Commit e020501d authored by markshih91's avatar markshih91

update

parent 9d320164
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import math
import numpy as np
from filterpy.kalman import KalmanFilter
from sklearn.decomposition import PCA
NUM_FRAME = 5
DIST_THRED = 0.5
def center_rot_y_f(points):
x_list = points[:, 0]
y_list = points[:, 1]
pca = PCA(n_components=2)
pca.fit(points)
PCA(copy=True, n_components=2, whiten=False)
orientation = pca.components_[0]
dx = x_list[-1] - x_list[0]
dy = y_list[-1] - y_list[0]
alpha = np.dot(np.array([dx, dy]), orientation)
if alpha < 0:
orientation = -orientation
center_rot_y = math.atan2(orientation[1], orientation[0])
return center_rot_y
class KalmanBoxTracker(object):
......@@ -78,11 +105,36 @@ class KalmanBoxTracker(object):
self.still_first = True
self.age = 0
self.info = info # other info associated
self.type_history = [info[1]]
self.color_history = [info[-1]]
self.license_plate_number_history = [info[-2]]
self.name_history = [info[-3]]
last_x_y = [self.kf.x[0][0], self.kf.x[1][0]]
self.last_x_y_list = [last_x_y]
def update(self, bbox3D, info):
"""
Updates the state vector with observed bbox.
"""
points = self.last_x_y_list[:]
points = np.array(points)
#points = np.squeeze(points, axis=(2,))
x_list = points[:, 0]
y_list = points[:, 1]
if len(points) >= NUM_FRAME and abs(x_list[-1] - x_list[0]) > DIST_THRED or abs(y_list[-1] - y_list[0]) > DIST_THRED:
center_rot_y = center_rot_y_f(points)
rot_y = bbox3D[3]
if rot_y > np.pi: rot_y -= int((rot_y + np.pi)/(2*np.pi)) * np.pi * 2
if rot_y < -np.pi: rot_y += int((np.pi - rot_y)/(2*np.pi)) * np.pi * 2
if abs(center_rot_y - rot_y) > np.pi / 2.0 and abs(
center_rot_y - rot_y) < np.pi * 3 / 2.0: # if the angle of two theta is not acute angle
rot_y += np.pi
if rot_y > np.pi: rot_y -= np.pi * 2 # make the theta still in the range
if rot_y < -np.pi: rot_y += np.pi * 2
bbox3D[3] = rot_y
self.time_since_update = 0
self.history = []
self.hits += 1
......@@ -125,6 +177,12 @@ class KalmanBoxTracker(object):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if self.time_since_update == 0:
last_x_y = [self.kf.x[0][0], self.kf.x[1][0]]
self.last_x_y_list.append(last_x_y)
if len(self.last_x_y_list) > NUM_FRAME:
del(self.last_x_y_list[0])
self.kf.predict()
if self.kf.x[3] >= np.pi: self.kf.x[3] -= np.pi * 2
if self.kf.x[3] < -np.pi: self.kf.x[3] += np.pi * 2
......
......@@ -5,7 +5,7 @@ import numpy as np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from scipy.optimize import linear_sum_assignment
from AB3DMOT_libs.bbox_utils import convert_3dbox_to_8corner, iou3d
from AB3DMOT_libs.kalman_filter import KalmanBoxTracker
from AB3DMOT_libs.kalman_filter import KalmanBoxTracker, NUM_FRAME
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.01):
......@@ -113,6 +113,7 @@ class AB3DMOT(object): # A baseline of 3D multi-object tracking
d = matched[np.where(matched[:, 1] == t)[0], 0] # a list of index
ori_info = trk.info
cur_info = info[d, :][0]
if cur_info[1] == ori_info[1]:
if ori_info[-1] !='None':
cur_info[-1] = ori_info[-1]
if ori_info[-2] !='None':
......
