array.h 27.4 KB
Newer Older
Kenton Varda's avatar
Kenton Varda committed
1 2
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
3
//
Kenton Varda's avatar
Kenton Varda committed
4 5 6 7 8 9
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
10
//
Kenton Varda's avatar
Kenton Varda committed
11 12
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
13
//
Kenton Varda's avatar
Kenton Varda committed
14 15 16 17 18 19 20
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
21

22
#pragma once
23

24 25 26 27
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif

28 29
#include "common.h"
#include <string.h>
30
#include <initializer_list>
31 32 33

namespace kj {

Kenton Varda's avatar
Kenton Varda committed
34 35 36 37 38 39 40
// =======================================================================================
// ArrayDisposer -- Implementation details.

class ArrayDisposer {
  // Much like Disposer from memory.h.

protected:
41 42
  // Do not declare a destructor, as doing so will force a global initializer for
  // HeapArrayDisposer::instance.
Kenton Varda's avatar
Kenton Varda committed
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

  virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                           size_t capacity, void (*destroyElement)(void*)) const = 0;
  // Disposes of the array.  `destroyElement` invokes the destructor of each element, or is nullptr
  // if the elements have trivial destructors.  `capacity` is the amount of space that was
  // allocated while `elementCount` is the number of elements that were actually constructed;
  // these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.

public:

  template <typename T>
  void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
  // Helper wrapper around disposeImpl().
  //
  // Callers must not call dispose() on the same array twice, even if the first call throws
  // an exception.

private:
  template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
  struct Dispose_;
};

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
class ExceptionSafeArrayUtil {
  // Utility class that assists in constructing or destroying elements of an array, where the
  // constructor or destructor could throw exceptions.  In case of an exception,
  // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been
  // constructed but not destroyed.  Remember that destructors that throw exceptions are required
  // to use UnwindDetector to detect unwind and avoid exceptions in this case.  Therefore, no more
  // than one exception will be thrown (and the program will not terminate).

public:
  inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount,
                                void (*destroyElement)(void*))
      : pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount),
        elementSize(elementSize), constructedElementCount(constructedElementCount),
        destroyElement(destroyElement) {}
  KJ_DISALLOW_COPY(ExceptionSafeArrayUtil);

  inline ~ExceptionSafeArrayUtil() noexcept(false) {
    if (constructedElementCount > 0) destroyAll();
  }

  void construct(size_t count, void (*constructElement)(void*));
  // Construct the given number of elements.

  void destroyAll();
  // Destroy all elements.  Call this immediately before ExceptionSafeArrayUtil goes out-of-scope
  // to ensure that one element throwing an exception does not prevent the others from being
  // destroyed.

  void release() { constructedElementCount = 0; }
  // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements.
  // Call this after you've successfully finished constructing.

private:
  byte* pos;
  size_t elementSize;
  size_t constructedElementCount;
  void (*destroyElement)(void*);
};

104 105 106 107 108 109 110 111
class DestructorOnlyArrayDisposer: public ArrayDisposer {
public:
  static const DestructorOnlyArrayDisposer instance;

  void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                   size_t capacity, void (*destroyElement)(void*)) const override;
};

112 113 114 115 116 117 118 119 120 121 122
class NullArrayDisposer: public ArrayDisposer {
  // An ArrayDisposer that does nothing.  Can be used to construct a fake Arrays that doesn't
  // actually own its content.

public:
  static const NullArrayDisposer instance;

  void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                   size_t capacity, void (*destroyElement)(void*)) const override;
};

123 124 125 126 127
// =======================================================================================
// Array

template <typename T>
class Array {
Kenton Varda's avatar
Kenton Varda committed
128 129 130
  // An owned array which will automatically be disposed of (using an ArrayDisposer) in the
  // destructor.  Can be moved, but not copied.  Much like Own<T>, but for arrays rather than
  // single objects.
131 132

public:
Kenton Varda's avatar
Kenton Varda committed
133 134
  inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {}
  inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {}
Kenton Varda's avatar
Kenton Varda committed
135 136
  inline Array(Array&& other) noexcept
      : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
137 138 139
    other.ptr = nullptr;
    other.size_ = 0;
  }
140
  inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept
141 142 143 144
      : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
    other.ptr = nullptr;
    other.size_ = 0;
  }
Kenton Varda's avatar
Kenton Varda committed
145 146
  inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer)
      : ptr(firstElement), size_(size), disposer(&disposer) {}
147 148

