scoped_ptr.h 22 KB
Newer Older
gejun's avatar
gejun committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Scopers help you manage ownership of a pointer, helping you easily manage a
// pointer within a scope, and automatically destroying the pointer at the end
// of a scope.  There are two main classes you will use, which correspond to the
// operators new/delete and new[]/delete[].
//
// Example usage (scoped_ptr<T>):
//   {
//     scoped_ptr<Foo> foo(new Foo("wee"));
//   }  // foo goes out of scope, releasing the pointer with it.
//
//   {
//     scoped_ptr<Foo> foo;          // No pointer managed.
//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
//     foo->Method();                // Foo::Method() called.
//     foo.get()->Method();          // Foo::Method() called.
//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
//                                   // manages a pointer.
//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
//                                   // manages a pointer.
//   }  // foo wasn't managing a pointer, so nothing was destroyed.
//
// Example usage (scoped_ptr<T[]>):
//   {
//     scoped_ptr<Foo[]> foo(new Foo[100]);
//     foo.get()->Method();  // Foo::Method on the 0th element.
//     foo[10].Method();     // Foo::Method on the 10th element.
//   }
//
// These scopers also implement part of the functionality of C++11 unique_ptr
// in that they are "movable but not copyable."  You can use the scopers in
// the parameter and return types of functions to signify ownership transfer
// in to and out of a function.  When calling a function that has a scoper
// as the argument type, it must be called with the result of an analogous
// scoper's Pass() function or another function that generates a temporary;
// passing by copy will NOT work.  Here is an example using scoped_ptr:
//
//   void TakesOwnership(scoped_ptr<Foo> arg) {
//     // Do something with arg
//   }
//   scoped_ptr<Foo> CreateFoo() {
//     // No need for calling Pass() because we are constructing a temporary
//     // for the return value.
//     return scoped_ptr<Foo>(new Foo("new"));
//   }
//   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
//     return arg.Pass();
//   }
//
//   {
//     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
//     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
//     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
//     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
//         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
//   }
//
// Notice that if you do not call Pass() when returning from PassThru(), or
// when invoking TakesOwnership(), the code will not compile because scopers
// are not copyable; they only implement move semantics which require calling
// the Pass() function to signify a destructive transfer of state. CreateFoo()
// is different though because we are constructing a temporary on the return
// line and thus can avoid needing to call Pass().
//
// Pass() properly handles upcast in initialization, i.e. you can use a
// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
//
//   scoped_ptr<Foo> foo(new Foo());
//   scoped_ptr<FooParent> parent(foo.Pass());
//
// PassAs<>() should be used to upcast return value in return statement:
//
//   scoped_ptr<Foo> CreateFoo() {
//     scoped_ptr<FooChild> result(new FooChild());
//     return result.PassAs<Foo>();
//   }
//
// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
// scoped_ptr<T[]>. This is because casting array pointers may not be safe.

87 88
#ifndef BUTIL_MEMORY_SCOPED_PTR_H_
#define BUTIL_MEMORY_SCOPED_PTR_H_
gejun's avatar
gejun committed
89 90 91 92 93 94 95 96 97 98

// This is an implementation designed to match the anticipated future TR2
// implementation of the scoped_ptr class.

#include <assert.h>
#include <stddef.h>
#include <stdlib.h>

#include <algorithm>  // For std::swap().