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import numpy as np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from scipy.optimize import linear_sum_assignment
from AB3DMOT_libs.bbox_utils import convert_3dbox_to_8corner, iou3d
from AB3DMOT_libs.kalman_filter import KalmanBoxTracker
TYPE_THRED = 10
COLOR_THRED = 10
LICENSE_PLATE_NUMBER_THRED = 10
NAME_THRED = 10
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.01):
"""
Assigns detections to tracked object (both represented as bounding boxes)
detections: N x 8 x 3
trackers: M x 8 x 3
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if (len(trackers) == 0):
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 8, 3), dtype=int)
iou_matrix = np.zeros((len(detections), len(trackers)), dtype=np.float32)
for d, det in enumerate(detections):
for t, trk in enumerate(trackers):
iou_matrix[d, t] = iou3d(det, trk)[0] # det: 8 x 3, trk: 8 x 3
# matched_indices = linear_assignment(-iou_matrix)
# hougarian algorithm, compatible to linear_assignment in sklearn.utils
row_ind, col_ind = linear_sum_assignment(-iou_matrix) # hougarian algorithm
matched_indices = np.stack((row_ind, col_ind), axis=1)
unmatched_detections = []
for d, det in enumerate(detections):
if (d not in matched_indices[:, 0]): unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if (t not in matched_indices[:, 1]): unmatched_trackers.append(t)
# filter out matched with low IOU
matches = []
for m in matched_indices:
if (iou_matrix[m[0], m[1]] < iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if (len(matches) == 0):
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class AB3DMOT(object): # A baseline of 3D multi-object tracking
# max age will preserve the bbox does not appear no more than 2 frames, interpolate the detection
def __init__(self, max_age=2,
min_hits=3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.trackers = []
self.frame_count = 0
self.reorder = [3, 4, 5, 6, 2, 1, 0]
self.reorder_back = [6, 5, 4, 0, 1, 2, 3]
def update(self, dets_all):
"""
Params:
dets_all: dict
dets - a numpy array of detections in the format [[h,w,l,x,y,z,theta],...]
info: a array of other info for each det
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
dets, info = dets_all['dets'], dets_all['info'] # dets: N x 7, float numpy array
# reorder the data to put x,y,z in front to be compatible with the state transition matrix
# where the constant velocity model is defined in the first three rows of the matrix
dets = dets[:, self.reorder] # reorder the data to [[x,y,z,theta,l,w,h], ...]
self.frame_count += 1
trks = np.zeros((len(self.trackers), 7)) # N x 7 , # get predicted locations from existing trackers.
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict().reshape((-1, 1))
trk[:] = [pos[0], pos[1], pos[2], pos[3], pos[4], pos[5], pos[6]]
if (np.any(np.isnan(pos))):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
dets_8corner = [convert_3dbox_to_8corner(det_tmp) for det_tmp in dets]
if len(dets_8corner) > 0:
dets_8corner = np.stack(dets_8corner, axis=0)
else:
dets_8corner = []
trks_8corner = [convert_3dbox_to_8corner(trk_tmp) for trk_tmp in trks]
if len(trks_8corner) > 0: trks_8corner = np.stack(trks_8corner, axis=0)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets_8corner, trks_8corner)
# update matched trackers with assigned detections
for t, trk in enumerate(self.trackers):
if t not in unmatched_trks:
d = matched[np.where(matched[:, 1] == t)[0], 0] # a list of index
ori_info = trk.info
cur_info = info[d, :][0]
max_type = cur_info[1]
if len(trk.type_history) >= TYPE_THRED:
max_type = max(trk.type_history, key=trk.type_history.count)
del trk.type_history[0]
trk.type_history.append(cur_info[1])
cur_info[1] = max_type
max_color = cur_info[-1]
if len(trk.color_history) >= COLOR_THRED:
max_color = max(trk.color_history, key=trk.color_history.count)
del trk.color_history[0]
if cur_info[-1] != 'None':
trk.color_history.append(cur_info[-1])
cur_info[-1] = max_color
max_license_plate_number_history = cur_info[-2]
if len(trk.license_plate_number_history) >= LICENSE_PLATE_NUMBER_THRED:
max_license_plate_number_history = max(trk.license_plate_number_history, key=trk.license_plate_number_history.count)
del trk.license_plate_number_history[0]
if cur_info[-2] != 'None':
trk.license_plate_number_history.append(cur_info[-2])
cur_info[-2] = max_license_plate_number_history
max_name_history = cur_info[-3]
if len(trk.name_history) >= NAME_THRED:
