key.cpp 15.4 KB
Newer Older
gejun's avatar
gejun committed
1
// bthread - A M:N threading library to make applications more concurrent.
gejun's avatar
gejun committed
2
// Copyright (c) 2014 Baidu, Inc.
gejun's avatar
gejun committed
3 4 5 6 7 8 9 10 11 12 13 14
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// 
//     http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
gejun's avatar
gejun committed
15 16 17 18 19

// Author: Ge,Jun (gejun@baidu.com)
// Date: Sun Aug  3 12:46:15 CST 2014

#include <pthread.h>
20 21
#include "butil/macros.h"
#include "butil/atomicops.h"
gejun's avatar
gejun committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#include "bvar/passive_status.h"
#include "bthread/errno.h"                       // EAGAIN
#include "bthread/task_group.h"                  // TaskGroup

// Implement bthread_key_t related functions

namespace bthread {

class KeyTable;

// defined in task_group.cpp
extern __thread TaskGroup* tls_task_group;
extern __thread LocalStorage tls_bls;
static __thread bool tls_ever_created_keytable = false;

// We keep thread specific data in a two-level array. The top-level array
// contains at most KEY_1STLEVEL_SIZE pointers to dynamically allocated
// arrays of at most KEY_2NDLEVEL_SIZE data pointers. Many applications
// may just occupy one or two second level array, thus this machanism keeps
// memory footprint smaller and we can change KEY_1STLEVEL_SIZE to a
// bigger number more freely. The tradeoff is an additional memory indirection:
// negligible at most time.
static const uint32_t KEY_2NDLEVEL_SIZE = 32;

// Notice that we're trying to make the memory of second level and first
// level both 256 bytes to make memory allocator happier.
static const uint32_t KEY_1STLEVEL_SIZE = 31;

// Max tls in one thread, currently the value is 992 which should be enough
// for most projects throughout baidu. 
static const uint32_t KEYS_MAX = KEY_2NDLEVEL_SIZE * KEY_1STLEVEL_SIZE;

// destructors/version of TLS.
struct KeyInfo {
    uint32_t version;
    void (*dtor)(void*, const void*);
    const void* dtor_args;
};
static KeyInfo s_key_info[KEYS_MAX] = {};

// For allocating keys.
static pthread_mutex_t s_key_mutex = PTHREAD_MUTEX_INITIALIZER;
static size_t nfreekey = 0;
static size_t nkey = 0;
static uint32_t s_free_keys[KEYS_MAX];

// Stats.
69 70
static butil::static_atomic<size_t> nkeytable = BUTIL_STATIC_ATOMIC_INIT(0);
static butil::static_atomic<size_t> nsubkeytable = BUTIL_STATIC_ATOMIC_INIT(0);
gejun's avatar
gejun committed
71 72 73 74 75 76 77

// The second-level array.
// Align with cacheline to avoid false sharing.
class BAIDU_CACHELINE_ALIGNMENT SubKeyTable {
public:
    SubKeyTable() {
        memset(_data, 0, sizeof(_data));
78
        nsubkeytable.fetch_add(1, butil::memory_order_relaxed);
gejun's avatar
gejun committed
79 80 81 82
    }

    // NOTE: Call clear first.
    ~SubKeyTable() {
83
        nsubkeytable.fetch_sub(1, butil::memory_order_relaxed);
gejun's avatar
gejun committed
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    }

    void clear(uint32_t offset) {
        for (uint32_t i = 0; i < KEY_2NDLEVEL_SIZE; ++i) {
            void* p = _data[i].ptr;
            if (p) {
                // Set the position to NULL before calling dtor which may set
                // the position again.
                _data[i].ptr = NULL;
                
                KeyInfo info = bthread::s_key_info[offset + i];
                if (info.dtor && _data[i].version == info.version) {
                    info.dtor(p, info.dtor_args);
                }
            }
        }
    }

    bool cleared() const {
        // We need to iterate again to check if every slot is empty. An
        // alternative is remember if set_data() was called during clear.
        for (uint32_t i = 0; i < KEY_2NDLEVEL_SIZE; ++i) {
            if (_data[i].ptr) {
                return false;
            }
        }
        return true;
    }

    inline void* get_data(uint32_t index, uint32_t version) const {
        if (_data[index].version == version) {
            return _data[index].ptr;
        }
        return NULL;
    }
    inline void set_data(uint32_t index, uint32_t version, void* data) {
        _data[index].version = version;
        _data[index].ptr = data;
    }

private:
    struct Data {
        uint32_t version;
        void* ptr;
    };
    Data _data[KEY_2NDLEVEL_SIZE];
};

