1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BUTIL_TYPE_TRAITS_H
#define BUTIL_TYPE_TRAITS_H
#include <cstddef> // For size_t.
#include "butil/build_config.h"
#if defined(BUTIL_CXX11_ENABLED)
#include <type_traits>
#endif
namespace butil {
// integral_constant, defined in tr1, is a wrapper for an integer
// value. We don't really need this generality; we could get away
// with hardcoding the integer type to bool. We use the fully
// general integer_constant for compatibility with tr1.
template <typename T, T v>
struct integral_constant {
static const T value = v;
typedef T value_type;
typedef integral_constant<T, v> type;
};
template <typename T, T v> const T integral_constant<T, v>::value;
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;
template <typename T> struct is_integral;
template <typename T> struct is_floating_point;
template <typename T> struct is_pointer;
template <typename T> struct is_member_function_pointer;
template <typename T> struct is_enum;
template <typename T> struct is_void;
template <typename T> struct is_pod;
template <typename T> struct is_const;
template <typename T> struct is_array;
template <typename T> struct is_reference;
template <typename T> struct is_non_const_reference;
template <typename T, typename U> struct is_same;
template <typename T> struct remove_const;
template <typename T> struct remove_volatile;
template <typename T> struct remove_cv;
template <typename T> struct remove_reference;
template <typename T> struct remove_const_reference;
template <typename T> struct add_const;
template <typename T> struct add_volatile;
template <typename T> struct add_cv;
template <typename T> struct add_reference;
template <typename T> struct add_const_reference;
template <typename T> struct remove_pointer;
template <typename T> struct add_cr_non_integral;
template <typename From, typename To> struct is_convertible;
template <bool C, typename TrueType, typename FalseType> struct conditional;
// is_integral is false except for the built-in integer types.
template <typename T> struct is_integral : false_type { };
template<> struct is_integral<bool> : true_type { };
template<> struct is_integral<char> : true_type { };
template<> struct is_integral<unsigned char> : true_type { };
template<> struct is_integral<signed char> : true_type { };
#if defined(_MSC_VER)
// wchar_t is not by default a distinct type from unsigned short in
// Microsoft C.
// See http://msdn2.microsoft.com/en-us/library/dh8che7s(VS.80).aspx
template<> struct is_integral<__wchar_t> : true_type { };
#else
template<> struct is_integral<wchar_t> : true_type { };
#endif
template<> struct is_integral<short> : true_type { };
template<> struct is_integral<unsigned short> : true_type { };
template<> struct is_integral<int> : true_type { };
template<> struct is_integral<unsigned int> : true_type { };
template<> struct is_integral<long> : true_type { };
template<> struct is_integral<unsigned long> : true_type { };
template<> struct is_integral<long long> : true_type { };
template<> struct is_integral<unsigned long long> : true_type { };
// is_floating_point is false except for the built-in floating-point types.
template <typename T> struct is_floating_point : false_type { };
template<> struct is_floating_point<float> : true_type { };
template<> struct is_floating_point<double> : true_type { };
template<> struct is_floating_point<long double> : true_type { };
template <typename T> struct is_pointer : false_type {};
template <typename T> struct is_pointer<T*> : true_type {};
#if defined(BUTIL_CXX11_ENABLED)
template <class T> struct is_pod : std::is_pod<T> {};
#else
// We can't get is_pod right without compiler help, so fail conservatively.
// We will assume it's false except for arithmetic types, enumerations,
// pointers and cv-qualified versions thereof. Note that std::pair<T,U>
// is not a POD even if T and U are PODs.
template <class T> struct is_pod
: integral_constant<bool, (is_integral<T>::value ||
is_floating_point<T>::value ||
is_enum<T>::value ||
is_pointer<T>::value)> { };
template <class T> struct is_pod<const T> : is_pod<T> { };
template <class T> struct is_pod<volatile T> : is_pod<T> { };
template <class T> struct is_pod<const volatile T> : is_pod<T> { };
#endif
// Member function pointer detection up to four params. Add more as needed
// below. This is built-in to C++ 11, and we can remove this when we switch.