  KJ_DISALLOW_COPY(Array);
Kenton Varda's avatar
Kenton Varda committed
149
  inline ~Array() noexcept { dispose(); }
150 151 152 153 154 155 156 157 158 159

  inline operator ArrayPtr<T>() {
    return ArrayPtr<T>(ptr, size_);
  }
  inline operator ArrayPtr<const T>() const {
    return ArrayPtr<T>(ptr, size_);
  }
  inline ArrayPtr<T> asPtr() {
    return ArrayPtr<T>(ptr, size_);
  }
Kenton Varda's avatar
Kenton Varda committed
160 161 162
  inline ArrayPtr<const T> asPtr() const {
    return ArrayPtr<T>(ptr, size_);
  }
163 164 165

  inline size_t size() const { return size_; }
  inline T& operator[](size_t index) const {
Kenton Varda's avatar
Kenton Varda committed
166
    KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
167 168 169
    return ptr[index];
  }

Kenton Varda's avatar
Kenton Varda committed
170 171 172 173 174 175 176 177
  inline const T* begin() const { return ptr; }
  inline const T* end() const { return ptr + size_; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(ptr + size_ - 1); }
  inline T* begin() { return ptr; }
  inline T* end() { return ptr + size_; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(ptr + size_ - 1); }
178

179 180 181 182 183
  template <typename U>
  inline bool operator==(const U& other) const { return asPtr() == other; }
  template <typename U>
  inline bool operator!=(const U& other) const { return asPtr() != other; }

184
  inline ArrayPtr<T> slice(size_t start, size_t end) {
Kenton Varda's avatar
Kenton Varda committed
185
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
186 187 188
    return ArrayPtr<T>(ptr + start, end - start);
  }
  inline ArrayPtr<const T> slice(size_t start, size_t end) const {
Kenton Varda's avatar
Kenton Varda committed
189
    KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
190 191 192
    return ArrayPtr<const T>(ptr + start, end - start);
  }

193 194 195 196 197
  inline ArrayPtr<const byte> asBytes() const { return asPtr().asBytes(); }
  inline ArrayPtr<PropagateConst<T, byte>> asBytes() { return asPtr().asBytes(); }
  inline ArrayPtr<const char> asChars() const { return asPtr().asChars(); }
  inline ArrayPtr<PropagateConst<T, char>> asChars() { return asPtr().asChars(); }

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  inline Array<PropagateConst<T, byte>> releaseAsBytes() {
    // Like asBytes() but transfers ownership.
    static_assert(sizeof(T) == sizeof(byte),
        "releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars).");
    Array<PropagateConst<T, byte>> result(
        reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer);
    ptr = nullptr;
    size_ = 0;
    return result;
  }
  inline Array<PropagateConst<T, char>> releaseAsChars() {
    // Like asChars() but transfers ownership.
    static_assert(sizeof(T) == sizeof(PropagateConst<T, char>),
        "releaseAsChars() only possible on arrays with char-size elements (e.g. bytes).");
    Array<PropagateConst<T, char>> result(
        reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer);
    ptr = nullptr;
    size_ = 0;
    return result;
  }