max_name_history = max(trk.name_history, key=trk.name_history.count)
del trk.name_history[0]
if cur_info[-3] != 'None':
trk.name_history.append(cur_info[-3])
cur_info[-3] = max_name_history
#if cur_info[1] == ori_info[1]:
# if ori_info[-1] !='None':
# cur_info[-1] = ori_info[-1]
# if ori_info[-2] !='None':
# cur_info[-2] = ori_info[-2]
# if ori_info[-3] !='None':
# cur_info[-3] = ori_info[-3]
trk.update(dets[d, :][0], cur_info)
else:
trk.info[0] = info[0][0]
# create and initialise new trackers for unmatched detections
for i in unmatched_dets: # a scalar of index
trk = KalmanBoxTracker(dets[i, :], info[i, :])
self.trackers.append(trk)
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state() # bbox location
d = d[self.reorder_back] # change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation = trk.get_orientation()
if ((trk.time_since_update < self.max_age) and (
trk.hits >= self.min_hits or self.frame_count <= self.min_hits)):
# if trk.time_since_update < self.max_age:
ret.append(
np.concatenate((d, [trk.id + 1], orientation, trk.info)).reshape(1, -1)) # +1 as MOT benchmark requires positive
i -= 1
# remove dead tracklet
if (trk.time_since_update >= self.max_age):
self.trackers.pop(i)
if (len(ret) > 0): return np.concatenate(ret) # h,w,l,x,y,z,theta, ID, other info, confidence
return np.empty((0, 17))
def predict(self, timestamp):
rets = []
if len(self.trackers) == 0:
return rets
pre_timestamp = int(self.trackers[0].info[0])
if (timestamp - pre_timestamp) > 450:
return rets
count = int(round((timestamp - pre_timestamp) / 100.0))
index = 1
while index < count:
self.frame_count += 1
trks = np.zeros((len(self.trackers), 7))
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict().reshape((-1, 1))
trk[:] = [pos[0], pos[1], pos[2], pos[3], pos[4], pos[5], pos[6]]
if (np.any(np.isnan(pos))):
to_del.append(t)
for t in reversed(to_del):
self.trackers.pop(t)
for trk in reversed(self.trackers):
d = trk.get_state() # bbox location
d = d[self.reorder_back] # change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation = trk.get_orientation()
trk.info[0] = pre_timestamp + 100*index
ret.append(
np.concatenate((d, [trk.id + 1], orientation, trk.info)).reshape(1, -1)) # +1 as MOT benchmark requires positive
rets.append(np.concatenate(ret))
index += 1
return rets
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import numpy as np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from scipy.optimize import linear_sum_assignment
from AB3DMOT_libs.bbox_utils import convert_3dbox_to_8corner, iou3d
from AB3DMOT_libs.kalman_filter import KalmanBoxTracker
TYPE_THRED = 10
COLOR_THRED = 10
LICENSE_PLATE_NUMBER_THRED = 10
NAME_THRED = 10
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.01):
"""
Assigns detections to tracked object (both represented as bounding boxes)
detections: N x 8 x 3
trackers: M x 8 x 3
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if (len(trackers) == 0):
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 8, 3), dtype=int)
iou_matrix = np.zeros((len(detections), len(trackers)), dtype=np.float32)
for d, det in enumerate(detections):
for t, trk in enumerate(trackers):
iou_matrix[d, t] = iou3d(det, trk)[0] # det: 8 x 3, trk: 8 x 3
# matched_indices = linear_assignment(-iou_matrix)
# hougarian algorithm, compatible to linear_assignment in sklearn.utils
row_ind, col_ind = linear_sum_assignment(-iou_matrix) # hougarian algorithm
matched_indices = np.stack((row_ind, col_ind), axis=1)
unmatched_detections = []
for d, det in enumerate(detections):
if (d not in matched_indices[:, 0]): unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if (t not in matched_indices[:, 1]): unmatched_trackers.append(t)
# filter out matched with low IOU
matches = []
for m in matched_indices:
if (iou_matrix[m[0], m[1]] < iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if (len(matches) == 0):
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class AB3DMOT(object): # A baseline of 3D multi-object tracking
# max age will preserve the bbox does not appear no more than 2 frames, interpolate the detection
def __init__(self, max_age=2,
min_hits=3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.trackers = []
self.frame_count = 0
self.reorder = [3, 4, 5, 6, 2, 1, 0]
self.reorder_back = [6, 5, 4, 0, 1, 2, 3]
def update(self, dets_all):
"""
Params:
dets_all: dict
dets - a numpy array of detections in the format [[h,w,l,x,y,z,theta],...]
