orphan.h 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef CAPNP_ORPHAN_H_
#define CAPNP_ORPHAN_H_

#include "layout.h"

namespace capnp {

class StructSchema;
class ListSchema;
struct DynamicStruct;
struct DynamicList;

template <typename T>
class Orphan {
  // Represents an object which is allocated within some message builder but has no pointers
  // pointing at it.  An Orphan can later be "adopted" by some other object as one of that object's
  // fields, without having to copy the orphan.  For a field `foo` of pointer type, the generated
  // code will define builder methods `void adoptFoo(Orphan<T>)` and `Orphan<T> disownFoo()`.
  // Orphans can also be created independently of any parent using an Orphanage.
  //
  // `Orphan<T>` can be moved but not copied, like `Own<T>`, so that it is impossible for one
  // orphan to be adopted multiple times.  If an orphan is destroyed without being adopted, its
  // contents are zero'd out (and possibly reused, if we ever implement the ability to reuse space
  // in a message arena).

public:
  Orphan() = default;
  KJ_DISALLOW_COPY(Orphan);
  Orphan(Orphan&&) = default;
  Orphan& operator=(Orphan&&) = default;

55
  inline BuilderFor<T> get();
56 57 58 59 60 61
  // Get the underlying builder.  If the orphan is null, this will allocate and return a default
  // object rather than crash.  This is done for security -- otherwise, you might enable a DoS
  // attack any time you disown a field and fail to check if it is null.  In the case of structs,
  // this means that the orphan is no longer null after get() returns.  In the case of lists,
  // no actual object is allocated since a simple empty ListBuilder can be returned.

62
  inline ReaderFor<T> getReader() const;
63

64 65
  inline bool operator==(decltype(nullptr)) const { return builder == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return builder != nullptr; }
66 67 68 69 70 71 72 73 74 75

private:
  _::OrphanBuilder builder;

  inline Orphan(_::OrphanBuilder&& builder): builder(kj::mv(builder)) {}

  template <typename, Kind>
  friend struct _::PointerHelpers;
  template <typename, Kind>
  friend struct List;
76 77
  template <typename U>
  friend class Orphan;
78
  friend class Orphanage;
79
  friend class MessageBuilder;
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
};

class Orphanage: private kj::DisallowConstCopy {
  // Use to directly allocate Orphan objects, without having a parent object allocate and then
  // disown the object.

public:
  inline Orphanage(): arena(nullptr) {}

  template <typename BuilderType>
  static Orphanage getForMessageContaining(BuilderType builder);
  // Construct an Orphanage that allocates within the message containing the given Builder.  This
  // allows the constructed Orphans to be adopted by objects within said message.
  //
  // This constructor takes the builder rather than having the builder have a getOrphanage() method
  // because this is an advanced feature and we don't want to pollute the builder APIs with it.
  //
  // Note that if you have a direct pointer to the `MessageBuilder`, you can simply call its
  // `getOrphanage()` method.

  template <typename RootType>
101
  Orphan<RootType> newOrphan() const;
102 103 104
  // Allocate a new orphaned struct.

  template <typename RootType>
105
  Orphan<RootType> newOrphan(uint size) const;
106 107
  // Allocate a new orphaned list or blob.

108
  Orphan<DynamicStruct> newOrphan(StructSchema schema) const;
109 110 111
  // Dynamically create an orphan struct with the given schema.  You must
  // #include <capnp/dynamic.h> to use this.

112
  Orphan<DynamicList> newOrphan(ListSchema schema, uint size) const;
113 114 115 116
  // Dynamically create an orphan list with the given schema.  You must #include <capnp/dynamic.h>
  // to use this.

  template <typename Reader>
117
  Orphan<FromReader<Reader>> newOrphanCopy(const Reader& copyFrom) const;
118 119
  template <typename Reader>
  Orphan<FromReader<Reader>> newOrphanCopy(Reader& copyFrom) const;
120 121 122
  // Allocate a new orphaned object (struct, list, or blob) and initialize it as a copy of the
  // given object.