219 220 221 222
  inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
  inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }

  inline Array& operator=(decltype(nullptr)) {
Kenton Varda's avatar
Kenton Varda committed
223
    dispose();
224 225 226 227
    return *this;
  }

  inline Array& operator=(Array&& other) {
Kenton Varda's avatar
Kenton Varda committed
228
    dispose();
229 230
    ptr = other.ptr;
    size_ = other.size_;
Kenton Varda's avatar
Kenton Varda committed
231
    disposer = other.disposer;
232 233 234 235 236 237 238 239
    other.ptr = nullptr;
    other.size_ = 0;
    return *this;
  }

private:
  T* ptr;
  size_t size_;
Kenton Varda's avatar
Kenton Varda committed
240 241 242 243 244 245 246 247 248 249 250 251 252
  const ArrayDisposer* disposer;

  inline void dispose() {
    // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
    // dispose again.
    T* ptrCopy = ptr;
    size_t sizeCopy = size_;
    if (ptrCopy != nullptr) {
      ptr = nullptr;
      size_ = 0;
      disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
    }
  }
253 254 255

  template <typename U>
  friend class Array;
256 257
  template <typename U>
  friend class ArrayBuilder;
Kenton Varda's avatar
Kenton Varda committed
258 259
};

260 261
static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken");

262
namespace _ {  // private
Kenton Varda's avatar
Kenton Varda committed
263 264 265 266 267 268 269

class HeapArrayDisposer final: public ArrayDisposer {
public:
  template <typename T>
  static T* allocate(size_t count);
  template <typename T>
  static T* allocateUninitialized(size_t count);
270

Kenton Varda's avatar
Kenton Varda committed
271 272 273
  static const HeapArrayDisposer instance;

private:
Kenton Varda's avatar
Kenton Varda committed
274 275 276 277 278 279 280 281
  static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
                            void (*constructElement)(void*), void (*destroyElement)(void*));
  // Allocates and constructs the array.  Both function pointers are null if the constructor is
  // trivial, otherwise destroyElement is null if the constructor doesn't throw.

  virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
                           size_t capacity, void (*destroyElement)(void*)) const override;

Kenton Varda's avatar
Kenton Varda committed
282 283 284
  template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
                        bool hasNothrowConstructor = __has_nothrow_constructor(T)>
  struct Allocate_;
285 286
};

287
}  // namespace _ (private)
Kenton Varda's avatar
Kenton Varda committed
288

289
template <typename T>
Kenton Varda's avatar
Kenton Varda committed
290 291 292
inline Array<T> heapArray(size_t size) {
  // Much like `heap<T>()` from memory.h, allocates a new array on the heap.

293 294
  return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
                  _::HeapArrayDisposer::instance);
295 296
}

Kenton Varda's avatar
Kenton Varda committed
297
template <typename T> Array<T> heapArray(const T* content, size_t size);
298
template <typename T> Array<T> heapArray(ArrayPtr<T> content);
Kenton Varda's avatar
Kenton Varda committed
299 300
template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
301 302
template <typename T> Array<T> heapArray(std::initializer_list<T> init);
// Allocate a heap array containing a copy of the given content.
Kenton Varda's avatar
Kenton Varda committed
303

304
template <typename T, typename Container>
305
Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); }
306 307 308
template <typename T>
Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }

309 310 311 312 313
// =======================================================================================
// ArrayBuilder

template <typename T>
class ArrayBuilder {
Kenton Varda's avatar
Kenton Varda committed
314 315
  // Class which lets you build an Array<T> specifying the exact constructor arguments for each
  // element, rather than starting by default-constructing them.
316 317

public:
Kenton Varda's avatar
Kenton Varda committed
318 319
  ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
  ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
320 321
  explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
                        const ArrayDisposer& disposer)
Kenton Varda's avatar
Kenton Varda committed
322 323 324 325 326 327 328 329
      : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
        disposer(&disposer) {}
  ArrayBuilder(ArrayBuilder&& other)
      : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
    other.ptr = nullptr;
    other.pos = nullptr;
    other.endPtr = nullptr;
  }
330 331
  ArrayBuilder(Array<T>&& other)
      : ptr(other.ptr), pos(other.ptr + other.size_), endPtr(pos), disposer(other.disposer) {
Kenton Varda's avatar
Kenton Varda committed
332
    // Create an already-full ArrayBuilder from an Array of the same type. This constructor
333 334 335 336
    // primarily exists to enable Vector<T> to be constructed from Array<T>.
    other.ptr = nullptr;
    other.size_ = 0;
  }
Kenton Varda's avatar
Kenton Varda committed
337
  KJ_DISALLOW_COPY(ArrayBuilder);
338
  inline ~ArrayBuilder() noexcept(false) { dispose(); }
Kenton Varda's avatar
Kenton Varda committed
339 340 341 342 343 344 345 346 347 348