99 100 101 102
#include "butil/basictypes.h"
#include "butil/compiler_specific.h"
#include "butil/move.h"
#include "butil/type_traits.h"
gejun's avatar
gejun committed
103

104
namespace butil {
gejun's avatar
gejun committed
105 106 107 108 109 110 111 112 113 114 115 116

namespace subtle {
class RefCountedBase;
class RefCountedThreadSafeBase;
}  // namespace subtle

// Function object which deletes its parameter, which must be a pointer.
// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
// invokes 'delete'. The default deleter for scoped_ptr<T>.
template <class T>
struct DefaultDeleter {
  DefaultDeleter() {}
117
  template <typename U> DefaultDeleter(const DefaultDeleter<U>&) {
gejun's avatar
gejun committed
118 119 120 121 122 123 124 125 126 127 128 129 130 131
    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
    // if U* is implicitly convertible to T* and U is not an array type.
    //
    // Correct implementation should use SFINAE to disable this
    // constructor. However, since there are no other 1-argument constructors,
    // using a COMPILE_ASSERT() based on is_convertible<> and requiring
    // complete types is simpler and will cause compile failures for equivalent
    // misuses.
    //
    // Note, the is_convertible<U*, T*> check also ensures that U is not an
    // array. T is guaranteed to be a non-array, so any U* where U is an array
    // cannot convert to T*.
    enum { T_must_be_complete = sizeof(T) };
    enum { U_must_be_complete = sizeof(U) };
132
    COMPILE_ASSERT((butil::is_convertible<U*, T*>::value),
gejun's avatar
gejun committed
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
                   U_ptr_must_implicitly_convert_to_T_ptr);
  }
  inline void operator()(T* ptr) const {
    enum { type_must_be_complete = sizeof(T) };
    delete ptr;
  }
};

// Specialization of DefaultDeleter for array types.
template <class T>
struct DefaultDeleter<T[]> {
  inline void operator()(T* ptr) const {
    enum { type_must_be_complete = sizeof(T) };
    delete[] ptr;
  }

 private:
  // Disable this operator for any U != T because it is undefined to execute
  // an array delete when the static type of the array mismatches the dynamic
  // type.
  //
  // References:
  //   C++98 [expr.delete]p3
  //   http://cplusplus.github.com/LWG/lwg-defects.html#938
  template <typename U> void operator()(U* array) const;
};

template <class T, int n>
struct DefaultDeleter<T[n]> {
  // Never allow someone to declare something like scoped_ptr<int[10]>.
  COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
};

// Function object which invokes 'free' on its parameter, which must be
// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
//
169
// scoped_ptr<int, butil::FreeDeleter> foo_ptr(
gejun's avatar
gejun committed
170 171 172 173 174 175 176 177 178 179 180
//     static_cast<int*>(malloc(sizeof(int))));
struct FreeDeleter {
  inline void operator()(void* ptr) const {
    free(ptr);
  }
};

namespace internal {

template <typename T> struct IsNotRefCounted {
  enum {
181 182
    value = !butil::is_convertible<T*, butil::subtle::RefCountedBase*>::value &&
        !butil::is_convertible<T*, butil::subtle::RefCountedThreadSafeBase*>::
gejun's avatar
gejun committed
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
            value
  };
};

// Minimal implementation of the core logic of scoped_ptr, suitable for
// reuse in both scoped_ptr and its specializations.
template <class T, class D>
class scoped_ptr_impl {
 public:
  explicit scoped_ptr_impl(T* p) : data_(p) { }

  // Initializer for deleters that have data parameters.
  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}

  // Templated constructor that destructively takes the value from another
  // scoped_ptr_impl.
  template <typename U, typename V>
  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
      : data_(other->release(), other->get_deleter()) {
    // We do not support move-only deleters.  We could modify our move
203
    // emulation to have butil::subtle::move() and butil::subtle::forward()
gejun's avatar
gejun committed
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    // functions that are imperfect emulations of their C++11 equivalents,
    // but until there's a requirement, just assume deleters are copyable.
  }

  template <typename U, typename V>
  void TakeState(scoped_ptr_impl<U, V>* other) {
    // See comment in templated constructor above regarding lack of support
    // for move-only deleters.
    reset(other->release());
    get_deleter() = other->get_deleter();
  }