info: a array of other info for each det
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
dets, info = dets_all['dets'], dets_all['info'] # dets: N x 7, float numpy array
# reorder the data to put x,y,z in front to be compatible with the state transition matrix
# where the constant velocity model is defined in the first three rows of the matrix
dets = dets[:, self.reorder] # reorder the data to [[x,y,z,theta,l,w,h], ...]
self.frame_count += 1
trks = np.zeros((len(self.trackers), 7)) # N x 7 , # get predicted locations from existing trackers.
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict().reshape((-1, 1))
trk[:] = [pos[0], pos[1], pos[2], pos[3], pos[4], pos[5], pos[6]]
if (np.any(np.isnan(pos))):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
dets_8corner = [convert_3dbox_to_8corner(det_tmp) for det_tmp in dets]
if len(dets_8corner) > 0:
dets_8corner = np.stack(dets_8corner, axis=0)
else:
dets_8corner = []
trks_8corner = [convert_3dbox_to_8corner(trk_tmp) for trk_tmp in trks]
if len(trks_8corner) > 0: trks_8corner = np.stack(trks_8corner, axis=0)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets_8corner, trks_8corner)
# update matched trackers with assigned detections
for t, trk in enumerate(self.trackers):
if t not in unmatched_trks:
d = matched[np.where(matched[:, 1] == t)[0], 0] # a list of index
ori_info = trk.info
cur_info = info[d, :][0]
if len(trk.type_history) < TYPE_THRED:
trk.type_history.append(cur_info[1])
else:
max_type = max(trk.type_history, key=trk.type_history.count)
cur_info[1] = max_type
if len(trk.color_history) < COLOR_THRED:
if cur_info[-1] != 'None':
trk.color_history.append(cur_info[-1])
else:
max_color = max(trk.color_history, key=trk.color_history.count)
cur_info[-1] = max_color
if len(trk.license_plate_number_history) < LICENSE_PLATE_NUMBER_THRED:
if cur_info[-2] != 'None':
trk.license_plate_number_history.append(cur_info[-2])
else:
max_license_plate_number_history = max(trk.license_plate_number_history, key=trk.license_plate_number_history.count)
cur_info[-2] = max_license_plate_number_history
if len(trk.name_history) < NAME_THRED:
if cur_info[-3] != 'None':
trk.name_history.append(cur_info[-3])
else:
max_name_history = max(trk.name_history, key=trk.name_history.count)
cur_info[-3] = max_name_history
#if cur_info[1] == ori_info[1]:
# if ori_info[-1] !='None':
# cur_info[-1] = ori_info[-1]
# if ori_info[-2] !='None':
# cur_info[-2] = ori_info[-2]
# if ori_info[-3] !='None':
# cur_info[-3] = ori_info[-3]
trk.update(dets[d, :][0], cur_info)
else:
trk.info[0] = info[0][0]
# create and initialise new trackers for unmatched detections
for i in unmatched_dets: # a scalar of index
trk = KalmanBoxTracker(dets[i, :], info[i, :])
self.trackers.append(trk)
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state() # bbox location
d = d[self.reorder_back] # change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation = trk.get_orientation()
if ((trk.time_since_update < self.max_age) and (
trk.hits >= self.min_hits or self.frame_count <= self.min_hits)):
# if trk.time_since_update < self.max_age:
ret.append(
np.concatenate((d, [trk.id + 1], orientation, trk.info)).reshape(1, -1)) # +1 as MOT benchmark requires positive
i -= 1
# remove dead tracklet
if (trk.time_since_update >= self.max_age):
self.trackers.pop(i)
if (len(ret) > 0): return np.concatenate(ret) # h,w,l,x,y,z,theta, ID, other info, confidence
return np.empty((0, 17))
def predict(self, timestamp):
rets = []
if len(self.trackers) == 0:
return rets
pre_timestamp = int(self.trackers[0].info[0])
if (timestamp - pre_timestamp) > 450:
return rets
