timer_thread.cpp 16.9 KB
Newer Older
gejun's avatar
gejun committed
1
// bthread - A M:N threading library to make applications more concurrent.
gejun's avatar
gejun committed
2
// Copyright (c) 2014 Baidu, Inc.
gejun's avatar
gejun committed
3 4 5 6 7 8 9 10 11 12 13 14
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// 
//     http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
gejun's avatar
gejun committed
15 16 17 18

// Author: Ge,Jun (gejun@baidu.com)

#include <queue>                           // heap functions
19 20 21 22
#include "butil/scoped_lock.h"
#include "butil/logging.h"
#include "butil/third_party/murmurhash3/murmurhash3.h"   // fmix64
#include "butil/resource_pool.h"
gejun's avatar
gejun committed
23 24 25
#include "bvar/bvar.h"
#include "bthread/sys_futex.h"
#include "bthread/timer_thread.h"
26
#include "bthread/log.h"
gejun's avatar
gejun committed
27 28 29 30 31 32 33 34 35

namespace bthread {

// Defined in task_control.cpp
void run_worker_startfn();

const TimerThread::TaskId TimerThread::INVALID_TASK_ID = 0;

TimerThreadOptions::TimerThreadOptions()
gejun's avatar
gejun committed
36
    : num_buckets(13) {
gejun's avatar
gejun committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
}

// A task contains the necessary information for running fn(arg).
// Tasks are created in Bucket::schedule and destroyed in TimerThread::run
struct BAIDU_CACHELINE_ALIGNMENT TimerThread::Task {
    Task* next;                 // For linking tasks in a Bucket.
    int64_t run_time;           // run the task at this realtime
    void (*fn)(void*);          // the fn(arg) to run
    void* arg;
    // Current TaskId, checked against version in TimerThread::run to test
    // if this task is unscheduled.
    TaskId task_id;
    // initial_version:     not run yet
    // initial_version + 1: running
    // initial_version + 2: removed (also the version of next Task reused
    //                      this struct)
53
    butil::atomic<uint32_t> version;
gejun's avatar
gejun committed
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    Task() : version(2/*skip 0*/) {}

    // Run this task and delete this struct.
    // Returns true if fn(arg) did run.
    bool run_and_delete();

    // Delete this struct if this task was unscheduled.
    // Returns true on deletion.
    bool try_delete();
};

// Timer tasks are sharded into different Buckets to reduce contentions.
class BAIDU_CACHELINE_ALIGNMENT TimerThread::Bucket {
public:
    Bucket()
        : _nearest_run_time(std::numeric_limits<int64_t>::max())
71 72
        , _task_head(NULL) {
    }
gejun's avatar
gejun committed
73 74 75 76 77 78 79 80 81 82

    ~Bucket() {}

    struct ScheduleResult {
        TimerThread::TaskId task_id;
        bool earlier;
    };
    
    // Schedule a task into this bucket.
    // Returns the TaskId and if it has the nearest run time.
83 84
    ScheduleResult schedule(void (*fn)(void*), void* arg,
                            const timespec& abstime);
gejun's avatar
gejun committed
85 86

    // Pull all scheduled tasks.
87
    // This function is called in timer thread.
gejun's avatar
gejun committed
88 89 90
    Task* consume_tasks();

private:
91
    internal::FastPthreadMutex _mutex;
gejun's avatar
gejun committed
92 93 94 95 96 97
    int64_t _nearest_run_time;
    Task* _task_head;
};

// Utilies for making and extracting TaskId.
inline TimerThread::TaskId make_task_id(
98
    butil::ResourceId<TimerThread::Task> slot, uint32_t version) {
gejun's avatar
gejun committed
99 100 101 102
    return TimerThread::TaskId((((uint64_t)version) << 32) | slot.value);
}

inline
103 104
butil::ResourceId<TimerThread::Task> slot_of_task_id(TimerThread::TaskId id) {
    butil::ResourceId<TimerThread::Task> slot = { (id & 0xFFFFFFFFul) };
gejun's avatar
gejun committed
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    return slot;
}

inline uint32_t version_of_task_id(TimerThread::TaskId id) {
    return (uint32_t)(id >> 32);
}

inline bool task_greater(const TimerThread::Task* a, const TimerThread::Task* b) {
    return a->run_time > b->run_time;
}

void* TimerThread::run_this(void* arg) {
    static_cast<TimerThread*>(arg)->run();
    return NULL;
}

TimerThread::TimerThread()
    : _started(false)
    , _stop(false)
    , _buckets(NULL)
    , _nearest_run_time(std::numeric_limits<int64_t>::max())
    , _nsignals(0)
    , _thread(0) {
}