template <typename T>
struct is_member_function_pointer : false_type {};
template <typename R, typename Z>
struct is_member_function_pointer<R(Z::*)()> : true_type {};
template <typename R, typename Z>
struct is_member_function_pointer<R(Z::*)() const> : true_type {};
template <typename R, typename Z, typename A>
struct is_member_function_pointer<R(Z::*)(A)> : true_type {};
template <typename R, typename Z, typename A>
struct is_member_function_pointer<R(Z::*)(A) const> : true_type {};
template <typename R, typename Z, typename A, typename B>
struct is_member_function_pointer<R(Z::*)(A, B)> : true_type {};
template <typename R, typename Z, typename A, typename B>
struct is_member_function_pointer<R(Z::*)(A, B) const> : true_type {};
template <typename R, typename Z, typename A, typename B, typename C>
struct is_member_function_pointer<R(Z::*)(A, B, C)> : true_type {};
template <typename R, typename Z, typename A, typename B, typename C>
struct is_member_function_pointer<R(Z::*)(A, B, C) const> : true_type {};
template <typename R, typename Z, typename A, typename B, typename C,
typename D>
struct is_member_function_pointer<R(Z::*)(A, B, C, D)> : true_type {};
template <typename R, typename Z, typename A, typename B, typename C,
typename D>
struct is_member_function_pointer<R(Z::*)(A, B, C, D) const> : true_type {};
// Specified by TR1 [4.6] Relationships between types
template <typename T, typename U> struct is_same : public false_type {};
template <typename T> struct is_same<T,T> : true_type {};
template <typename> struct is_array : public false_type {};
template <typename T, size_t n> struct is_array<T[n]> : public true_type {};
template <typename T> struct is_array<T[]> : public true_type {};
template <typename T> struct is_non_const_reference : false_type {};
template <typename T> struct is_non_const_reference<T&> : true_type {};
template <typename T> struct is_non_const_reference<const T&> : false_type {};
template <typename T> struct is_const : false_type {};
template <typename T> struct is_const<const T> : true_type {};
template <typename T> struct is_void : false_type {};
template <> struct is_void<void> : true_type {};
namespace internal {
// Types YesType and NoType are guaranteed such that sizeof(YesType) <
// sizeof(NoType).
typedef char YesType;
struct NoType {
YesType dummy[2];
};
// This class is an implementation detail for is_convertible, and you
// don't need to know how it works to use is_convertible. For those
// who care: we declare two different functions, one whose argument is
// of type To and one with a variadic argument list. We give them
// return types of different size, so we can use sizeof to trick the
// compiler into telling us which function it would have chosen if we
// had called it with an argument of type From. See Alexandrescu's
// _Modern C++ Design_ for more details on this sort of trick.
struct ConvertHelper {
template <typename To>
static YesType Test(To);
template <typename To>
static NoType Test(...);
template <typename From>
static From& Create();
};
// Used to determine if a type is a struct/union/class. Inspired by Boost's
// is_class type_trait implementation.
struct IsClassHelper {
template <typename C>
static YesType Test(void(C::*)(void));
template <typename C>
static NoType Test(...);
};
// For implementing is_empty
#if defined(COMPILER_MSVC)
#pragma warning(push)
#pragma warning(disable:4624) // destructor could not be generated
#endif
template <typename T>
struct EmptyHelper1 : public T {
EmptyHelper1(); // hh compiler bug workaround
int i[256];
private:
// suppress compiler warnings:
EmptyHelper1(const EmptyHelper1&);
EmptyHelper1& operator=(const EmptyHelper1&);
};
#if defined(COMPILER_MSVC)
#pragma warning(pop)
#endif
struct EmptyHelper2 {
int i[256];
};
} // namespace internal
// Inherits from true_type if From is convertible to To, false_type otherwise.