  inline operator ArrayPtr<T>() {
    return arrayPtr(ptr, pos);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(ptr, pos);
  }
  inline ArrayPtr<T> asPtr() {
    return arrayPtr(ptr, pos);
  }
349 350 351
  inline ArrayPtr<const T> asPtr() const {
    return arrayPtr(ptr, pos);
  }
Kenton Varda's avatar
Kenton Varda committed
352 353 354 355

  inline size_t size() const { return pos - ptr; }
  inline size_t capacity() const { return endPtr - ptr; }
  inline T& operator[](size_t index) const {
Kenton Varda's avatar
Kenton Varda committed
356
    KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
Kenton Varda's avatar
Kenton Varda committed
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    return ptr[index];
  }

  inline const T* begin() const { return ptr; }
  inline const T* end() const { return pos; }
  inline const T& front() const { return *ptr; }
  inline const T& back() const { return *(pos - 1); }
  inline T* begin() { return ptr; }
  inline T* end() { return pos; }
  inline T& front() { return *ptr; }
  inline T& back() { return *(pos - 1); }

  ArrayBuilder& operator=(ArrayBuilder&& other) {
    dispose();
    ptr = other.ptr;
    pos = other.pos;
    endPtr = other.endPtr;
    disposer = other.disposer;
    other.ptr = nullptr;
    other.pos = nullptr;
    other.endPtr = nullptr;
    return *this;
  }
  ArrayBuilder& operator=(decltype(nullptr)) {
    dispose();
    return *this;
383 384 385
  }

  template <typename... Params>
Kenton Varda's avatar
Kenton Varda committed
386
  T& add(Params&&... params) {
Kenton Varda's avatar
Kenton Varda committed
387
    KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
Kenton Varda's avatar
Kenton Varda committed
388
    ctor(*pos, kj::fwd<Params>(params)...);
Kenton Varda's avatar
Kenton Varda committed
389
    return *pos++;
390 391 392 393
  }

  template <typename Container>
  void addAll(Container&& container) {
394 395
    addAll<decltype(container.begin()), !isReference<Container>()>(
        container.begin(), container.end());
396 397
  }

398
  template <typename Iterator, bool move = false>
Kenton Varda's avatar
Kenton Varda committed
399 400
  void addAll(Iterator start, Iterator end);

401 402 403 404 405
  void removeLast() {
    KJ_IREQUIRE(pos > ptr, "No elements present to remove.");
    kj::dtor(*--pos);
  }

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
  void truncate(size_t size) {
    KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand");

    T* target = ptr + size;
    if (__has_trivial_destructor(T)) {
      pos = target;
    } else {
      while (pos > target) {
        kj::dtor(*--pos);
      }
    }
  }

  void resize(size_t size) {
    KJ_IREQUIRE(size <= capacity(), "can't resize past capacity");

    T* target = ptr + size;
    if (target > pos) {
      // expand
      if (__has_trivial_constructor(T)) {
        pos = target;
      } else {
        while (pos < target) {
          kj::ctor(*pos++);
        }
      }
    } else {
      // truncate
      if (__has_trivial_destructor(T)) {
        pos = target;
      } else {
        while (pos > target) {
          kj::dtor(*--pos);
        }
      }
    }
  }

444
  Array<T> finish() {
445 446 447 448 449 450
    // We could safely remove this check if we assume that the disposer implementation doesn't
    // need to know the original capacity, as is thes case with HeapArrayDisposer since it uses
    // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity
    // in a prefix.  But that would make it hard to write cleverer heap allocators, and anyway this
    // check might catch bugs.  Probably people should use Vector if they want to build arrays
    // without knowing the final size in advance.
Kenton Varda's avatar
Kenton Varda committed
451
    KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
452
    Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer);
453 454 455
    ptr = nullptr;
    pos = nullptr;
    endPtr = nullptr;
456
    return result;
457 458
  }