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  Orphan<Data> referenceExternalData(Data::Reader data) const;
  // Creates an Orphan<Data> that points at an existing region of memory (e.g. from another message)
  // without copying it.  There are some SEVERE restrictions on how this can be used:
  // - The memory must remain valid until the `MessageBuilder` is destroyed (even if the orphan is
  //   abandoned).
  // - Because the data is const, you will not be allowed to obtain a `Data::Builder`
  //   for this blob.  Any call which would return such a builder will throw an exception.  You
  //   can, however, obtain a Reader, e.g. via orphan.getReader() or from a parent Reader (once
  //   the orphan is adopted).  It is your responsibility to make sure your code can deal with
  //   these problems when using this optimization; if you can't, allocate a copy instead.
  // - `data.begin()` must be aligned to a machine word boundary (32-bit or 64-bit depending on
  //   the CPU).  Any pointer returned by malloc() as well as any data blob obtained from another
  //   Cap'n Proto message satisfies this.
  // - If `data.size()` is not a multiple of 8, extra bytes past data.end() up until the next 8-byte
  //   boundary will be visible in the raw message when it is written out.  Thus, there must be no
  //   secrets in these bytes.  Data blobs obtained from other Cap'n Proto messages should be safe
  //   as these bytes should be zero (unless the sender had the same problem).
  //
  // The array will actually become one of the message's segments.  The data can thus be adopted
  // into the message tree without copying it.  This is particularly useful when referencing very
  // large blobs, such as whole mmap'd files.

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
private:
  _::BuilderArena* arena;

  inline explicit Orphanage(_::BuilderArena* arena): arena(arena) {}

  template <typename T, Kind = kind<T>()>
  struct GetInnerBuilder;
  template <typename T, Kind = kind<T>()>
  struct GetInnerReader;
  template <typename T>
  struct NewOrphanListImpl;

  friend class MessageBuilder;
};

// =======================================================================================
// Inline implementation details.

namespace _ {  // private

template <typename T, Kind = kind<T>()>
struct OrphanGetImpl;

template <typename T>
struct OrphanGetImpl<T, Kind::STRUCT> {
  static inline typename T::Builder apply(_::OrphanBuilder& builder) {
    return typename T::Builder(builder.asStruct(_::structSize<T>()));
  }
173 174 175
  static inline typename T::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename T::Reader(builder.asStructReader(_::structSize<T>()));
  }
176 177
};

178 179 180 181 182 183 184 185 186 187
template <typename T>
struct OrphanGetImpl<T, Kind::INTERFACE> {
  static inline typename T::Client apply(_::OrphanBuilder& builder) {
    return typename T::Client(builder.asCapability());
  }
  static inline typename T::Client applyReader(const _::OrphanBuilder& builder) {
    return typename T::Client(builder.asCapability());
  }
};

188 189
template <typename T, Kind k>
struct OrphanGetImpl<List<T, k>, Kind::LIST> {
190 191 192
  static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
    return typename List<T>::Builder(builder.asList(_::ElementSizeForType<T>::value));
  }
193 194 195
  static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
  }
196 197 198 199
};

template <typename T>
struct OrphanGetImpl<List<T, Kind::STRUCT>, Kind::LIST> {
200
  static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) {
201 202
    return typename List<T>::Builder(builder.asStructList(_::structSize<T>()));
  }
203 204 205
  static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) {
    return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value));
  }
206 207 208 209 210 211 212
};

template <>
struct OrphanGetImpl<Text, Kind::BLOB> {
  static inline Text::Builder apply(_::OrphanBuilder& builder) {
    return Text::Builder(builder.asText());
  }
213 214 215
  static inline Text::Reader applyReader(const _::OrphanBuilder& builder) {
    return Text::Reader(builder.asTextReader());
  }
216 217 218 219 220 221 222
};

template <>
struct OrphanGetImpl<Data, Kind::BLOB> {
  static inline Data::Builder apply(_::OrphanBuilder& builder) {
    return Data::Builder(builder.asData());
  }
223 224 225
  static inline Data::Reader applyReader(const _::OrphanBuilder& builder) {
    return Data::Reader(builder.asDataReader());
  }
226 227 228 229 230
};

}  // namespace _ (private)

template <typename T>
231
inline BuilderFor<T> Orphan<T>::get() {
232 233 234
  return _::OrphanGetImpl<T>::apply(builder);
}

235
template <typename T>
236
inline ReaderFor<T> Orphan<T>::getReader() const {
237 238 239
  return _::OrphanGetImpl<T>::applyReader(builder);
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
template <typename T>
struct Orphanage::GetInnerBuilder<T, Kind::STRUCT> {
  static inline _::StructBuilder apply(typename T::Builder& t) {
    return t._builder;
  }
};

template <typename T>
struct Orphanage::GetInnerBuilder<T, Kind::LIST> {
  static inline _::ListBuilder apply(typename T::Builder& t) {
    return t.builder;
  }
};

template <typename BuilderType>
Orphanage Orphanage::getForMessageContaining(BuilderType builder) {
  return Orphanage(GetInnerBuilder<FromBuilder<BuilderType>>::apply(builder).getArena());
}

template <typename RootType>
260
Orphan<RootType> Orphanage::newOrphan() const {
261 262 263 264 265 266 267 268 269 270 271 272 273
  return Orphan<RootType>(_::OrphanBuilder::initStruct(arena, _::structSize<RootType>()));
}

template <typename T, Kind k>
struct Orphanage::NewOrphanListImpl<List<T, k>> {
  static inline _::OrphanBuilder apply(_::BuilderArena* arena, uint size) {
    return _::OrphanBuilder::initList(arena, size * ELEMENTS, _::ElementSizeForType<T>::value);
  }
};

template <typename T>
struct Orphanage::NewOrphanListImpl<List<T, Kind::STRUCT>> {
  static inline _::OrphanBuilder apply(_::BuilderArena* arena, uint size) {
274
    return _::OrphanBuilder::initStructList(arena, size * ELEMENTS, _::structSize<T>());
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  }
};

template <>
struct Orphanage::NewOrphanListImpl<Text> {
  static inline _::OrphanBuilder apply(_::BuilderArena* arena, uint size) {
    return _::OrphanBuilder::initText(arena, size * BYTES);
  }
};

template <>
struct Orphanage::NewOrphanListImpl<Data> {
  static inline _::OrphanBuilder apply(_::BuilderArena* arena, uint size) {
    return _::OrphanBuilder::initData(arena, size * BYTES);
  }
};

template <typename RootType>
293
Orphan<RootType> Orphanage::newOrphan(uint size) const {
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  return Orphan<RootType>(NewOrphanListImpl<RootType>::apply(arena, size));
}

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::STRUCT> {
  static inline _::StructReader apply(const typename T::Reader& t) {
    return t._reader;
  }
};

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::LIST> {
  static inline _::ListReader apply(const typename T::Reader& t) {
    return t.reader;
  }
};

template <typename T>
struct Orphanage::GetInnerReader<T, Kind::BLOB> {
  static inline const typename T::Reader& apply(const typename T::Reader& t) {
    return t;
  }
};

template <typename Reader>
319
inline Orphan<FromReader<Reader>> Orphanage::newOrphanCopy(const Reader& copyFrom) const {
320 321 322
  return Orphan<FromReader<Reader>>(_::OrphanBuilder::copy(
      arena, GetInnerReader<FromReader<Reader>>::apply(copyFrom)));
}
323 324 325 326
template <typename Reader>
inline Orphan<FromReader<Reader>> Orphanage::newOrphanCopy(Reader& copyFrom) const {
  return newOrphanCopy(kj::implicitCast<const Reader&>(copyFrom));
}
327

328 329 330 331
inline Orphan<Data> Orphanage::referenceExternalData(Data::Reader data) const {
  return Orphan<Data>(_::OrphanBuilder::referenceExternalData(arena, data));
}

332 333 334
}  // namespace capnp

#endif  // CAPNP_ORPHAN_H_