count = int(round((timestamp - pre_timestamp) / 100.0))
index = 1
while index < count:
self.frame_count += 1
trks = np.zeros((len(self.trackers), 7))
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict().reshape((-1, 1))
trk[:] = [pos[0], pos[1], pos[2], pos[3], pos[4], pos[5], pos[6]]
if (np.any(np.isnan(pos))):
to_del.append(t)
for t in reversed(to_del):
self.trackers.pop(t)
for trk in reversed(self.trackers):
d = trk.get_state() # bbox location
d = d[self.reorder_back] # change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation = trk.get_orientation()
trk.info[0] = pre_timestamp + 100*index
ret.append(
np.concatenate((d, [trk.id + 1], orientation, trk.info)).reshape(1, -1)) # +1 as MOT benchmark requires positive
rets.append(np.concatenate(ret))
index += 1
return rets
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import numpy as np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from scipy.optimize import linear_sum_assignment
from AB3DMOT_libs.bbox_utils import convert_3dbox_to_8corner, iou3d
from AB3DMOT_libs.kalman_filter import KalmanBoxTracker
TYPE_THRED = 10
COLOR_THRED = 10
LICENSE_PLATE_NUMBER_THRED = 10
NAME_THRED = 10
def associate_detections_to_trackers(detections, trackers, iou_threshold=0.01):
"""
Assigns detections to tracked object (both represented as bounding boxes)
detections: N x 8 x 3
trackers: M x 8 x 3
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if (len(trackers) == 0):
return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 8, 3), dtype=int)
iou_matrix = np.zeros((len(detections), len(trackers)), dtype=np.float32)
for d, det in enumerate(detections):
for t, trk in enumerate(trackers):
iou_matrix[d, t] = iou3d(det, trk)[0] # det: 8 x 3, trk: 8 x 3
# matched_indices = linear_assignment(-iou_matrix)
# hougarian algorithm, compatible to linear_assignment in sklearn.utils
row_ind, col_ind = linear_sum_assignment(-iou_matrix) # hougarian algorithm
matched_indices = np.stack((row_ind, col_ind), axis=1)
unmatched_detections = []
for d, det in enumerate(detections):
if (d not in matched_indices[:, 0]): unmatched_detections.append(d)
unmatched_trackers = []
for t, trk in enumerate(trackers):
if (t not in matched_indices[:, 1]): unmatched_trackers.append(t)
# filter out matched with low IOU
matches = []
for m in matched_indices:
if (iou_matrix[m[0], m[1]] < iou_threshold):
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1, 2))
if (len(matches) == 0):
matches = np.empty((0, 2), dtype=int)
else:
matches = np.concatenate(matches, axis=0)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class AB3DMOT(object): # A baseline of 3D multi-object tracking
# max age will preserve the bbox does not appear no more than 2 frames, interpolate the detection
def __init__(self, max_age=2,
min_hits=3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.trackers = []
self.frame_count = 0
self.reorder = [3, 4, 5, 6, 2, 1, 0]
self.reorder_back = [6, 5, 4, 0, 1, 2, 3]
def update(self, dets_all):
"""
Params:
dets_all: dict
dets - a numpy array of detections in the format [[h,w,l,x,y,z,theta],...]
info: a array of other info for each det
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
dets, info = dets_all['dets'], dets_all['info'] # dets: N x 7, float numpy array
# reorder the data to put x,y,z in front to be compatible with the state transition matrix
# where the constant velocity model is defined in the first three rows of the matrix
dets = dets[:, self.reorder] # reorder the data to [[x,y,z,theta,l,w,h], ...]
self.frame_count += 1
trks = np.zeros((len(self.trackers), 7)) # N x 7 , # get predicted locations from existing trackers.