459 460 461 462
  inline bool isFull() const {
    return pos == endPtr;
  }

463
private:
Kenton Varda's avatar
Kenton Varda committed
464
  T* ptr;
465
  RemoveConst<T>* pos;
Kenton Varda's avatar
Kenton Varda committed
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
  T* endPtr;
  const ArrayDisposer* disposer;

  inline void dispose() {
    // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
    // dispose again.
    T* ptrCopy = ptr;
    T* posCopy = pos;
    T* endCopy = endPtr;
    if (ptrCopy != nullptr) {
      ptr = nullptr;
      pos = nullptr;
      endPtr = nullptr;
      disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
    }
  }
482 483
};

Kenton Varda's avatar
Kenton Varda committed
484 485 486 487 488
template <typename T>
inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
  // Like `heapArray<T>()` but does not default-construct the elements.  You must construct them
  // manually by calling `add()`.

489 490
  return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
                         size, _::HeapArrayDisposer::instance);
Kenton Varda's avatar
Kenton Varda committed
491 492 493
}

// =======================================================================================
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
// Inline Arrays

template <typename T, size_t fixedSize>
class FixedArray {
  // A fixed-width array whose storage is allocated inline rather than on the heap.

public:
  inline size_t size() const { return fixedSize; }
  inline T* begin() { return content; }
  inline T* end() { return content + fixedSize; }
  inline const T* begin() const { return content; }
  inline const T* end() const { return content + fixedSize; }

  inline operator ArrayPtr<T>() {
    return arrayPtr(content, fixedSize);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(content, fixedSize);
  }

  inline T& operator[](size_t index) { return content[index]; }
  inline const T& operator[](size_t index) const { return content[index]; }

private:
  T content[fixedSize];
};

template <typename T, size_t fixedSize>
class CappedArray {
  // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
  // specified by the template parameter.
  //
  // TODO(someday):  Don't construct elements past currentSize?

public:
529
  inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {}
530 531 532
  inline explicit constexpr CappedArray(size_t s): currentSize(s) {}

  inline size_t size() const { return currentSize; }
533
  inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; }
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
  inline T* begin() { return content; }
  inline T* end() { return content + currentSize; }
  inline const T* begin() const { return content; }
  inline const T* end() const { return content + currentSize; }

  inline operator ArrayPtr<T>() {
    return arrayPtr(content, currentSize);
  }
  inline operator ArrayPtr<const T>() const {
    return arrayPtr(content, currentSize);
  }

  inline T& operator[](size_t index) { return content[index]; }
  inline const T& operator[](size_t index) const { return content[index]; }

private:
  size_t currentSize;
  T content[fixedSize];
};

554
// =======================================================================================
555
// KJ_MAP
556

557
#define KJ_MAP(elementName, array) \
558 559
  ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \
  [&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName)
560 561 562 563
// Applies some function to every element of an array, returning an Array of the results,  with
// nice syntax.  Example:
//
//     StringPtr foo = "abcd";
564
//     Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; };
565 566 567 568 569 570 571
//     KJ_ASSERT(str(bar) == "bcde");

namespace _ {  // private

template <typename T>
struct Mapper {
  T array;
Kenton Varda's avatar
Kenton Varda committed
572
  Mapper(T&& array): array(kj::fwd<T>(array)) {}
573 574 575 576 577 578 579 580
  template <typename Func>
  auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> {
    auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size());
    for (auto iter = array.begin(); iter != array.end(); ++iter) {
      builder.add(func(*iter));
    }
    return builder.finish();
  }
581
  typedef decltype(*kj::instance<T>().begin()) Element;
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
};

template <typename T, size_t s>
struct Mapper<T(&)[s]> {
  T* array;
  Mapper(T* array): array(array) {}
  template <typename Func>
  auto operator*(Func&& func) -> Array<decltype(func(*array))> {
    auto builder = heapArrayBuilder<decltype(func(*array))>(s);
    for (size_t i = 0; i < s; i++) {
      builder.add(func(array[i]));
    }
    return builder.finish();
  }
  typedef decltype(*array)& Element;
597 598 599 600
};

