Commit ea525343 authored by markshih91's avatar markshih91

update

parent 8a1978dd
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import math
import numpy as np
from filterpy.kalman import KalmanFilter
from sklearn.decomposition import PCA
class KalmanBoxTracker(object):
......@@ -85,7 +83,6 @@ class KalmanBoxTracker(object):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
......@@ -128,7 +125,6 @@ class KalmanBoxTracker(object):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
self.kf.predict()
if self.kf.x[3] >= np.pi: self.kf.x[3] -= np.pi * 2
if self.kf.x[3] < -np.pi: self.kf.x[3] += np.pi * 2
......
......@@ -54,18 +54,6 @@ def get_T():
return Trans
def get_loc_GT(lidar_loc):
Trans = get_T()
tmp_loc = np.ones([4])
tmp_loc[:3] = lidar_loc[:3]
world_loc = np.dot(Trans,tmp_loc)
out_BL = Inverse_v2(world_loc[:2])
return out_BL
def get_loc(boxes_3d, car_type):
corners_3d = my_compute_box_3d(boxes_3d[:3],boxes_3d[6],boxes_3d[3:6])
......@@ -99,5 +87,3 @@ def get_loc(boxes_3d, car_type):
out_center_BL = Inverse_v2(world_center_loc[:2])
return lidar_loc, out_BL, out_center_BL
return lidar_loc,out_BL
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment