIN32
423 424 425 426 427 428 429 430 431 432 433 434 435 436
    ALREADY_CLOEXEC = 1 << 1,
    // Indicates that the close-on-exec flag is known already to be set, so need not be set again.
    // Only relevant when combined with TAKE_OWNERSHIP.
    //
    // On Linux, all system calls which yield new file descriptors have flags or variants which
    // set the close-on-exec flag immediately.  Unfortunately, other OS's do not.

    ALREADY_NONBLOCK = 1 << 2
    // Indicates that the file descriptor is known already to be in non-blocking mode, so the flag
    // need not be set again.  Otherwise, all wrap*Fd() methods will enable non-blocking mode
    // automatically.
    //
    // On Linux, all system calls which yield new file descriptors have flags or variants which
    // enable non-blocking mode immediately.  Unfortunately, other OS's do not.
437
#endif
438 439
  };

440 441 442 443 444 445 446 447 448 449 450
#if _WIN32
  typedef uintptr_t Fd;
  // On Windows, the `fd` parameter to each of these methods must be a SOCKET, and must have the
  // flag WSA_FLAG_OVERLAPPED (which socket() uses by default, but WSASocket() wants you to specify
  // explicitly).
#else
  typedef int Fd;
  // On Unix, any arbitrary file descriptor is supported.
#endif

  virtual Own<AsyncInputStream> wrapInputFd(Fd fd, uint flags = 0) = 0;
451 452
  // Create an AsyncInputStream wrapping a file descriptor.
  //
453
  // `flags` is a bitwise-OR of the values of the `Flags` enum.
454

455
  virtual Own<AsyncOutputStream> wrapOutputFd(Fd fd, uint flags = 0) = 0;
456 457
  // Create an AsyncOutputStream wrapping a file descriptor.
  //
458
  // `flags` is a bitwise-OR of the values of the `Flags` enum.
459

460
  virtual Own<AsyncIoStream> wrapSocketFd(Fd fd, uint flags = 0) = 0;
461 462
  // Create an AsyncIoStream wrapping a socket file descriptor.
  //
463 464
  // `flags` is a bitwise-OR of the values of the `Flags` enum.

465 466
  virtual Promise<Own<AsyncIoStream>> wrapConnectingSocketFd(
      Fd fd, const struct sockaddr* addr, uint addrlen, uint flags = 0) = 0;
467 468
  // Create an AsyncIoStream wrapping a socket and initiate a connection to the given address.
  // The returned promise does not resolve until connection has completed.
469
  //
470
  // `flags` is a bitwise-OR of the values of the `Flags` enum.
471

472
  virtual Own<ConnectionReceiver> wrapListenSocketFd(Fd fd, uint flags = 0) = 0;
473 474 475
  // Create an AsyncIoStream wrapping a listen socket file descriptor.  This socket should already
  // have had `bind()` and `listen()` called on it, so it's ready for `accept()`.
  //
476
  // `flags` is a bitwise-OR of the values of the `Flags` enum.
477

478
  virtual Own<DatagramPort> wrapDatagramSocketFd(Fd fd, uint flags = 0);
479

480
  virtual Timer& getTimer() = 0;
481 482 483 484 485 486
  // Returns a `Timer` based on real time.  Time does not pass while event handlers are running --
  // it only updates when the event loop polls for system events.  This means that calling `now()`
  // on this timer does not require a system call.
  //
  // This timer is not affected by changes to the system date.  It is unspecified whether the timer
  // continues to count while the system is suspended.
487
};
488

489 490
Own<AsyncIoProvider> newAsyncIoProvider(LowLevelAsyncIoProvider& lowLevel);
// Make a new AsyncIoProvider wrapping a `LowLevelAsyncIoProvider`.
491

492 493 494
struct AsyncIoContext {
  Own<LowLevelAsyncIoProvider> lowLevelProvider;
  Own<AsyncIoProvider> provider;
495
  WaitScope& waitScope;
496

497 498 499
#if _WIN32
  Win32EventPort& win32EventPort;
#else
500 501 502
  UnixEventPort& unixEventPort;
  // TEMPORARY: Direct access to underlying UnixEventPort, mainly for waiting on signals. This
  //   field will go away at some point when we have a chance to improve these interfaces.
503
#endif
504
};
505

506
AsyncIoContext setupAsyncIo();
507
// Convenience method which sets up the current thread with everything it needs to do async I/O.
Kenton Varda's avatar
Kenton Varda committed
508
// The returned objects contain an `EventLoop` which is wrapping an appropriate `EventPort` for
509 510 511 512 513 514 515
// doing I/O on the host system, so everything is ready for the thread to start making async calls
// and waiting on promises.
//
// You would typically call this in your main() loop or in the start function of a thread.
// Example:
//
//     int main() {
Kenton Varda's avatar
Kenton Varda committed
516
//       auto ioContext = kj::setupAsyncIo();
517 518
//
//       // Now we can call an async function.
Kenton Varda's avatar
Kenton Varda committed
519
//       Promise<String> textPromise = getHttp(*ioContext.provider, "http://example.com");
520 521 522
//
//       // And we can wait for the promise to complete.  Note that you can only use `wait()`
//       // from the top level, not from inside a promise callback.
David Renshaw's avatar
David Renshaw committed
523
//       String text = textPromise.wait(ioContext.waitScope);
524 525 526
//       print(text);
//       return 0;
//     }
527 528 529 530 531 532
//
// WARNING: An AsyncIoContext can only be used in the thread and process that created it. In
//   particular, note that after a fork(), an AsyncIoContext created in the parent process will
//   not work correctly in the child, even if the parent ceases to use its copy. In particular
//   note that this means that server processes which daemonize themselves at startup must wait
//   until after daemonization to create an AsyncIoContext.
533

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
// =======================================================================================
// inline implementation details

inline AncillaryMessage::AncillaryMessage(
    int level, int type, ArrayPtr<const byte> data)
    : level(level), type(type), data(data) {}

inline int AncillaryMessage::getLevel() const { return level; }
inline int AncillaryMessage::getType() const { return type; }

template <typename T>
inline Maybe<const T&> AncillaryMessage::as() {
  if (data.size() >= sizeof(T)) {
    return *reinterpret_cast<const T*>(data.begin());
  } else {
    return nullptr;
  }
}

template <typename T>
inline ArrayPtr<const T> AncillaryMessage::asArray() {
  return arrayPtr(reinterpret_cast<const T*>(data.begin()), data.size() / sizeof(T));
}

558 559 560
}  // namespace kj

#endif  // KJ_ASYNC_IO_H_