// The first-level array.
// Align with cacheline to avoid false sharing.
class BAIDU_CACHELINE_ALIGNMENT KeyTable {
public:
    KeyTable() : next(NULL) {
        memset(_subs, 0, sizeof(_subs));
138
        nkeytable.fetch_add(1, butil::memory_order_relaxed);
gejun's avatar
gejun committed
139 140 141
    }

    ~KeyTable() {
142
        nkeytable.fetch_sub(1, butil::memory_order_relaxed);
gejun's avatar
gejun committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        for (int ntry = 0; ntry < PTHREAD_DESTRUCTOR_ITERATIONS; ++ntry) {
            for (uint32_t i = 0; i < KEY_1STLEVEL_SIZE; ++i) {
                if (_subs[i]) {
                    _subs[i]->clear(i * KEY_2NDLEVEL_SIZE);
                }
            }
            bool all_cleared = true;
            for (uint32_t i = 0; i < KEY_1STLEVEL_SIZE; ++i) {
                if (_subs[i] != NULL && !_subs[i]->cleared()) {
                    all_cleared = false;
                    break;
                }
            }
            if (all_cleared) {
                for (uint32_t i = 0; i < KEY_1STLEVEL_SIZE; ++i) {
                    delete _subs[i];
                }
                return;
            }
        }
        LOG(ERROR) << "Fail to destroy all objects in KeyTable[" << this << ']';
    }

    inline void* get_data(bthread_key_t key) const {
        const uint32_t subidx = key.index / KEY_2NDLEVEL_SIZE;
        if (subidx < KEY_1STLEVEL_SIZE) {
            const SubKeyTable* sub_kt = _subs[subidx];
            if (sub_kt) {
                return sub_kt->get_data(
                    key.index - subidx * KEY_2NDLEVEL_SIZE, key.version);
            }
        }
        return NULL;
    }

    inline int set_data(bthread_key_t key, void* data) {
        const uint32_t subidx = key.index / KEY_2NDLEVEL_SIZE;
        if (subidx < KEY_1STLEVEL_SIZE &&
            key.version == s_key_info[key.index].version) {
            SubKeyTable* sub_kt = _subs[subidx];
            if (sub_kt == NULL) {
                sub_kt = new (std::nothrow) SubKeyTable;
                if (NULL == sub_kt) {
                    return ENOMEM;
                }
                _subs[subidx] = sub_kt;
            }
            sub_kt->set_data(key.index - subidx * KEY_2NDLEVEL_SIZE,
                             key.version, data);
            return 0;
        }
        CHECK(false) << "bthread_setspecific is called on invalid " << key;
        return EINVAL;
    }

public:
    KeyTable* next;
private:
    SubKeyTable* _subs[KEY_1STLEVEL_SIZE];
};

static KeyTable* borrow_keytable(bthread_keytable_pool_t* pool) {
    if (pool != NULL && pool->free_keytables) {
        BAIDU_SCOPED_LOCK(pool->mutex);
        KeyTable* p = (KeyTable*)pool->free_keytables;
        if (p) {
            pool->free_keytables = p->next;
            return p;
        }
    }
    return NULL;
}

// Referenced in task_group.cpp, must be extern.
// Caller of this function must hold the KeyTable
void return_keytable(bthread_keytable_pool_t* pool, KeyTable* kt) {
    if (NULL == kt) {
        return;
    }
    if (pool == NULL) {
        delete kt;
        return;
    }
    std::unique_lock<pthread_mutex_t> mu(pool->mutex);
    if (pool->destroyed) {
        mu.unlock();
        delete kt;
        return;
    }
    kt->next = (KeyTable*)pool->free_keytables;
    pool->free_keytables = kt;
}

236 237
static void cleanup_pthread(void* arg) {
    KeyTable* kt = static_cast<KeyTable*>(arg);
gejun's avatar
gejun committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    if (kt) {
        delete kt;
        // After deletion: tls may be set during deletion.
        tls_bls.keytable = NULL;
    }
}

static void arg_as_dtor(void* data, const void* arg) {
    typedef void (*KeyDtor)(void*);
    return ((KeyDtor)arg)(data);
}