  ~scoped_ptr_impl() {
    if (data_.ptr != NULL) {
      // Not using get_deleter() saves one function call in non-optimized
      // builds.
      static_cast<D&>(data_)(data_.ptr);
    }
  }

  void reset(T* p) {
    // This is a self-reset, which is no longer allowed: http://crbug.com/162971
    if (p != NULL && p == data_.ptr)
      abort();

    // Note that running data_.ptr = p can lead to undefined behavior if
    // get_deleter()(get()) deletes this. In order to prevent this, reset()
    // should update the stored pointer before deleting its old value.
    //
    // However, changing reset() to use that behavior may cause current code to
    // break in unexpected ways. If the destruction of the owned object
    // dereferences the scoped_ptr when it is destroyed by a call to reset(),
    // then it will incorrectly dispatch calls to |p| rather than the original
    // value of |data_.ptr|.
    //
    // During the transition period, set the stored pointer to NULL while
    // deleting the object. Eventually, this safety check will be removed to
    // prevent the scenario initially described from occuring and
    // http://crbug.com/176091 can be closed.
    T* old = data_.ptr;
    data_.ptr = NULL;
    if (old != NULL)
      static_cast<D&>(data_)(old);
    data_.ptr = p;
  }

  T* get() const { return data_.ptr; }

  D& get_deleter() { return data_; }
  const D& get_deleter() const { return data_; }

  void swap(scoped_ptr_impl& p2) {
    // Standard swap idiom: 'using std::swap' ensures that std::swap is
    // present in the overload set, but we call swap unqualified so that
    // any more-specific overloads can be used, if available.
    using std::swap;
    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
    swap(data_.ptr, p2.data_.ptr);
  }

  T* release() {
    T* old_ptr = data_.ptr;
    data_.ptr = NULL;
    return old_ptr;
  }

 private:
  // Needed to allow type-converting constructor.
  template <typename U, typename V> friend class scoped_ptr_impl;

  // Use the empty base class optimization to allow us to have a D
  // member, while avoiding any space overhead for it when D is an
  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
  // discussion of this technique.
  struct Data : public D {
    explicit Data(T* ptr_in) : ptr(ptr_in) {}
    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
    T* ptr;
  };

  Data data_;

  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
};

}  // namespace internal

291
}  // namespace butil
gejun's avatar
gejun committed
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, scoped_ptr<T> owns the T object that it points to.
// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
// Also like T*, scoped_ptr<T> is thread-compatible, and once you
// dereference it, you get the thread safety guarantees of T.
//
// The size of scoped_ptr is small. On most compilers, when using the
// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
// increase the size proportional to whatever state they need to have. See
// comments inside scoped_ptr_impl<> for details.
//
// Current implementation targets having a strict subset of  C++11's
// unique_ptr<> features. Known deficiencies include not supporting move-only
// deleteres, function pointers as deleters, and deleters with reference
// types.
309
template <class T, class D = butil::DefaultDeleter<T> >
gejun's avatar
gejun committed
310 311 312
class scoped_ptr {
  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)

313
  COMPILE_ASSERT(butil::internal::IsNotRefCounted<T>::value,
gejun's avatar
gejun committed
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
                 T_is_refcounted_type_and_needs_scoped_refptr);

 public:
  // The element and deleter types.
  typedef T element_type;
  typedef D deleter_type;

  // Constructor.  Defaults to initializing with NULL.
  scoped_ptr() : impl_(NULL) { }

  // Constructor.  Takes ownership of p.
  explicit scoped_ptr(element_type* p) : impl_(p) { }

  // Constructor.  Allows initialization of a stateful deleter.
  scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }

  // Constructor.  Allows construction from a scoped_ptr rvalue for a
  // convertible type and deleter.
  //
  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
  // has different post-conditions if D is a reference type. Since this
  // implementation does not support deleters with reference type,
  // we do not need a separate move constructor allowing us to avoid one
  // use of SFINAE. You only need to care about this if you modify the
  // implementation of scoped_ptr.
  template <typename U, typename V>
  scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
342
    COMPILE_ASSERT(!butil::is_array<U>::value, U_cannot_be_an_array);
gejun's avatar
gejun committed
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  }

  // Constructor.  Move constructor for C++03 move emulation of this type.
  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }

  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
  // type and deleter.
  //
  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
  // form has different requirements on for move-only Deleters. Since this
  // implementation does not support move-only Deleters, we do not need a
  // separate move assignment operator allowing us to avoid one use of SFINAE.
  // You only need to care about this if you modify the implementation of
  // scoped_ptr.
  template <typename U, typename V>
  scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
360
    COMPILE_ASSERT(!butil::is_array<U>::value, U_cannot_be_an_array);
gejun's avatar
gejun committed
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    impl_.TakeState(&rhs.impl_);
    return *this;
  }

  // Reset.  Deletes the currently owned object, if any.
  // Then takes ownership of a new object, if given.
  void reset(element_type* p = NULL) { impl_.reset(p); }

  // Accessors to get the owned object.
  // operator* and operator-> will assert() if there is no current object.
  element_type& operator*() const {
    assert(impl_.get() != NULL);
    return *impl_.get();
  }
  element_type* operator->() const  {
    assert(impl_.get() != NULL);
    return impl_.get();
  }
  element_type* get() const { return impl_.get(); }

  // Access to the deleter.
  deleter_type& get_deleter() { return impl_.get_deleter(); }
  const deleter_type& get_deleter() const { return impl_.get_deleter(); }

  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
  // implicitly convertible to a real bool (which is dangerous).
  //
  // Note that this trick is only safe when the == and != operators
  // are declared explicitly, as otherwise "scoped_ptr1 ==
  // scoped_ptr2" will compile but do the wrong thing (i.e., convert
  // to Testable and then do the comparison).
 private:
393
  typedef butil::internal::scoped_ptr_impl<element_type, deleter_type>
gejun's avatar
gejun committed
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
      scoped_ptr::*Testable;

 public:
  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }

  // Comparison operators.
  // These return whether two scoped_ptr refer to the same object, not just to
  // two different but equal objects.
  bool operator==(const element_type* p) const { return impl_.get() == p; }
  bool operator!=(const element_type* p) const { return impl_.get() != p; }

  // Swap two scoped pointers.
  void swap(scoped_ptr& p2) {
    impl_.swap(p2.impl_);
  }

  // Release a pointer.
  // The return value is the current pointer held by this object.
  // If this object holds a NULL pointer, the return value is NULL.
  // After this operation, this object will hold a NULL pointer,
  // and will not own the object any more.
  element_type* release() WARN_UNUSED_RESULT {
    return impl_.release();
  }

  // C++98 doesn't support functions templates with default parameters which
  // makes it hard to write a PassAs() that understands converting the deleter
  // while preserving simple calling semantics.
  //
  // Until there is a use case for PassAs() with custom deleters, just ignore
  // the custom deleter.
  template <typename PassAsType>
  scoped_ptr<PassAsType> PassAs() {
    return scoped_ptr<PassAsType>(Pass());
  }

 private:
  // Needed to reach into |impl_| in the constructor.
  template <typename U, typename V> friend class scoped_ptr;
433
  butil::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
gejun's avatar
gejun committed
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

  // Forbidden for API compatibility with std::unique_ptr.
  explicit scoped_ptr(int disallow_construction_from_null);

  // Forbid comparison of scoped_ptr types.  If U != T, it totally
  // doesn't make sense, and if U == T, it still doesn't make sense
  // because you should never have the same object owned by two different
  // scoped_ptrs.
  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
};

template <class T, class D>
class scoped_ptr<T[], D> {
  MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)

 public:
  // The element and deleter types.
  typedef T element_type;
  typedef D deleter_type;

  // Constructor.  Defaults to initializing with NULL.
  scoped_ptr() : impl_(NULL) { }