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict().reshape((-1, 1))
trk[:] = [pos[0], pos[1], pos[2], pos[3], pos[4], pos[5], pos[6]]
if (np.any(np.isnan(pos))):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
dets_8corner = [convert_3dbox_to_8corner(det_tmp) for det_tmp in dets]
if len(dets_8corner) > 0:
dets_8corner = np.stack(dets_8corner, axis=0)
else:
dets_8corner = []
trks_8corner = [convert_3dbox_to_8corner(trk_tmp) for trk_tmp in trks]
if len(trks_8corner) > 0: trks_8corner = np.stack(trks_8corner, axis=0)
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets_8corner, trks_8corner)
# update matched trackers with assigned detections
for t, trk in enumerate(self.trackers):
if t not in unmatched_trks:
d = matched[np.where(matched[:, 1] == t)[0], 0] # a list of index
ori_info = trk.info
cur_info = info[d, :][0]
max_type = cur_info[1]
if len(trk.type_history) >= TYPE_THRED:
max_type = max(trk.type_history, key=trk.type_history.count)
del trk.type_history[0]
trk.type_history.append(cur_info[1])
cur_info[1] = max_type
max_color = cur_info[-1]
if len(trk.color_history) >= COLOR_THRED:
max_color = max(trk.color_history, key=trk.color_history.count)
del trk.color_history[0]
if cur_info[-1] != 'None':
trk.color_history.append(cur_info[-1])
cur_info[-1] = max_color
max_license_plate_number_history = cur_info[-2]
if len(trk.license_plate_number_history) >= LICENSE_PLATE_NUMBER_THRED:
max_license_plate_number_history = max(trk.license_plate_number_history, key=trk.license_plate_number_history.count)
del trk.license_plate_number_history[0]
if cur_info[-2] != 'None':
trk.license_plate_number_history.append(cur_info[-2])
cur_info[-2] = max_license_plate_number_history
max_name_history = cur_info[-3]
if len(trk.name_history) >= NAME_THRED:
max_name_history = max(trk.name_history, key=trk.name_history.count)
del trk.name_history[0]
if cur_info[-3] != 'None':
trk.name_history.append(cur_info[-3])
cur_info[-3] = max_name_history
#if cur_info[1] == ori_info[1]:
# if ori_info[-1] !='None':
# cur_info[-1] = ori_info[-1]
# if ori_info[-2] !='None':
# cur_info[-2] = ori_info[-2]
# if ori_info[-3] !='None':
# cur_info[-3] = ori_info[-3]
trk.update(dets[d, :][0], cur_info)
else:
trk.info[0] = info[0][0]
# create and initialise new trackers for unmatched detections
for i in unmatched_dets: # a scalar of index
trk = KalmanBoxTracker(dets[i, :], info[i, :])
self.trackers.append(trk)
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state() # bbox location
d = d[self.reorder_back] # change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation = trk.get_orientation()
if ((trk.time_since_update < self.max_age) and (
trk.hits >= self.min_hits or self.frame_count <= self.min_hits)):
# if trk.time_since_update < self.max_age:
ret.append(
np.concatenate((d, [trk.id + 1], orientation, trk.info)).reshape(1, -1)) # +1 as MOT benchmark requires positive
i -= 1
# remove dead tracklet
if (trk.time_since_update >= self.max_age):
self.trackers.pop(i)
if (len(ret) > 0): return np.concatenate(ret) # h,w,l,x,y,z,theta, ID, other info, confidence
return np.empty((0, 17))
def predict(self, timestamp):
rets = []
if len(self.trackers) == 0:
return rets
pre_timestamp = int(self.trackers[0].info[0])
if (timestamp - pre_timestamp) > 450:
return rets
count = int(round((timestamp - pre_timestamp) / 100.0))
index = 1
while index < count:
self.frame_count += 1
trks = np.zeros((len(self.trackers), 7))
to_del = []
ret = []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict().reshape((-1, 1))
trk[:] = [pos[0], pos[1], pos[2], pos[3], pos[4], pos[5], pos[6]]
if (np.any(np.isnan(pos))):
to_del.append(t)
for t in reversed(to_del):
self.trackers.pop(t)
for trk in reversed(self.trackers):
d = trk.get_state() # bbox location
d = d[self.reorder_back] # change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation = trk.get_orientation()
trk.info[0] = pre_timestamp + 100*index
ret.append(
np.concatenate((d, [trk.id + 1], orientation, trk.info)).reshape(1, -1)) # +1 as MOT benchmark requires positive
rets.append(np.concatenate(ret))
index += 1
return rets
......@@ -51,6 +51,7 @@ def rotz(t):
def callback(msgs):
log_file = open(log_file_path, 'a')
ori_log_file = open(ori_log_file_path, 'a')
cloud_pub = rospy.Publisher("tracking_cloud", PointCloud2, queue_size=10)
cloud_pub.publish(msgs.cloud)
......@@ -77,6 +78,12 @@ def callback(msgs):
info = [msg.frame, msg.type, msg.score, msg.name, msg.license_plate_number, msg.color_name]
dets.append(det)
infos.append(info)
ori_log_file.write('%u,%u,%f,%f,%f,%f,%f,%f,%f,%f,%d,%f,%f,%f,%f,%f,%f,%.8f,%.8f,%.8f,%.8f,%s,%s,%s\n' % (
msg.frame, msg.type, msg.score, msg.h, msg.w, msg.l, msg.x, msg.y, msg.z, msg.rot_y,
msg.obj_id, msg.v_x, msg.v_y, msg.v_z,msg.loc_x, msg.loc_y, msg.loc_z, 0, 0, 0, 0, msg.name, msg.license_plate_number, msg.color_name))
ori_log_file.close()
dets_all = {'dets': np.asarray(dets), 'info': np.asarray(infos)}
trackers = mot_tracker.update(dets_all)
......@@ -203,7 +210,7 @@ def callback(msgs):
t_marker.color.g = 1.0
t_marker.color.b = 0
t_marker.lifetime = rospy.Duration(0.5)
t_marker.text = 'id:{0},type:{1},v:{2:.2f}m/s,No:{3}'.format(msg.obj_id, msg.name, math.sqrt(msg.v_x*msg.v_x+msg.v_y*msg.v_y)*10, msg.license_plate_number)
t_marker.text = 'id:{0},type:{1},type_name:{2},v:{3:.2f}m/s,No:{4}\ncolor_name:{5},frame:{6}'.format(msg.obj_id, msg.type, msg.name, math.sqrt(msg.v_x*msg.v_x+msg.v_y*msg.v_y)*10, msg.license_plate_number, msg.color_name, msg.frame)
marker_arr.markers.append(t_marker)
i += 1
......@@ -232,16 +239,20 @@ def listener():
if __name__ == '__main__':
global mot_tracker, log_file_path
global mot_tracker, log_file_path, ori_log_file_path
mot_tracker = AB3DMOT(max_age=3, min_hits=3)
cur_time = time.strftime('%Y%m%d_%H:%M:%S', time.localtime(time.time()))
log_file_path = 'src/tracking/logs/' + cur_time + '.txt'
if not os.path.exists('src/tracking/logs/'):
os.mkdir('src/tracking/logs/')
ori_log_file_path = 'src/tracking/logs/' + cur_time + '_ori.txt'
if not os.path.exists('src/tracking/logs'):
os.mkdir('src/tracking/logs')
with open(log_file_path, 'w') as f:
f.write("frame,type,score,h,w,l,x,y,z,rot_y,obj_id,v_x,v_y,v_z,loc_x,loc_y,loc_z,Lat,Long,center_Lat,center_Long,name,license_plate_number,color_name\n")
with open(ori_log_file_path, 'w') as f:
f.write("frame,type,score,h,w,l,x,y,z,rot_y,obj_id,v_x,v_y,v_z,loc_x,loc_y,loc_z,Lat,Long,center_Lat,center_Long,name,license_plate_number,color_name\n")
listener()
......