static int get_key_count(void*) {
    BAIDU_SCOPED_LOCK(bthread::s_key_mutex);
    return (int)nkey - (int)nfreekey;
}
static size_t get_keytable_count(void*) {
255
    return nkeytable.load(butil::memory_order_relaxed);
gejun's avatar
gejun committed
256 257
}
static size_t get_keytable_memory(void*) {
258 259
    const size_t n = nkeytable.load(butil::memory_order_relaxed);
    const size_t nsub = nsubkeytable.load(butil::memory_order_relaxed);
gejun's avatar
gejun committed
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    return n * sizeof(KeyTable) + nsub * sizeof(SubKeyTable);
}

static bvar::PassiveStatus<int> s_bthread_key_count(
    "bthread_key_count", get_key_count, NULL);
static bvar::PassiveStatus<size_t> s_bthread_keytable_count(
    "bthread_keytable_count", get_keytable_count, NULL);
static bvar::PassiveStatus<size_t> s_bthread_keytable_memory(
    "bthread_keytable_memory", get_keytable_memory, NULL);

}  // namespace bthread

extern "C" {

int bthread_keytable_pool_init(bthread_keytable_pool_t* pool) {
    if (pool == NULL) {
        LOG(ERROR) << "Param[pool] is NULL";
        return EINVAL;
    }
    pthread_mutex_init(&pool->mutex, NULL);
    pool->free_keytables = NULL;
    pool->destroyed = 0;
    return 0;
}

int bthread_keytable_pool_destroy(bthread_keytable_pool_t* pool) {
    if (pool == NULL) {
        LOG(ERROR) << "Param[pool] is NULL";
        return EINVAL;
    }
    bthread::KeyTable* saved_free_keytables = NULL;
    {
        BAIDU_SCOPED_LOCK(pool->mutex);
        if (pool->free_keytables) {
            saved_free_keytables = (bthread::KeyTable*)pool->free_keytables;
            pool->free_keytables = NULL;
        }
        pool->destroyed = 1;
    }
    // Cheat get/setspecific and destroy the keytables.
    bthread::TaskGroup* const g = bthread::tls_task_group;
    bthread::KeyTable* old_kt = bthread::tls_bls.keytable;
    while (saved_free_keytables) {
        bthread::KeyTable* kt = saved_free_keytables;
        saved_free_keytables = kt->next;
        bthread::tls_bls.keytable = kt;
        if (g) {
            g->current_task()->local_storage.keytable = kt;
        }
        delete kt;
        if (old_kt == kt) {
            old_kt = NULL;
        }
    }
    bthread::tls_bls.keytable = old_kt;
    if (g) {
        g->current_task()->local_storage.keytable = old_kt;
    }
    // TODO: return_keytable may race with this function, we don't destroy
    // the mutex right now.
    // pthread_mutex_destroy(&pool->mutex);
    return 0;
}

int bthread_keytable_pool_getstat(bthread_keytable_pool_t* pool,
                                  bthread_keytable_pool_stat_t* stat) {
    if (pool == NULL || stat == NULL) {
        LOG(ERROR) << "Param[pool] or Param[stat] is NULL";
        return EINVAL;
    }
    std::unique_lock<pthread_mutex_t> mu(pool->mutex);
    size_t count = 0;
    bthread::KeyTable* p = (bthread::KeyTable*)pool->free_keytables;
    for (; p; p = p->next, ++count) {}
    stat->nfree = count;
    return 0;
}

// TODO: this is not strict `reserve' because we only check #free.
// Currently there's no way to track KeyTables that may be returned
// to the pool in future.
void bthread_keytable_pool_reserve(bthread_keytable_pool_t* pool,
                                   size_t nfree,
                                   bthread_key_t key,
                                   void* ctor(const void*),
                                   const void* ctor_args) {
    if (pool == NULL) {
        LOG(ERROR) << "Param[pool] is NULL";
        return;
    }
    bthread_keytable_pool_stat_t stat;
    if (bthread_keytable_pool_getstat(pool, &stat) != 0) {
        LOG(ERROR) << "Fail to getstat of pool=" << pool;
        return;
    }
    for (size_t i = stat.nfree; i < nfree; ++i) {
        bthread::KeyTable* kt = new (std::nothrow) bthread::KeyTable;
        if (kt == NULL) {
            break;
        }
        void* data = ctor(ctor_args);
        if (data) {
            kt->set_data(key, data);
        }  // else append kt w/o data.

        std::unique_lock<pthread_mutex_t> mu(pool->mutex);
        if (pool->destroyed) {
            mu.unlock();
            delete kt;
            break;
        }
        kt->next = (bthread::KeyTable*)pool->free_keytables;
        pool->free_keytables = kt;
        if (data == NULL) {
            break;
        }
    }
}

int bthread_key_create2(bthread_key_t* key,
                        void (*dtor)(void*, const void*),
gejun's avatar
gejun committed
381
                        const void* dtor_args) {
gejun's avatar
gejun committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    uint32_t index = 0;
    {
        BAIDU_SCOPED_LOCK(bthread::s_key_mutex);
        if (bthread::nfreekey > 0) {
            index = bthread::s_free_keys[--bthread::nfreekey];
        } else if (bthread::nkey < bthread::KEYS_MAX) {
            index = bthread::nkey++;
        } else {
            return EAGAIN;  // what pthread_key_create returns in this case.
        }
    }
    bthread::s_key_info[index].dtor = dtor;
    bthread::s_key_info[index].dtor_args = dtor_args;
    key->index = index;
    key->version = bthread::s_key_info[index].version;
    if (key->version == 0) {
        ++bthread::s_key_info[index].version;
        ++key->version;
    }
    return 0;
}

gejun's avatar
gejun committed
404
int bthread_key_create(bthread_key_t* key, void (*dtor)(void*)) {
gejun's avatar
gejun committed
405 406 407 408 409 410 411
    if (dtor == NULL) {
        return bthread_key_create2(key, NULL, NULL);
    } else {
        return bthread_key_create2(key, bthread::arg_as_dtor, (const void*)dtor);
    }
}

gejun's avatar
gejun committed
412
int bthread_key_delete(bthread_key_t key) {
gejun's avatar
gejun committed
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
    if (key.index < bthread::KEYS_MAX &&
        key.version == bthread::s_key_info[key.index].version) {
        BAIDU_SCOPED_LOCK(bthread::s_key_mutex);
        if (key.version == bthread::s_key_info[key.index].version) {
            if (++bthread::s_key_info[key.index].version == 0) {
                ++bthread::s_key_info[key.index].version;
            }
            bthread::s_key_info[key.index].dtor = NULL;
            bthread::s_key_info[key.index].dtor_args = NULL;        
            bthread::s_free_keys[bthread::nfreekey++] = key.index;
            return 0;
        } 
    }
    CHECK(false) << "bthread_key_delete is called on invalid " << key;
    return EINVAL;
}

// NOTE: Can't borrow_keytable in bthread_setspecific, otherwise following
// memory leak may occur:
//  -> bthread_getspecific fails to borrow_keytable and returns NULL.
//  -> bthread_setspecific succeeds to borrow_keytable and overwrites old data
//     at the position with newly created data, the old data is leaked.
gejun's avatar
gejun committed
435
int bthread_setspecific(bthread_key_t key, void* data) {
gejun's avatar
gejun committed
436 437 438 439 440 441 442 443 444 445 446 447 448
    bthread::KeyTable* kt = bthread::tls_bls.keytable;
    if (NULL == kt) {
        kt = new (std::nothrow) bthread::KeyTable;
        if (NULL == kt) {
            return ENOMEM;
        }
        bthread::tls_bls.keytable = kt;
        bthread::TaskGroup* const g = bthread::tls_task_group;
        if (g) {
            g->current_task()->local_storage.keytable = kt;
        }
        if (!bthread::tls_ever_created_keytable) {
            bthread::tls_ever_created_keytable = true;
449
            CHECK_EQ(0, butil::thread_atexit(bthread::cleanup_pthread, kt));
gejun's avatar
gejun committed
450 451 452 453 454
        }
    }
    return kt->set_data(key, data);
}

gejun's avatar
gejun committed
455
void* bthread_getspecific(bthread_key_t key) {
gejun's avatar
gejun committed
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    bthread::KeyTable* kt = bthread::tls_bls.keytable;
    if (kt) {
        return kt->get_data(key);
    }
    bthread::TaskGroup* const g = bthread::tls_task_group;
    if (g) {
        bthread::TaskMeta* const task = g->current_task();
        kt = bthread::borrow_keytable(task->attr.keytable_pool);
        if (kt) {
            g->current_task()->local_storage.keytable = kt;
            bthread::tls_bls.keytable = kt;
            return kt->get_data(key);
        }
    }
    return NULL;
}

gejun's avatar
gejun committed
473
void bthread_assign_data(void* data) {
gejun's avatar
gejun committed
474 475 476
    bthread::tls_bls.assigned_data = data;
}

gejun's avatar
gejun committed
477
void* bthread_get_assigned_data() {
gejun's avatar
gejun committed
478 479 480 481
    return bthread::tls_bls.assigned_data;
}

}  // extern "C"