  // Constructor. Stores the given array. Note that the argument's type
  // must exactly match T*. In particular:
  // - it cannot be a pointer to a type derived from T, because it is
  //   inherently unsafe in the general case to access an array through a
  //   pointer whose dynamic type does not match its static type (eg., if
  //   T and the derived types had different sizes access would be
  //   incorrectly calculated). Deletion is also always undefined
  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
  // - it cannot be NULL, because NULL is an integral expression, not a
  //   pointer to T. Use the no-argument version instead of explicitly
  //   passing NULL.
  // - it cannot be const-qualified differently from T per unique_ptr spec
  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
  //   to work around this may use implicit_cast<const T*>().
  //   However, because of the first bullet in this comment, users MUST
  //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
  explicit scoped_ptr(element_type* array) : impl_(array) { }

  // Constructor.  Move constructor for C++03 move emulation of this type.
  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }

  // operator=.  Move operator= for C++03 move emulation of this type.
  scoped_ptr& operator=(RValue rhs) {
    impl_.TakeState(&rhs.object->impl_);
    return *this;
  }

  // Reset.  Deletes the currently owned array, if any.
  // Then takes ownership of a new object, if given.
  void reset(element_type* array = NULL) { impl_.reset(array); }

  // Accessors to get the owned array.
  element_type& operator[](size_t i) const {
    assert(impl_.get() != NULL);
    return impl_.get()[i];
  }
  element_type* get() const { return impl_.get(); }

  // Access to the deleter.
  deleter_type& get_deleter() { return impl_.get_deleter(); }
  const deleter_type& get_deleter() const { return impl_.get_deleter(); }

  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
  // implicitly convertible to a real bool (which is dangerous).
 private:
503
  typedef butil::internal::scoped_ptr_impl<element_type, deleter_type>
gejun's avatar
gejun committed
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
      scoped_ptr::*Testable;

 public:
  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }

  // Comparison operators.
  // These return whether two scoped_ptr refer to the same object, not just to
  // two different but equal objects.
  bool operator==(element_type* array) const { return impl_.get() == array; }
  bool operator!=(element_type* array) const { return impl_.get() != array; }

  // Swap two scoped pointers.
  void swap(scoped_ptr& p2) {
    impl_.swap(p2.impl_);
  }

  // Release a pointer.
  // The return value is the current pointer held by this object.
  // If this object holds a NULL pointer, the return value is NULL.
  // After this operation, this object will hold a NULL pointer,
  // and will not own the object any more.
  element_type* release() WARN_UNUSED_RESULT {
    return impl_.release();
  }

 private:
  // Force element_type to be a complete type.
  enum { type_must_be_complete = sizeof(element_type) };

  // Actually hold the data.
534
  butil::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
gejun's avatar
gejun committed
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

  // Disable initialization from any type other than element_type*, by
  // providing a constructor that matches such an initialization, but is
  // private and has no definition. This is disabled because it is not safe to
  // call delete[] on an array whose static type does not match its dynamic
  // type.
  template <typename U> explicit scoped_ptr(U* array);
  explicit scoped_ptr(int disallow_construction_from_null);

  // Disable reset() from any type other than element_type*, for the same
  // reasons as the constructor above.
  template <typename U> void reset(U* array);
  void reset(int disallow_reset_from_null);

  // Forbid comparison of scoped_ptr types.  If U != T, it totally
  // doesn't make sense, and if U == T, it still doesn't make sense
  // because you should never have the same object owned by two different
  // scoped_ptrs.
  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
};

// Free functions
template <class T, class D>
void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
  p1.swap(p2);
}

template <class T, class D>
bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
  return p1 == p2.get();
}

template <class T, class D>
bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
  return p1 != p2.get();
}

// A function to convert T* into scoped_ptr<T>
// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
template <typename T>
scoped_ptr<T> make_scoped_ptr(T* ptr) {
  return scoped_ptr<T>(ptr);
}

581
#endif  // BUTIL_MEMORY_SCOPED_PTR_H_