......@@ -51,6 +51,7 @@ def rotz(t):
def callback(msgs):
log_file = open(log_file_path, 'a')
ori_log_file = open(ori_log_file_path, 'a')
cloud_pub = rospy.Publisher("tracking_cloud", PointCloud2, queue_size=10)
cloud_pub.publish(msgs.cloud)
......@@ -111,6 +112,12 @@ def callback(msgs):
info = [msg.frame, msg.type, msg.score, msg.name, msg.license_plate_number, msg.color_name]
dets.append(det)
infos.append(info)
ori_log_file.write('%u,%u,%f,%f,%f,%f,%f,%f,%f,%f,%d,%f,%f,%f,%f,%f,%f,%.8f,%.8f,%.8f,%.8f,%s,%s,%s\n' % (
msg.frame, msg.type, msg.score, msg.h, msg.w, msg.l, msg.x, msg.y, msg.z, msg.rot_y,
msg.obj_id, msg.v_x, msg.v_y, msg.v_z,msg.loc_x, msg.loc_y, msg.loc_z, 0, 0, 0, 0, msg.name, msg.license_plate_number, msg.color_name))
ori_log_file.close()
dets_all = {'dets': np.asarray(dets), 'info': np.asarray(infos)}
trackers = mot_tracker.update(dets_all)
......@@ -237,7 +244,7 @@ def callback(msgs):
t_marker.color.g = 1.0
t_marker.color.b = 0
t_marker.lifetime = rospy.Duration(0.5)
t_marker.text = 'id:{0},type:{1},v:{2:.2f}m/s,No:{3}'.format(msg.obj_id, msg.name, math.sqrt(msg.v_x*msg.v_x+msg.v_y*msg.v_y)*10, msg.license_plate_number)
t_marker.text = 'id:{0},type:{1},type_name:{2},v:{3:.2f}m/s,No:{4}\ncolor_name:{5},frame:{6}'.format(msg.obj_id, msg.type, msg.name, math.sqrt(msg.v_x*msg.v_x+msg.v_y*msg.v_y)*10, msg.license_plate_number, msg.color_name, msg.frame)
marker_arr.markers.append(t_marker)
i += 1
......@@ -266,16 +273,20 @@ def listener():
if __name__ == '__main__':
global mot_tracker, log_file_path
global mot_tracker, log_file_path, ori_log_file_path
mot_tracker = AB3DMOT(max_age=3, min_hits=3)
cur_time = time.strftime('%Y%m%d_%H:%M:%S', time.localtime(time.time()))
log_file_path = 'src/tracking/logs/' + cur_time + '.txt'
if not os.path.exists('src/tracking/logs/'):
os.mkdir('src/tracking/logs/')
ori_log_file_path = 'src/tracking/logs/' + cur_time + '_ori.txt'
if not os.path.exists('src/tracking/logs'):
os.mkdir('src/tracking/logs')
with open(log_file_path, 'w') as f:
f.write("frame,type,score,h,w,l,x,y,z,rot_y,obj_id,v_x,v_y,v_z,loc_x,loc_y,loc_z,Lat,Long,center_Lat,center_Long,name,license_plate_number,color_name\n")
with open(ori_log_file_path, 'w') as f:
f.write("frame,type,score,h,w,l,x,y,z,rot_y,obj_id,v_x,v_y,v_z,loc_x,loc_y,loc_z,Lat,Long,center_Lat,center_Long,name,license_plate_number,color_name\n")
listener()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment