bvar_percentile_unittest.cpp 5.7 KB
Newer Older
gejun's avatar
gejun committed
1
// Copyright (c) 2014 Baidu, Inc.
gejun's avatar
gejun committed
2 3 4 5 6

// Author: Zhangyi Chen (chenzhangyi01@baidu.com)
// Date: 2015/09/15 15:42:55

#include "bvar/detail/percentile.h"
7
#include "butil/logging.h"
gejun's avatar
gejun committed
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#include <gtest/gtest.h>
#include <fstream>

class PercentileTest : public testing::Test {
protected:
    void SetUp() {}
    void TearDown() {}
};

TEST_F(PercentileTest, add) {
    bvar::detail::Percentile p;
    for (int j = 0; j < 10; ++j) {
        for (int i = 0; i < 10000; ++i) {
            p << (i + 1);
        }
        bvar::detail::GlobalPercentileSamples b = p.reset();
        uint32_t last_value = 0;
        for (uint32_t k = 1; k <= 10u; ++k) {
            uint32_t value = b.get_number(k / 10.0);
            EXPECT_GE(value, last_value);
            last_value = value;
            EXPECT_GT(value, (k * 1000 - 500)) << "k=" << k;
            EXPECT_LT(value, (k * 1000 + 500)) << "k=" << k;
        }
        LOG(INFO) << "99%:" << b.get_number(0.99) << ' '
                  << "99.9%:" << b.get_number(0.999) << ' '
                  << "99.99%:" << b.get_number(0.9999);

        std::ofstream out("out.txt");
        b.describe(out);
    }
}

TEST_F(PercentileTest, merge1) {
    // Merge 2 PercentileIntervals b1 and b2. b2 has double SAMPLE_SIZE
    // and num_added. Remaining samples of b1 and b2 in merged result should
    // be 1:2 approximately.
    const size_t N = 1000;
    const size_t SAMPLE_SIZE = 32;
    size_t belong_to_b1 = 0;
    size_t belong_to_b2 = 0;

    for (int repeat = 0; repeat < 100; ++repeat) {
        bvar::detail::PercentileInterval<SAMPLE_SIZE*3> b0;
        bvar::detail::PercentileInterval<SAMPLE_SIZE> b1;
        for (size_t i = 0; i < N; ++i) {
            if (b1.full()) {
                b0.merge(b1);
                b1.clear();
            }
            ASSERT_TRUE(b1.add32(i));
        }
        b0.merge(b1);
        bvar::detail::PercentileInterval<SAMPLE_SIZE * 2> b2;
        for (size_t i = 0; i < N * 2; ++i) {
            if (b2.full()) {
                b0.merge(b2);
                b2.clear();
            }
            ASSERT_TRUE(b2.add32(i + N));
        }
        b0.merge(b2);
        for (size_t i = 0; i < b0._num_samples; ++i) {
            if (b0._samples[i] < N) {
                ++belong_to_b1;
            } else {
                ++belong_to_b2;
            }
        }
    }
    EXPECT_LT(fabs(belong_to_b1 / (double)belong_to_b2 - 0.5),
              0.2) << "belong_to_b1=" << belong_to_b1
                   << " belong_to_b2=" << belong_to_b2;
}

TEST_F(PercentileTest, merge2) {
    // Merge 2 PercentileIntervals b1 and b2 with same SAMPLE_SIZE. Add N1
    // samples to b1 and add N2 samples to b2, Remaining samples of b1 and
    // b2 in merged result should be N1:N2 approximately.

    const size_t N1 = 1000;
    const size_t N2 = 400;
    size_t belong_to_b1 = 0;
    size_t belong_to_b2 = 0;

    for (int repeat = 0; repeat < 100; ++repeat) {
        bvar::detail::PercentileInterval<64> b0;
        bvar::detail::PercentileInterval<64> b1;
        for (size_t i = 0; i < N1; ++i) {
            if (b1.full()) {
                b0.merge(b1);
                b1.clear();
            }
            ASSERT_TRUE(b1.add32(i));
        }
        b0.merge(b1);
        bvar::detail::PercentileInterval<64> b2;
        for (size_t i = 0; i < N2; ++i) {
            if (b2.full()) {
                b0.merge(b2);
                b2.clear();
            }
            ASSERT_TRUE(b2.add32(i + N1));
        }
        b0.merge(b2);
        for (size_t i = 0; i < b0._num_samples; ++i) {
            if (b0._samples[i] < N1) {
                ++belong_to_b1;
            } else {
                ++belong_to_b2;
            }
        }
    }
    EXPECT_LT(fabs(belong_to_b1 / (double)belong_to_b2 - N1 / (double)N2),
              0.2) << "belong_to_b1=" << belong_to_b1
                   << " belong_to_b2=" << belong_to_b2;
}

TEST_F(PercentileTest, combine_of) {
    // Combine multiple percentle samplers into one
    const int num_samplers = 10;
    // Define a base time to make all samples are in the same interval
    const uint32_t base = (1 << 30) + 1;
    
    const int  N = 1000;
    size_t belongs[num_samplers] = {0};
    size_t total = 0;
    for (int repeat = 0; repeat < 100; ++repeat) {
        bvar::detail::Percentile p[num_samplers];
        for (int i = 0; i < num_samplers; ++i) {
            for (int j = 0; j < N * (i + 1); ++j) {
                p[i] << base + i * (i + 1) * N / 2+ j;
            }
        }
        std::vector<bvar::detail::GlobalPercentileSamples> result;
        result.reserve(num_samplers);
        for (int i = 0; i < num_samplers; ++i) {
            result.push_back(p[i].get_value());
        }
        bvar::detail::PercentileSamples<510> g;
        g.combine_of(result.begin(), result.end());
        for (size_t i = 0; i < bvar::detail::NUM_INTERVALS; ++i) {
            if (g._intervals[i] == NULL) {
                continue;
            }
            bvar::detail::PercentileInterval<510>& p = *g._intervals[i];
            total += p._num_samples;
            for (size_t j = 0; j < p._num_samples; ++j) {
                for (int k = 0; k < num_samplers; ++k) {
                    if ((p._samples[j] - base) / N < (k + 1) * (k + 2) / 2u){
                        belongs[k]++;
                        break;
                    }
                }
            }
        }
    }
    for (int i = 0; i < num_samplers; ++i) {
        double expect_ratio = (double)(i + 1) * 2 / 
                                (num_samplers * (num_samplers + 1));
        double actual_ratio = (double)(belongs[i]) / total;
        EXPECT_LT(fabs(expect_ratio / actual_ratio) - 1, 0.2)
                << "expect_ratio=" << expect_ratio
                << " actual_ratio=" << actual_ratio;
                  
    }
}