//
// Note that if the type is convertible, this will be a true_type REGARDLESS
// of whether or not the conversion would emit a warning.
template <typename From, typename To>
struct is_convertible
: integral_constant<bool,
sizeof(internal::ConvertHelper::Test<To>(
internal::ConvertHelper::Create<From>())) ==
sizeof(internal::YesType)> {
};
template <typename T>
struct is_class
: integral_constant<bool,
sizeof(internal::IsClassHelper::Test<T>(0)) ==
sizeof(internal::YesType)> {
};
// True if T is an empty class/struct
// NOTE: not work for union
template <typename T>
struct is_empty : integral_constant<bool, is_class<T>::value &&
sizeof(internal::EmptyHelper1<T>) == sizeof(internal::EmptyHelper2)> {};
template <bool B, typename T = void>
struct enable_if {};
template <typename T>
struct enable_if<true, T> { typedef T type; };
// Select type by C.
template <bool C, typename TrueType, typename FalseType>
struct conditional {
typedef TrueType type;
};
template <typename TrueType, typename FalseType>
struct conditional<false, TrueType, FalseType> {
typedef FalseType type;
};
// Specified by TR1 [4.7.1]
template <typename _Tp> struct add_const { typedef _Tp const type; };
template <typename _Tp> struct add_volatile { typedef _Tp volatile type; };
template <typename _Tp> struct add_cv {
typedef typename add_const<typename add_volatile<_Tp>::type>::type type;
};
template <typename T> struct remove_const { typedef T type; };
template <typename T> struct remove_const<T const> { typedef T type; };
template <typename T> struct remove_volatile { typedef T type; };
template <typename T> struct remove_volatile<T volatile> { typedef T type; };
template <typename T> struct remove_cv {
typedef typename remove_const<typename remove_volatile<T>::type>::type type;
};
// Specified by TR1 [4.7.2] Reference modifications.
template <typename T> struct remove_reference { typedef T type; };
template <typename T> struct remove_reference<T&> { typedef T type; };
template <typename T> struct add_reference { typedef T& type; };
template <typename T> struct add_reference<T&> { typedef T& type; };
// Specializations for void which can't be referenced.
template <> struct add_reference<void> { typedef void type; };
template <> struct add_reference<void const> { typedef void const type; };
template <> struct add_reference<void volatile> { typedef void volatile type; };
template <> struct add_reference<void const volatile> { typedef void const volatile type; };
// Shortcut for adding/removing const&
template <typename T> struct add_const_reference {
typedef typename add_reference<typename add_const<T>::type>::type type;
};
template <typename T> struct remove_const_reference {
typedef typename remove_const<typename remove_reference<T>::type>::type type;
};
// Add const& for non-integral types.
// add_cr_non_integral<int>::type -> int
// add_cr_non_integral<FooClass>::type -> const FooClass&
template <typename T> struct add_cr_non_integral {
typedef typename conditional<is_integral<T>::value, T,
typename add_reference<typename add_const<T>::type>::type>::type type;
};
// Specified by TR1 [4.7.4] Pointer modifications.
template <typename T> struct remove_pointer { typedef T type; };
template <typename T> struct remove_pointer<T*> { typedef T type; };
template <typename T> struct remove_pointer<T* const> { typedef T type; };
template <typename T> struct remove_pointer<T* volatile> { typedef T type; };
template <typename T> struct remove_pointer<T* const volatile> {
typedef T type;
};
// is_reference is false except for reference types.
template<typename T> struct is_reference : false_type {};
template<typename T> struct is_reference<T&> : true_type {};
namespace internal {
// is_convertible chokes if the first argument is an array. That's why
// we use add_reference here.
template <bool NotUnum, typename T> struct is_enum_impl
: is_convertible<typename add_reference<T>::type, int> { };
template <typename T> struct is_enum_impl<true, T> : false_type { };
}
template <typename T> struct is_enum
: internal::is_enum_impl<
is_same<T, void>::value ||
is_integral<T>::value ||
is_floating_point<T>::value ||
is_reference<T>::value ||
is_class<T>::value, T> { };
template <typename T> struct is_enum<const T> : is_enum<T> { };
template <typename T> struct is_enum<volatile T> : is_enum<T> { };
template <typename T> struct is_enum<const volatile T> : is_enum<T> { };
} // namespace butil
#endif // BUTIL_TYPE_TRAITS_H