TimerThread::~TimerThread() {
    stop_and_join();
    delete [] _buckets;
    _buckets = NULL;
}

int TimerThread::start(const TimerThreadOptions* options_in) {
    if (_started) {
        return 0;
    }
    if (options_in) {
        _options = *options_in;
    }
    if (_options.num_buckets == 0) {
        LOG(ERROR) << "num_buckets can't be 0";
        return EINVAL;
    }
    if (_options.num_buckets > 1024) {
        LOG(ERROR) << "num_buckets=" << _options.num_buckets << " is too big";
        return EINVAL;
    }
    _buckets = new (std::nothrow) Bucket[_options.num_buckets];
    if (NULL == _buckets) {
        LOG(ERROR) << "Fail to new _buckets";
        return ENOMEM;
    }        
    const int ret = pthread_create(&_thread, NULL, TimerThread::run_this, this);
    if (ret) {
        return ret;
    }
    _started = true;
    return 0;
}

TimerThread::Task* TimerThread::Bucket::consume_tasks() {
    Task* head = NULL;
166 167 168 169 170 171 172 173 174 175 176
    if (_task_head) { // NOTE: schedule() and consume_tasks() are sequenced
        // by TimerThread._nearest_run_time and fenced by TimerThread._mutex.
        // We can avoid touching the mutex and related cacheline when the
        // bucket is actually empty.
        BAIDU_SCOPED_LOCK(_mutex);
        if (_task_head) {
            head = _task_head;
            _task_head = NULL;
            _nearest_run_time = std::numeric_limits<int64_t>::max();
        }
    }
gejun's avatar
gejun committed
177 178 179
    return head;
}

180 181 182
TimerThread::Bucket::ScheduleResult
TimerThread::Bucket::schedule(void (*fn)(void*), void* arg,
                              const timespec& abstime) {
183 184
    butil::ResourceId<Task> slot_id;
    Task* task = butil::get_resource<Task>(&slot_id);
gejun's avatar
gejun committed
185 186 187 188 189 190 191
    if (task == NULL) {
        ScheduleResult result = { INVALID_TASK_ID, false };
        return result;
    }
    task->next = NULL;
    task->fn = fn;
    task->arg = arg;
192 193
    task->run_time = butil::timespec_to_microseconds(abstime);
    uint32_t version = task->version.load(butil::memory_order_relaxed);
gejun's avatar
gejun committed
194
    if (version == 0) {  // skip 0.
195
        task->version.fetch_add(2, butil::memory_order_relaxed);
gejun's avatar
gejun committed
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        version = 2;
    }
    const TaskId id = make_task_id(slot_id, version);
    task->task_id = id;
    bool earlier = false;
    {
        BAIDU_SCOPED_LOCK(_mutex);
        task->next = _task_head;
        _task_head = task;
        if (task->run_time < _nearest_run_time) {
            _nearest_run_time = task->run_time;
            earlier = true;
        }
    }
    ScheduleResult result = { id, earlier };
    return result;
}

TimerThread::TaskId TimerThread::schedule(
    void (*fn)(void*), void* arg, const timespec& abstime) {
216
    if (_stop.load(butil::memory_order_relaxed) || !_started) {
gejun's avatar
gejun committed
217 218 219 220 221
        // Not add tasks when TimerThread is about to stop.
        return INVALID_TASK_ID;
    }
    // Hashing by pthread id is better for cache locality.
    const Bucket::ScheduleResult result = 
222
        _buckets[butil::fmix64(pthread_self()) % _options.num_buckets]
gejun's avatar
gejun committed
223 224 225
        .schedule(fn, arg, abstime);
    if (result.earlier) {
        bool earlier = false;
226
        const int64_t run_time = butil::timespec_to_microseconds(abstime);
gejun's avatar
gejun committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        {
            BAIDU_SCOPED_LOCK(_mutex);
            if (run_time < _nearest_run_time) {
                _nearest_run_time = run_time;
                ++_nsignals;
                earlier = true;
            }
        }
        if (earlier) {
            futex_wake_private(&_nsignals, 1);
        }
    }
    return result.task_id;
}

// Notice that we don't recycle the Task in this function, let TimerThread::run
// do it. The side effect is that we may allocated many unscheduled tasks before
// TimerThread wakes up. The number is approximiately qps * timeout_s. Under the
// precondition that ResourcePool<Task> caches 128K for each thread, with some
// further calculations, we can conclude that in a RPC scenario:
//   when timeout / latency < 2730 (128K / sizeof(Task))
// unscheduled tasks do not occupy addititonal memory. 2730 is a large ratio
// between timeout and latency in most RPC scenarios, this is why we don't
// try to reuse tasks right now inside unschedule() with more complicated code.
int TimerThread::unschedule(TaskId task_id) {
252 253
    const butil::ResourceId<Task> slot_id = slot_of_task_id(task_id);
    Task* const task = butil::address_resource(slot_id);
gejun's avatar
gejun committed
254 255 256 257 258 259 260 261 262 263 264
    if (task == NULL) {
        LOG(ERROR) << "Invalid task_id=" << task_id;
        return -1;
    }
    const uint32_t id_version = version_of_task_id(task_id);
    uint32_t expected_version = id_version;
    // This CAS is rarely contended, should be fast.
    // The acquire fence is paired with release fence in Task::run_and_delete
    // to make sure that we see all changes brought by fn(arg).
    if (task->version.compare_exchange_strong(
            expected_version, id_version + 2,
265
            butil::memory_order_acquire)) {
gejun's avatar
gejun committed
266 267 268 269 270 271 272 273 274 275
        return 0;
    }
    return (expected_version == id_version + 1) ? 1 : -1;
}

bool TimerThread::Task::run_and_delete() {
    const uint32_t id_version = version_of_task_id(task_id);
    uint32_t expected_version = id_version;
    // This CAS is rarely contended, should be fast.
    if (version.compare_exchange_strong(
276
            expected_version, id_version + 1, butil::memory_order_relaxed)) {
gejun's avatar
gejun committed
277 278 279
        fn(arg);
        // The release fence is paired with acquire fence in
        // TimerThread::unschedule to make changes of fn(arg) visible.
280 281
        version.store(id_version + 2, butil::memory_order_release);
        butil::return_resource(slot_of_task_id(task_id));
gejun's avatar
gejun committed
282 283 284
        return true;
    } else if (expected_version == id_version + 2) {
        // already unscheduled.
285
        butil::return_resource(slot_of_task_id(task_id));
gejun's avatar
gejun committed
286 287 288 289 290 291 292 293 294 295 296
        return false;
    } else {
        // Impossible.
        LOG(ERROR) << "Invalid version=" << expected_version
                   << ", expecting " << id_version + 2;
        return false;
    }
}

bool TimerThread::Task::try_delete() {
    const uint32_t id_version = version_of_task_id(task_id);
297 298 299
    if (version.load(butil::memory_order_relaxed) != id_version) {
        CHECK_EQ(version.load(butil::memory_order_relaxed), id_version + 2);
        butil::return_resource(slot_of_task_id(task_id));
gejun's avatar
gejun committed
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        return true;
    }
    return false;
}

template <typename T>
static T deref_value(void* arg) {
    return *(T*)arg;
}

void TimerThread::run() {
    run_worker_startfn();
#ifdef BAIDU_INTERNAL
    logging::ComlogInitializer comlog_initializer;
#endif

316
    int64_t last_sleep_time = butil::gettimeofday_us();
gejun's avatar
gejun committed
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    BT_VLOG << "Started TimerThread=" << pthread_self();

    // min heap of tasks (ordered by run_time)
    std::vector<Task*> tasks;
    tasks.reserve(4096);

    // vars
    size_t nscheduled = 0;
    bvar::PassiveStatus<size_t> nscheduled_var(deref_value<size_t>, &nscheduled);
    bvar::PerSecond<bvar::PassiveStatus<size_t> > nscheduled_second(&nscheduled_var);
    size_t ntriggered = 0;
    bvar::PassiveStatus<size_t> ntriggered_var(deref_value<size_t>, &ntriggered);
    bvar::PerSecond<bvar::PassiveStatus<size_t> > ntriggered_second(&ntriggered_var);
    double busy_seconds = 0;
    bvar::PassiveStatus<double> busy_seconds_var(deref_value<double>, &busy_seconds);
    bvar::PerSecond<bvar::PassiveStatus<double> > busy_seconds_second(&busy_seconds_var);
    if (!_options.bvar_prefix.empty()) {
        nscheduled_second.expose_as(_options.bvar_prefix, "scheduled_second");
        ntriggered_second.expose_as(_options.bvar_prefix, "triggered_second");
        busy_seconds_second.expose_as(_options.bvar_prefix, "usage");
    }
    
339
    while (!_stop.load(butil::memory_order_relaxed)) {
gejun's avatar
gejun committed
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        // Clear _nearest_run_time before consuming tasks from buckets.
        // This helps us to be aware of earliest task of the new tasks before we
        // would run the consumed tasks.
        {
            BAIDU_SCOPED_LOCK(_mutex);
            _nearest_run_time = std::numeric_limits<int64_t>::max();
        }
        
