common.h 16.6 KB
Newer Older
Kenton Varda's avatar
Kenton Varda committed
1 2
// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
3
//
Kenton Varda's avatar
Kenton Varda committed
4 5 6 7 8 9
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
10
//
Kenton Varda's avatar
Kenton Varda committed
11 12
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
13
//
Kenton Varda's avatar
Kenton Varda committed
14 15 16 17 18 19 20
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
21 22 23 24 25

// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.

Kenton Varda's avatar
Kenton Varda committed
26 27
#ifndef CAPNP_COMMON_H_
#define CAPNP_COMMON_H_
28

29
#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
30 31 32
#pragma GCC system_header
#endif

Kenton Varda's avatar
Kenton Varda committed
33
#include <kj/units.h>
Kenton Varda's avatar
Kenton Varda committed
34
#include <inttypes.h>
35
#include <kj/string.h>
36
#include <kj/memory.h>
37

38
namespace capnp {
39

40
#define CAPNP_VERSION_MAJOR 0
41
#define CAPNP_VERSION_MINOR 6
42 43 44 45 46
#define CAPNP_VERSION_MICRO 0

#define CAPNP_VERSION \
  (CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)

47 48 49 50 51
#ifdef _MSC_VER
#define CAPNP_LITE 1
// MSVC only supports "lite" mode for now, due to missing C++11 features.
#endif

52 53 54 55
#ifndef CAPNP_LITE
#define CAPNP_LITE 0
#endif

56 57
typedef unsigned int uint;

58 59 60 61 62 63
struct Void {
  // Type used for Void fields.  Using C++'s "void" type creates a bunch of issues since it behaves
  // differently from other types.

  inline constexpr bool operator==(Void other) const { return true; }
  inline constexpr bool operator!=(Void other) const { return false; }
64
};
65

66
static constexpr Void VOID = Void();
67 68
// Constant value for `Void`,  which is an empty struct.

69
inline kj::StringPtr KJ_STRINGIFY(Void) { return "void"; }
70

71 72 73 74 75 76 77 78 79 80 81
struct Text;
struct Data;

enum class Kind: uint8_t {
  PRIMITIVE,
  BLOB,
  ENUM,
  STRUCT,
  UNION,
  INTERFACE,
  LIST,
82 83 84 85

  OTHER
  // Some other type which is often a type parameter to Cap'n Proto templates, but which needs
  // special handling. This includes types like AnyPointer, Dynamic*, etc.
86 87
};

88 89 90 91 92 93 94
enum class Style: uint8_t {
  PRIMITIVE,
  POINTER,      // other than struct
  STRUCT,
  CAPABILITY
};

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
enum class ElementSize: uint8_t {
  // Size of a list element.

  VOID = 0,
  BIT = 1,
  BYTE = 2,
  TWO_BYTES = 3,
  FOUR_BYTES = 4,
  EIGHT_BYTES = 5,

  POINTER = 6,

  INLINE_COMPOSITE = 7
};

110 111 112 113 114 115 116 117
enum class PointerType {
  // Various wire types a pointer field can take

  NULL_,
  // Should be NULL, but that's #defined in stddef.h

  STRUCT,
  LIST,
118
  CAPABILITY
119 120
};

121 122 123 124 125 126 127
namespace schemas {

template <typename T>
struct EnumInfo;

}  // namespace schemas

128 129
namespace _ {  // private

130
template <typename T, typename = void> struct Kind_;
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };

147 148 149 150 151 152 153 154 155
template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsStruct>> {
  static constexpr Kind kind = Kind::STRUCT;
};
template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsInterface>> {
  static constexpr Kind kind = Kind::INTERFACE;
};
template <typename T> struct Kind_<T, kj::VoidSfinae<typename schemas::EnumInfo<T>::IsEnum>> {
  static constexpr Kind kind = Kind::ENUM;
};
156

157 158
}  // namespace _ (private)

159 160 161 162 163 164 165
template <typename T, Kind k = _::Kind_<T>::kind>
inline constexpr Kind kind() {
  // This overload of kind() matches types which have a Kind_ specialization.

  return k;
}

166 167 168 169 170 171 172
#if CAPNP_LITE

#define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind
// Avoid constexpr methods in lite mode (MSVC is bad at constexpr).

#else  // CAPNP_LITE

173 174
#define CAPNP_KIND(T) ::capnp::kind<T>()
// Use this macro rather than kind<T>() in any code which must work in lite mode.
175

176 177 178 179 180 181 182
template <typename T, Kind k = kind<T>()>
inline constexpr Style style() {
  return k == Kind::PRIMITIVE || k == Kind::ENUM ? Style::PRIMITIVE
       : k == Kind::STRUCT ? Style::STRUCT
       : k == Kind::INTERFACE ? Style::CAPABILITY : Style::POINTER;
}

183
#endif  // CAPNP_LITE, else
184

185
template <typename T, Kind k = CAPNP_KIND(T)>
186 187
struct List;

188 189 190 191 192 193 194 195 196 197 198
#if _MSC_VER

template <typename T, Kind k>
struct List {};
// For some reason, without this declaration, MSVC will error out on some uses of List
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.

#endif

199 200 201 202
template <typename T> struct ListElementType_;
template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
template <typename T> using ListElementType = typename ListElementType_<T>::Type;

203
namespace _ {  // private
204
template <typename T, Kind k> struct Kind_<List<T, k>> {
205 206
  static constexpr Kind kind = Kind::LIST;
};
207 208
}  // namespace _ (private)

209
template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; };
210 211
template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
212
template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
213 214 215
template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
// The type returned by List<T>::Reader::operator[].

216
template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; };
217 218
template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
219
template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
220 221 222
template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
// The type returned by List<T>::Builder::operator[].

223
template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;};
224 225 226
template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;

227
template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_;
228 229 230 231 232 233 234 235 236 237 238 239 240
template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };

template <typename T>
using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;

template <typename T>
using FromReader = typename kj::Decay<T>::Reads;
// FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).

template <typename T>
using FromBuilder = typename kj::Decay<T>::Builds;
// FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).

241 242 243 244
template <typename T>
using FromPipeline = typename kj::Decay<T>::Pipelines;
// FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type).

245 246 247 248 249 250 251 252
template <typename T>
using FromClient = typename kj::Decay<T>::Calls;
// FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).

template <typename T>
using FromServer = typename kj::Decay<T>::Serves;
// FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
template <typename T, typename = void>
struct FromAny_;

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromReader<T>>> {
  using Type = FromReader<T>;
};

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromBuilder<T>>> {
  using Type = FromBuilder<T>;
};

template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromPipeline<T>>> {
  using Type = FromPipeline<T>;
};

// Note that T::Client is covered by FromReader

template <typename T>
struct FromAny_<kj::Own<T>, kj::VoidSfinae<FromServer<T>>> {
  using Type = FromServer<T>;
};

template <typename T>
struct FromAny_<T,
    kj::EnableIf<_::Kind_<T>::kind == Kind::PRIMITIVE || _::Kind_<T>::kind == Kind::ENUM>> {
  // TODO(msvc): Ideally the EnableIf condition would be `style<T>() == Style::PRIMITIVE`, but MSVC
  // cannot yet use style<T>() in this constexpr context.

  using Type = kj::Decay<T>;
285 286 287
};

template <typename T>
288
using FromAny = typename FromAny_<T>::Type;
289 290 291 292 293 294 295 296 297
// Given any Cap'n Proto value type as an input, return the Cap'n Proto base type. That is:
//
//     Foo::Reader -> Foo
//     Foo::Builder -> Foo
//     Foo::Pipeline -> Foo
//     Foo::Client -> Foo
//     Own<Foo::Server> -> Foo
//     uint32_t -> uint32_t

298
namespace _ {  // private
299

300
template <typename T, Kind k = CAPNP_KIND(T)>
301
struct PointerHelpers;
302 303 304 305 306 307 308 309 310 311 312 313

#if _MSC_VER

template <typename T, Kind k>
struct PointerHelpers {};
// For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.

#endif

314 315
}  // namespace _ (private)

316 317 318 319 320 321
struct MessageSize {
  // Size of a message.  Every struct type has a method `.totalSize()` that returns this.
  uint64_t wordCount;
  uint capCount;
};

322 323 324 325 326
// =======================================================================================
// Raw memory types and measures

using kj::byte;

Kenton Varda's avatar
Kenton Varda committed
327
class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
328 329 330 331
// word is an opaque type with size of 64 bits.  This type is useful only to make pointer
// arithmetic clearer.  Since the contents are private, the only way to access them is to first
// reinterpret_cast to some other pointer type.
//
David Renshaw's avatar
David Renshaw committed
332
// Copying is disallowed because you should always use memcpy().  Otherwise, you may run afoul of
333 334 335 336 337 338 339 340
// aliasing rules.
//
// A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
// that type.

static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");

341 342 343 344 345
#if CAPNP_DEBUG_TYPES
// Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types.  Otherwise, plain integers are
// used.  All the code should still operate exactly the same, we just lose compile-time checking.
// Note that this will also change symbol names, so it's important that the library and any clients
// be compiled with the same setting here.
346
//
347 348 349
// We disable this by default to reduce symbol name size and avoid any possibility of the compiler
// failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
// during development and testing.
350