}  // namespace _ (private)

601
// =======================================================================================
Kenton Varda's avatar
Kenton Varda committed
602 603 604 605 606 607
// Inline implementation details

template <typename T>
struct ArrayDisposer::Dispose_<T, true> {
  static void dispose(T* firstElement, size_t elementCount, size_t capacity,
                      const ArrayDisposer& disposer) {
608 609
    disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
                         sizeof(T), elementCount, capacity, nullptr);
Kenton Varda's avatar
Kenton Varda committed
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
  }
};
template <typename T>
struct ArrayDisposer::Dispose_<T, false> {
  static void destruct(void* ptr) {
    kj::dtor(*reinterpret_cast<T*>(ptr));
  }

  static void dispose(T* firstElement, size_t elementCount, size_t capacity,
                      const ArrayDisposer& disposer) {
    disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct);
  }
};

template <typename T>
void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
  Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
}

629
namespace _ {  // private
Kenton Varda's avatar
Kenton Varda committed
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

template <typename T>
struct HeapArrayDisposer::Allocate_<T, true, true> {
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, nullptr, nullptr));
  }
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, true> {
  static void construct(void* ptr) {
    kj::ctor(*reinterpret_cast<T*>(ptr));
  }
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, &construct, nullptr));
  }
};
template <typename T>
struct HeapArrayDisposer::Allocate_<T, false, false> {
  static void construct(void* ptr) {
    kj::ctor(*reinterpret_cast<T*>(ptr));
  }
  static void destruct(void* ptr) {
    kj::dtor(*reinterpret_cast<T*>(ptr));
  }
  static T* allocate(size_t elementCount, size_t capacity) {
    return reinterpret_cast<T*>(allocateImpl(
        sizeof(T), elementCount, capacity, &construct, &destruct));
  }
};

template <typename T>
T* HeapArrayDisposer::allocate(size_t count) {
  return Allocate_<T>::allocate(count, count);
}

template <typename T>
T* HeapArrayDisposer::allocateUninitialized(size_t count) {
  return Allocate_<T, true, true>::allocate(0, count);
}

672
template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()>
Kenton Varda's avatar
Kenton Varda committed
673 674
struct CopyConstructArray_;

675 676
template <typename T, bool move>
struct CopyConstructArray_<T, T*, move, true> {
Kenton Varda's avatar
Kenton Varda committed
677
  static inline T* apply(T* __restrict__ pos, T* start, T* end) {
678 679 680
    if (end != start) {
      memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
    }
Kenton Varda's avatar
Kenton Varda committed
681 682 683 684 685
    return pos + (end - start);
  }
};

template <typename T>
686
struct CopyConstructArray_<T, const T*, false, true> {
Kenton Varda's avatar
Kenton Varda committed
687
  static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
688 689 690
    if (end != start) {
      memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
    }
Kenton Varda's avatar
Kenton Varda committed
691 692 693 694
    return pos + (end - start);
  }
};

695 696
template <typename T, typename Iterator, bool move>
struct CopyConstructArray_<T, Iterator, move, true> {
Kenton Varda's avatar
Kenton Varda committed
697 698 699 700 701 702 703 704 705 706 707 708
  static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
    // Since both the copy constructor and assignment operator are trivial, we know that assignment
    // is equivalent to copy-constructing.  So we can make this case somewhat easier for the
    // compiler to optimize.
    while (start != end) {
      *pos++ = *start++;
    }
    return pos;
  }
};