        // Pull tasks from buckets.
        for (size_t i = 0; i < _options.num_buckets; ++i) {
            Bucket& bucket = _buckets[i];
            for (Task* p = bucket.consume_tasks(); p != NULL;
                 p = p->next, ++nscheduled) {
                if (!p->try_delete()) { // remove the task if it's unscheduled
                    tasks.push_back(p);
                    std::push_heap(tasks.begin(), tasks.end(), task_greater);
                }
            }
        }

        bool pull_again = false;
        while (!tasks.empty()) {
            Task* task1 = tasks[0];  // the about-to-run task
            if (task1->try_delete()) { // already unscheduled
                std::pop_heap(tasks.begin(), tasks.end(), task_greater);
                tasks.pop_back();
                continue;
            }
368
            if (butil::gettimeofday_us() < task1->run_time) {  // not ready yet.
gejun's avatar
gejun committed
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
                break;
            }
            // Each time before we run the earliest task (that we think), 
            // check the globally shared _nearest_run_time. If a task earlier
            // than task1 was scheduled during pulling from buckets, we'll
            // know. In RPC scenarios, _nearest_run_time is not often changed by
            // threads because the task needs to be the earliest in its bucket,
            // since run_time of scheduled tasks are often in ascending order,
            // most tasks are unlikely to be "earliest". (If run_time of tasks
            // are in descending orders, all tasks are "earliest" after every
            // insertion, and they'll grab _mutex and change _nearest_run_time
            // frequently, fortunately this is not true at most of time).
            {
                BAIDU_SCOPED_LOCK(_mutex);
                if (task1->run_time > _nearest_run_time) {
                    // a task is earlier than task1. We need to check buckets.
                    pull_again = true;
                    break;
                }
            }
            std::pop_heap(tasks.begin(), tasks.end(), task_greater);
            tasks.pop_back();
            if (task1->run_and_delete()) {
                ++ntriggered;
            }
        }
        if (pull_again) {
            BT_VLOG << "pull again, tasks=" << tasks.size();
            continue;
        }

        // The realtime to wait for.
        int64_t next_run_time = std::numeric_limits<int64_t>::max();
        if (tasks.empty()) {
            next_run_time = std::numeric_limits<int64_t>::max();
        } else {
            next_run_time = tasks[0]->run_time;
        }
        // Similarly with the situation before running tasks, we check
        // _nearest_run_time to prevent us from waiting on a non-earliest
        // task. We also use the _nsignal to make sure that if new task 
        // is earlier that the realtime that we wait for, we'll wake up.
        int expected_nsignals = 0;
        {
            BAIDU_SCOPED_LOCK(_mutex);
            if (next_run_time > _nearest_run_time) {
                // a task is earlier that what we would wait for.
                // We need to check buckets.
                continue;
            } else {
                _nearest_run_time = next_run_time;
                expected_nsignals = _nsignals;
            }
        }
        timespec* ptimeout = NULL;
        timespec next_timeout = { 0, 0 };
425
        const int64_t now = butil::gettimeofday_us();
gejun's avatar
gejun committed
426
        if (next_run_time != std::numeric_limits<int64_t>::max()) {
427
            next_timeout = butil::microseconds_to_timespec(next_run_time - now);
gejun's avatar
gejun committed
428 429 430 431
            ptimeout = &next_timeout;
        }
        busy_seconds += (now - last_sleep_time) / 1000000.0;
        futex_wait_private(&_nsignals, expected_nsignals, ptimeout);
432
        last_sleep_time = butil::gettimeofday_us();
gejun's avatar
gejun committed
433 434 435 436 437
    }
    BT_VLOG << "Ended TimerThread=" << pthread_self();
}

void TimerThread::stop_and_join() {
438
    _stop.store(true, butil::memory_order_relaxed);
gejun's avatar
gejun committed
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    if (_started) {
        {
            BAIDU_SCOPED_LOCK(_mutex);
             // trigger pull_again and wakeup TimerThread
            _nearest_run_time = 0;
            ++_nsignals;
        }
        if (pthread_self() != _thread) {
            // stop_and_join was not called from a running task.
            // wake up the timer thread in case it is sleeping.
            futex_wake_private(&_nsignals, 1);
            pthread_join(_thread, NULL);
        }
    }
}

static pthread_once_t g_timer_thread_once = PTHREAD_ONCE_INIT;
static TimerThread* g_timer_thread = NULL;
static void init_global_timer_thread() {
    g_timer_thread = new (std::nothrow) TimerThread;
    if (g_timer_thread == NULL) {
        LOG(FATAL) << "Fail to new g_timer_thread";
        return;
    }
    TimerThreadOptions options;
    options.bvar_prefix = "bthread_timer";
    const int rc = g_timer_thread->start(&options);
    if (rc != 0) {
        LOG(FATAL) << "Fail to start timer_thread, " << berror(rc);
        delete g_timer_thread;
        g_timer_thread = NULL;
        return;
    }
}
TimerThread* get_or_create_global_timer_thread() {
    pthread_once(&g_timer_thread_once, init_global_timer_thread);
    return g_timer_thread;
}
TimerThread* get_global_timer_thread() {
    return g_timer_thread;
}

}  // end namespace bthread