1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// Copyright (c) 2014 Baidu, Inc.
// Author: Ge,Jun (gejun@baidu.com)
// Date: Sun Jul 13 15:04:18 CST 2014
#include <gtest/gtest.h>
#include "butil/time.h"
#include "butil/macros.h"
#include "butil/string_printf.h"
#include "butil/logging.h"
#include "bthread/bthread.h"
#include "bthread/butex.h"
#include "bthread/task_control.h"
#include "bthread/mutex.h"
//#define ENABLE_PROFILE
#ifdef ENABLE_PROFILE
# include <gperftools/profiler.h>
#else
# define ProfilerStart(a)
# define ProfilerStop()
#endif
namespace {
inline unsigned* get_butex(bthread_mutex_t & m) {
return m.butex;
}
long start_time = butil::cpuwide_time_ms();
int c = 0;
void* locker(void* arg) {
bthread_mutex_t* m = (bthread_mutex_t*)arg;
bthread_mutex_lock(m);
printf("[%lu] I'm here, %d, %lums\n", pthread_self(), ++c,
butil::cpuwide_time_ms() - start_time);
bthread_usleep(10000);
bthread_mutex_unlock(m);
return NULL;
}
TEST(MutexTest, sanity) {
bthread_mutex_t m;
ASSERT_EQ(0, bthread_mutex_init(&m, NULL));
ASSERT_EQ(0u, *get_butex(m));
ASSERT_EQ(0, bthread_mutex_lock(&m));
ASSERT_EQ(1u, *get_butex(m));
bthread_t th1;
ASSERT_EQ(0, bthread_start_urgent(&th1, NULL, locker, &m));
usleep(5000); // wait for locker to run.
ASSERT_EQ(257u, *get_butex(m)); // contention
ASSERT_EQ(0, bthread_mutex_unlock(&m));
ASSERT_EQ(0, bthread_join(th1, NULL));
ASSERT_EQ(0u, *get_butex(m));
ASSERT_EQ(0, bthread_mutex_destroy(&m));
}
TEST(MutexTest, used_in_pthread) {
bthread_mutex_t m;
ASSERT_EQ(0, bthread_mutex_init(&m, NULL));
pthread_t th[8];
for (size_t i = 0; i < ARRAY_SIZE(th); ++i) {
ASSERT_EQ(0, pthread_create(&th[i], NULL, locker, &m));
}
for (size_t i = 0; i < ARRAY_SIZE(th); ++i) {
pthread_join(th[i], NULL);
}
ASSERT_EQ(0u, *get_butex(m));
ASSERT_EQ(0, bthread_mutex_destroy(&m));
}
void* do_locks(void *arg) {
struct timespec t = { -2, 0 };
EXPECT_EQ(ETIMEDOUT, bthread_mutex_timedlock((bthread_mutex_t*)arg, &t));
return NULL;
}
TEST(MutexTest, timedlock) {
bthread_cond_t c;
bthread_mutex_t m1;
bthread_mutex_t m2;
ASSERT_EQ(0, bthread_cond_init(&c, NULL));
ASSERT_EQ(0, bthread_mutex_init(&m1, NULL));
ASSERT_EQ(0, bthread_mutex_init(&m2, NULL));
struct timespec t = { -2, 0 };
bthread_mutex_lock (&m1);
bthread_mutex_lock (&m2);
bthread_t pth;
ASSERT_EQ(0, bthread_start_urgent(&pth, NULL, do_locks, &m1));
ASSERT_EQ(ETIMEDOUT, bthread_cond_timedwait(&c, &m2, &t));
ASSERT_EQ(0, bthread_join(pth, NULL));
bthread_mutex_unlock(&m1);
bthread_mutex_unlock(&m2);
bthread_mutex_destroy(&m1);
bthread_mutex_destroy(&m2);
}
TEST(MutexTest, cpp_wrapper) {
bthread::Mutex mutex;
ASSERT_TRUE(mutex.try_lock());
mutex.unlock();
mutex.lock();
mutex.unlock();
{
BAIDU_SCOPED_LOCK(mutex);
}
{
std::unique_lock<bthread::Mutex> lck1;
std::unique_lock<bthread::Mutex> lck2(mutex);
lck1.swap(lck2);
lck1.unlock();
lck1.lock();
}
ASSERT_TRUE(mutex.try_lock());
mutex.unlock();
{
BAIDU_SCOPED_LOCK(*mutex.native_handler());
}
{
std::unique_lock<bthread_mutex_t> lck1;
std::unique_lock<bthread_mutex_t> lck2(*mutex.native_handler());
lck1.swap(lck2);
lck1.unlock();
lck1.lock();
}
ASSERT_TRUE(mutex.try_lock());
mutex.unlock();
}
bool g_started = false;
bool g_stopped = false;
template <typename Mutex>
struct BAIDU_CACHELINE_ALIGNMENT PerfArgs {