351
namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }
352

353 354 355 356 357
typedef kj::Quantity<uint, _::BitLabel> BitCount;
typedef kj::Quantity<uint8_t, _::BitLabel> BitCount8;
typedef kj::Quantity<uint16_t, _::BitLabel> BitCount16;
typedef kj::Quantity<uint32_t, _::BitLabel> BitCount32;
typedef kj::Quantity<uint64_t, _::BitLabel> BitCount64;
358 359 360 361 362 363 364 365 366 367 368 369 370

typedef kj::Quantity<uint, byte> ByteCount;
typedef kj::Quantity<uint8_t, byte> ByteCount8;
typedef kj::Quantity<uint16_t, byte> ByteCount16;
typedef kj::Quantity<uint32_t, byte> ByteCount32;
typedef kj::Quantity<uint64_t, byte> ByteCount64;

typedef kj::Quantity<uint, word> WordCount;
typedef kj::Quantity<uint8_t, word> WordCount8;
typedef kj::Quantity<uint16_t, word> WordCount16;
typedef kj::Quantity<uint32_t, word> WordCount32;
typedef kj::Quantity<uint64_t, word> WordCount64;

371 372 373 374 375 376 377 378 379 380 381
typedef kj::Quantity<uint, _::ElementLabel> ElementCount;
typedef kj::Quantity<uint8_t, _::ElementLabel> ElementCount8;
typedef kj::Quantity<uint16_t, _::ElementLabel> ElementCount16;
typedef kj::Quantity<uint32_t, _::ElementLabel> ElementCount32;
typedef kj::Quantity<uint64_t, _::ElementLabel> ElementCount64;

typedef kj::Quantity<uint, _::WirePointer> WirePointerCount;
typedef kj::Quantity<uint8_t, _::WirePointer> WirePointerCount8;
typedef kj::Quantity<uint16_t, _::WirePointer> WirePointerCount16;
typedef kj::Quantity<uint32_t, _::WirePointer> WirePointerCount32;
typedef kj::Quantity<uint64_t, _::WirePointer> WirePointerCount64;
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
template <typename T, typename U>
inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
  return ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
  return ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr + offset / kj::unit<kj::Quantity<T, U>>();
}

template <typename T, typename U>
inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
  return ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
  return ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
  return ptr = ptr - offset / kj::unit<kj::Quantity<T, U>>();
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
#else

typedef uint BitCount;
typedef uint8_t BitCount8;
typedef uint16_t BitCount16;
typedef uint32_t BitCount32;
typedef uint64_t BitCount64;

typedef uint ByteCount;
typedef uint8_t ByteCount8;
typedef uint16_t ByteCount16;
typedef uint32_t ByteCount32;
typedef uint64_t ByteCount64;

typedef uint WordCount;
typedef uint8_t WordCount8;
typedef uint16_t WordCount16;
typedef uint32_t WordCount32;
typedef uint64_t WordCount64;

typedef uint ElementCount;
typedef uint8_t ElementCount8;
typedef uint16_t ElementCount16;
typedef uint32_t ElementCount32;
typedef uint64_t ElementCount64;

typedef uint WirePointerCount;
typedef uint8_t WirePointerCount8;
typedef uint16_t WirePointerCount16;
typedef uint32_t WirePointerCount32;
typedef uint64_t WirePointerCount64;

#endif

constexpr BitCount BITS = kj::unit<BitCount>();
constexpr ByteCount BYTES = kj::unit<ByteCount>();
constexpr WordCount WORDS = kj::unit<WordCount>();
constexpr ElementCount ELEMENTS = kj::unit<ElementCount>();
constexpr WirePointerCount POINTERS = kj::unit<WirePointerCount>();

457 458 459 460 461 462 463 464
// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr auto BITS_PER_BYTE KJ_UNUSED = 8 * BITS / BYTES;
constexpr auto BITS_PER_WORD KJ_UNUSED = 64 * BITS / WORDS;
constexpr auto BYTES_PER_WORD KJ_UNUSED = 8 * BYTES / WORDS;

constexpr auto BITS_PER_POINTER KJ_UNUSED = 64 * BITS / POINTERS;
constexpr auto BYTES_PER_POINTER KJ_UNUSED = 8 * BYTES / POINTERS;
constexpr auto WORDS_PER_POINTER KJ_UNUSED = 1 * WORDS / POINTERS;
465 466 467 468

constexpr WordCount POINTER_SIZE_IN_WORDS = 1 * POINTERS * WORDS_PER_POINTER;

template <typename T>
469
inline KJ_CONSTEXPR() decltype(BYTES / ELEMENTS) bytesPerElement() {
470 471 472 473
  return sizeof(T) * BYTES / ELEMENTS;
}

template <typename T>
474
inline KJ_CONSTEXPR() decltype(BITS / ELEMENTS) bitsPerElement() {
475 476 477 478 479 480 481 482 483 484
  return sizeof(T) * 8 * BITS / ELEMENTS;
}

inline constexpr ByteCount intervalLength(const byte* a, const byte* b) {
  return uint(b - a) * BYTES;
}
inline constexpr WordCount intervalLength(const word* a, const word* b) {
  return uint(b - a) * WORDS;
}

485
}  // namespace capnp
486

Kenton Varda's avatar
Kenton Varda committed
487
#endif  // CAPNP_COMMON_H_