time.cc 7.53 KB
Newer Older
gejun's avatar
gejun committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/time/time.h"

#include <limits>
#include <ostream>

#include "base/float_util.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/third_party/nspr/prtime.h"

namespace base {

// TimeDelta ------------------------------------------------------------------

// static
TimeDelta TimeDelta::Max() {
  return TimeDelta(std::numeric_limits<int64_t>::max());
}

int TimeDelta::InDays() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int>::max();
  }
  return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}

int TimeDelta::InHours() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int>::max();
  }
  return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}

int TimeDelta::InMinutes() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int>::max();
  }
  return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}

double TimeDelta::InSecondsF() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<double>::infinity();
  }
  return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}

int64_t TimeDelta::InSeconds() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return delta_ / Time::kMicrosecondsPerSecond;
}

double TimeDelta::InMillisecondsF() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<double>::infinity();
  }
  return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}

int64_t TimeDelta::InMilliseconds() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return delta_ / Time::kMicrosecondsPerMillisecond;
}

int64_t TimeDelta::InMillisecondsRoundedUp() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
      Time::kMicrosecondsPerMillisecond;
}

int64_t TimeDelta::InMicroseconds() const {
  if (is_max()) {
    // Preserve max to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return delta_;
}

// Time -----------------------------------------------------------------------

// static
Time Time::Max() {
  return Time(std::numeric_limits<int64_t>::max());
}

// static
Time Time::FromTimeT(time_t tt) {
  if (tt == 0)
    return Time();  // Preserve 0 so we can tell it doesn't exist.
  if (tt == std::numeric_limits<time_t>::max())
    return Max();
  return Time((tt * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset);
}

time_t Time::ToTimeT() const {
  if (is_null())
    return 0;  // Preserve 0 so we can tell it doesn't exist.
  if (is_max()) {
    // Preserve max without offset to prevent overflow.
    return std::numeric_limits<time_t>::max();
  }
  if (std::numeric_limits<int64_t>::max() - kTimeTToMicrosecondsOffset <= us_) {
    DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
                     "value " << us_ << " to time_t.";
    return std::numeric_limits<time_t>::max();
  }
  return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
}

// static
Time Time::FromDoubleT(double dt) {
  if (dt == 0 || IsNaN(dt))
    return Time();  // Preserve 0 so we can tell it doesn't exist.
  if (dt == std::numeric_limits<double>::infinity())
    return Max();
  return Time(static_cast<int64_t>((dt *
                                  static_cast<double>(kMicrosecondsPerSecond)) +
                                 kTimeTToMicrosecondsOffset));
}

double Time::ToDoubleT() const {
  if (is_null())
    return 0;  // Preserve 0 so we can tell it doesn't exist.
  if (is_max()) {
    // Preserve max without offset to prevent overflow.
    return std::numeric_limits<double>::infinity();
  }
  return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
          static_cast<double>(kMicrosecondsPerSecond));
}

#if defined(OS_POSIX)
// static
Time Time::FromTimeSpec(const timespec& ts) {
  return FromDoubleT(ts.tv_sec +
                     static_cast<double>(ts.tv_nsec) /
                         base::Time::kNanosecondsPerSecond);
}
#endif

// static
Time Time::FromJsTime(double ms_since_epoch) {
  // The epoch is a valid time, so this constructor doesn't interpret
  // 0 as the null time.
  if (ms_since_epoch == std::numeric_limits<double>::infinity())
    return Max();
  return Time(static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond) +
              kTimeTToMicrosecondsOffset);
}

double Time::ToJsTime() const {
  if (is_null()) {
    // Preserve 0 so the invalid result doesn't depend on the platform.
    return 0;
  }
  if (is_max()) {
    // Preserve max without offset to prevent overflow.
    return std::numeric_limits<double>::infinity();
  }
  return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
          kMicrosecondsPerMillisecond);
}

int64_t Time::ToJavaTime() const {
  if (is_null()) {
    // Preserve 0 so the invalid result doesn't depend on the platform.
    return 0;
  }
  if (is_max()) {
    // Preserve max without offset to prevent overflow.
    return std::numeric_limits<int64_t>::max();
  }
  return ((us_ - kTimeTToMicrosecondsOffset) /
          kMicrosecondsPerMillisecond);
}

// static
Time Time::UnixEpoch() {
  Time time;
  time.us_ = kTimeTToMicrosecondsOffset;
  return time;
}

Time Time::LocalMidnight() const {
  Exploded exploded;
  LocalExplode(&exploded);
  exploded.hour = 0;
  exploded.minute = 0;
  exploded.second = 0;
  exploded.millisecond = 0;
  return FromLocalExploded(exploded);
}

// static
bool Time::FromStringInternal(const char* time_string,
                              bool is_local,
                              Time* parsed_time) {
  DCHECK((time_string != NULL) && (parsed_time != NULL));

  if (time_string[0] == '\0')
    return false;

  PRTime result_time = 0;
  PRStatus result = PR_ParseTimeString(time_string,
                                       is_local ? PR_FALSE : PR_TRUE,
                                       &result_time);
  if (PR_SUCCESS != result)
    return false;

  result_time += kTimeTToMicrosecondsOffset;
  *parsed_time = Time(result_time);
  return true;
}

// Local helper class to hold the conversion from Time to TickTime at the
// time of the Unix epoch.
class UnixEpochSingleton {
 public:
  UnixEpochSingleton()
      : unix_epoch_(TimeTicks::Now() - (Time::Now() - Time::UnixEpoch())) {}

  TimeTicks unix_epoch() const { return unix_epoch_; }

 private:
  const TimeTicks unix_epoch_;

  DISALLOW_COPY_AND_ASSIGN(UnixEpochSingleton);
};

static LazyInstance<UnixEpochSingleton>::Leaky
    leaky_unix_epoch_singleton_instance = LAZY_INSTANCE_INITIALIZER;

// Static
TimeTicks TimeTicks::UnixEpoch() {
  return leaky_unix_epoch_singleton_instance.Get().unix_epoch();
}

// Time::Exploded -------------------------------------------------------------

inline bool is_in_range(int value, int lo, int hi) {
  return lo <= value && value <= hi;
}

bool Time::Exploded::HasValidValues() const {
  return is_in_range(month, 1, 12) &&
         is_in_range(day_of_week, 0, 6) &&
         is_in_range(day_of_month, 1, 31) &&
         is_in_range(hour, 0, 23) &&
         is_in_range(minute, 0, 59) &&
         is_in_range(second, 0, 60) &&
         is_in_range(millisecond, 0, 999);
}

}  // namespace base