Mutex* mutex;
int64_t counter;
int64_t elapse_ns;
bool ready;
PerfArgs() : mutex(NULL), counter(0), elapse_ns(0), ready(false) {}
};
template <typename Mutex>
void* add_with_mutex(void* void_arg) {
PerfArgs<Mutex>* args = (PerfArgs<Mutex>*)void_arg;
args->ready = true;
butil::Timer t;
while (!g_stopped) {
if (g_started) {
break;
}
bthread_usleep(1000);
}
t.start();
while (!g_stopped) {
BAIDU_SCOPED_LOCK(*args->mutex);
++args->counter;
}
t.stop();
args->elapse_ns = t.n_elapsed();
return NULL;
}
int g_prof_name_counter = 0;
template <typename Mutex, typename ThreadId,
typename ThreadCreateFn, typename ThreadJoinFn>
void PerfTest(Mutex* mutex,
ThreadId* /*dummy*/,
int thread_num,
const ThreadCreateFn& create_fn,
const ThreadJoinFn& join_fn) {
g_started = false;
g_stopped = false;
ThreadId threads[thread_num];
PerfArgs<Mutex> args[thread_num];
for (int i = 0; i < thread_num; ++i) {
args[i].mutex = mutex;
create_fn(&threads[i], NULL, add_with_mutex<Mutex>, &args[i]);
}
while (true) {
bool all_ready = true;
for (int i = 0; i < thread_num; ++i) {
if (!args[i].ready) {
all_ready = false;
break;
}
}
if (all_ready) {
break;
}
usleep(1000);
}
g_started = true;
char prof_name[32];
snprintf(prof_name, sizeof(prof_name), "mutex_perf_%d.prof", ++g_prof_name_counter);
ProfilerStart(prof_name);
usleep(500 * 1000);
ProfilerStop();
g_stopped = true;
int64_t wait_time = 0;
int64_t count = 0;
for (int i = 0; i < thread_num; ++i) {
join_fn(threads[i], NULL);
wait_time += args[i].elapse_ns;
count += args[i].counter;
}
LOG(INFO) << butil::class_name<Mutex>() << " in "
<< ((void*)create_fn == (void*)pthread_create ? "pthread" : "bthread")
<< " thread_num=" << thread_num
<< " count=" << count
<< " average_time=" << wait_time / (double)count;
}
TEST(MutexTest, performance) {
const int thread_num = 12;
butil::Mutex base_mutex;
PerfTest(&base_mutex, (pthread_t*)NULL, thread_num, pthread_create, pthread_join);
PerfTest(&base_mutex, (bthread_t*)NULL, thread_num, bthread_start_background, bthread_join);
bthread::Mutex bth_mutex;
PerfTest(&bth_mutex, (pthread_t*)NULL, thread_num, pthread_create, pthread_join);
PerfTest(&bth_mutex, (bthread_t*)NULL, thread_num, bthread_start_background, bthread_join);
}
void* loop_until_stopped(void* arg) {
bthread::Mutex *m = (bthread::Mutex*)arg;
while (!g_stopped) {
BAIDU_SCOPED_LOCK(*m);
bthread_usleep(20);
}
return NULL;
}
TEST(MutexTest, mix_thread_types) {
g_stopped = false;
const int N = 16;
const int M = N * 2;
bthread::Mutex m;
pthread_t pthreads[N];
bthread_t bthreads[M];
// reserve enough workers for test. This is a must since we have
// BTHREAD_ATTR_PTHREAD bthreads which may cause deadlocks (the
// bhtread_usleep below can't be scheduled and g_stopped is never
// true, thus loop_until_stopped spins forever)
bthread_setconcurrency(M);
for (int i = 0; i < N; ++i) {
ASSERT_EQ(0, pthread_create(&pthreads[i], NULL, loop_until_stopped, &m));
}
for (int i = 0; i < M; ++i) {
const bthread_attr_t *attr = i % 2 ? NULL : &BTHREAD_ATTR_PTHREAD;
ASSERT_EQ(0, bthread_start_urgent(&bthreads[i], attr, loop_until_stopped, &m));
}
bthread_usleep(1000L * 1000);
g_stopped = true;
for (int i = 0; i < M; ++i) {
bthread_join(bthreads[i], NULL);
}
for (int i = 0; i < N; ++i) {
pthread_join(pthreads[i], NULL);
}
}
} // namespace