template <typename T, typename Iterator>
709
struct CopyConstructArray_<T, Iterator, false, false> {
Kenton Varda's avatar
Kenton Varda committed
710 711 712 713
  struct ExceptionGuard {
    T* start;
    T* pos;
    inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
714
    ~ExceptionGuard() noexcept(false) {
Kenton Varda's avatar
Kenton Varda committed
715 716 717 718 719 720 721
      while (pos > start) {
        dtor(*--pos);
      }
    }
  };

  static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
722 723 724 725
    // Verify that T can be *implicitly* constructed from the source values.
    if (false) implicitCast<T>(*start);

    if (noexcept(T(*start))) {
Kenton Varda's avatar
Kenton Varda committed
726
      while (start != end) {
727
        ctor(*pos++, *start++);
Kenton Varda's avatar
Kenton Varda committed
728 729 730 731 732 733
      }
      return pos;
    } else {
      // Crap.  This is complicated.
      ExceptionGuard guard(pos);
      while (start != end) {
734
        ctor(*guard.pos, *start++);
Kenton Varda's avatar
Kenton Varda committed
735 736 737 738 739 740 741 742 743
        ++guard.pos;
      }
      guard.start = guard.pos;
      return guard.pos;
    }
  }
};

template <typename T, typename Iterator>
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
struct CopyConstructArray_<T, Iterator, true, false> {
  // Actually move-construct.

  struct ExceptionGuard {
    T* start;
    T* pos;
    inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
    ~ExceptionGuard() noexcept(false) {
      while (pos > start) {
        dtor(*--pos);
      }
    }
  };

  static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
    // Verify that T can be *implicitly* constructed from the source values.
    if (false) implicitCast<T>(kj::mv(*start));

    if (noexcept(T(kj::mv(*start)))) {
      while (start != end) {
        ctor(*pos++, kj::mv(*start++));
      }
      return pos;
    } else {
      // Crap.  This is complicated.
      ExceptionGuard guard(pos);
      while (start != end) {
        ctor(*guard.pos, kj::mv(*start++));
        ++guard.pos;
      }
      guard.start = guard.pos;
      return guard.pos;
    }
  }
};
Kenton Varda's avatar
Kenton Varda committed
779

780
}  // namespace _ (private)
Kenton Varda's avatar
Kenton Varda committed
781 782

template <typename T>
783
template <typename Iterator, bool move>
Kenton Varda's avatar
Kenton Varda committed
784
void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
785
  pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end);
Kenton Varda's avatar
Kenton Varda committed
786 787
}

Kenton Varda's avatar
Kenton Varda committed
788 789 790 791 792 793 794
template <typename T>
Array<T> heapArray(const T* content, size_t size) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
  builder.addAll(content, content + size);
  return builder.finish();
}

795 796 797 798 799 800 801
template <typename T>
Array<T> heapArray(T* content, size_t size) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
  builder.addAll(content, content + size);
  return builder.finish();
}

802 803 804 805 806 807 808
template <typename T>
Array<T> heapArray(ArrayPtr<T> content) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
  builder.addAll(content);
  return builder.finish();
}

Kenton Varda's avatar
Kenton Varda committed
809 810 811 812 813 814 815 816 817 818 819 820 821 822
template <typename T>
Array<T> heapArray(ArrayPtr<const T> content) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
  builder.addAll(content);
  return builder.finish();
}

template <typename T, typename Iterator> Array<T>
heapArray(Iterator begin, Iterator end) {
  ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
  builder.addAll(begin, end);
  return builder.finish();
}

823 824 825 826 827
template <typename T>
inline Array<T> heapArray(std::initializer_list<T> init) {
  return heapArray<T>(init.begin(), init.end());
}

828 829 830 831 832 833 834 835 836
#if __cplusplus > 201402L
template <typename T, typename... Params>
inline Array<Decay<T>> arr(T&& param1, Params&&... params) {
  ArrayBuilder<Decay<T>> builder = heapArrayBuilder<Decay<T>>(sizeof...(params) + 1);
  (builder.add(kj::fwd<T>(param1)), ... , builder.add(kj::fwd<Params>(params)));
  return builder.finish();
}
#endif

837
}  // namespace kj