Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
L
lidar_tracking
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
shishuai
lidar_tracking
Commits
e020501d
Commit
e020501d
authored
May 24, 2021
by
markshih91
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update
parent
9d320164
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
774 additions
and
10 deletions
+774
-10
kalman_filter.py
tracking/scripts/AB3DMOT_libs/kalman_filter.py
+59
-1
model.py
tracking/scripts/AB3DMOT_libs/model.py
+2
-1
model_2.py
tracking/scripts/AB3DMOT_libs/model_2.py
+229
-0
model_3.py
tracking/scripts/AB3DMOT_libs/model_3.py
+225
-0
model_4.py
tracking/scripts/AB3DMOT_libs/model_4.py
+229
-0
listener.py
tracking/scripts/listener.py
+15
-4
listener_10fps.py
tracking/scripts/listener_10fps.py
+15
-4
No files found.
tracking/scripts/AB3DMOT_libs/kalman_filter.py
View file @
e020501d
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import
math
import
numpy
as
np
from
filterpy.kalman
import
KalmanFilter
from
sklearn.decomposition
import
PCA
NUM_FRAME
=
5
DIST_THRED
=
0.5
def
center_rot_y_f
(
points
):
x_list
=
points
[:,
0
]
y_list
=
points
[:,
1
]
pca
=
PCA
(
n_components
=
2
)
pca
.
fit
(
points
)
PCA
(
copy
=
True
,
n_components
=
2
,
whiten
=
False
)
orientation
=
pca
.
components_
[
0
]
dx
=
x_list
[
-
1
]
-
x_list
[
0
]
dy
=
y_list
[
-
1
]
-
y_list
[
0
]
alpha
=
np
.
dot
(
np
.
array
([
dx
,
dy
]),
orientation
)
if
alpha
<
0
:
orientation
=
-
orientation
center_rot_y
=
math
.
atan2
(
orientation
[
1
],
orientation
[
0
])
return
center_rot_y
class
KalmanBoxTracker
(
object
):
...
...
@@ -78,11 +105,36 @@ class KalmanBoxTracker(object):
self
.
still_first
=
True
self
.
age
=
0
self
.
info
=
info
# other info associated
self
.
type_history
=
[
info
[
1
]]
self
.
color_history
=
[
info
[
-
1
]]
self
.
license_plate_number_history
=
[
info
[
-
2
]]
self
.
name_history
=
[
info
[
-
3
]]
last_x_y
=
[
self
.
kf
.
x
[
0
][
0
],
self
.
kf
.
x
[
1
][
0
]]
self
.
last_x_y_list
=
[
last_x_y
]
def
update
(
self
,
bbox3D
,
info
):
"""
Updates the state vector with observed bbox.
"""
points
=
self
.
last_x_y_list
[:]
points
=
np
.
array
(
points
)
#points = np.squeeze(points, axis=(2,))
x_list
=
points
[:,
0
]
y_list
=
points
[:,
1
]
if
len
(
points
)
>=
NUM_FRAME
and
abs
(
x_list
[
-
1
]
-
x_list
[
0
])
>
DIST_THRED
or
abs
(
y_list
[
-
1
]
-
y_list
[
0
])
>
DIST_THRED
:
center_rot_y
=
center_rot_y_f
(
points
)
rot_y
=
bbox3D
[
3
]
if
rot_y
>
np
.
pi
:
rot_y
-=
int
((
rot_y
+
np
.
pi
)
/
(
2
*
np
.
pi
))
*
np
.
pi
*
2
if
rot_y
<
-
np
.
pi
:
rot_y
+=
int
((
np
.
pi
-
rot_y
)
/
(
2
*
np
.
pi
))
*
np
.
pi
*
2
if
abs
(
center_rot_y
-
rot_y
)
>
np
.
pi
/
2.0
and
abs
(
center_rot_y
-
rot_y
)
<
np
.
pi
*
3
/
2.0
:
# if the angle of two theta is not acute angle
rot_y
+=
np
.
pi
if
rot_y
>
np
.
pi
:
rot_y
-=
np
.
pi
*
2
# make the theta still in the range
if
rot_y
<
-
np
.
pi
:
rot_y
+=
np
.
pi
*
2
bbox3D
[
3
]
=
rot_y
self
.
time_since_update
=
0
self
.
history
=
[]
self
.
hits
+=
1
...
...
@@ -125,6 +177,12 @@ class KalmanBoxTracker(object):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
if
self
.
time_since_update
==
0
:
last_x_y
=
[
self
.
kf
.
x
[
0
][
0
],
self
.
kf
.
x
[
1
][
0
]]
self
.
last_x_y_list
.
append
(
last_x_y
)
if
len
(
self
.
last_x_y_list
)
>
NUM_FRAME
:
del
(
self
.
last_x_y_list
[
0
])
self
.
kf
.
predict
()
if
self
.
kf
.
x
[
3
]
>=
np
.
pi
:
self
.
kf
.
x
[
3
]
-=
np
.
pi
*
2
if
self
.
kf
.
x
[
3
]
<
-
np
.
pi
:
self
.
kf
.
x
[
3
]
+=
np
.
pi
*
2
...
...
tracking/scripts/AB3DMOT_libs/model.py
View file @
e020501d
...
...
@@ -5,7 +5,7 @@ import numpy as np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from
scipy.optimize
import
linear_sum_assignment
from
AB3DMOT_libs.bbox_utils
import
convert_3dbox_to_8corner
,
iou3d
from
AB3DMOT_libs.kalman_filter
import
KalmanBoxTracker
from
AB3DMOT_libs.kalman_filter
import
KalmanBoxTracker
,
NUM_FRAME
def
associate_detections_to_trackers
(
detections
,
trackers
,
iou_threshold
=
0.01
):
...
...
@@ -113,6 +113,7 @@ class AB3DMOT(object): # A baseline of 3D multi-object tracking
d
=
matched
[
np
.
where
(
matched
[:,
1
]
==
t
)[
0
],
0
]
# a list of index
ori_info
=
trk
.
info
cur_info
=
info
[
d
,
:][
0
]
if
cur_info
[
1
]
==
ori_info
[
1
]:
if
ori_info
[
-
1
]
!=
'None'
:
cur_info
[
-
1
]
=
ori_info
[
-
1
]
if
ori_info
[
-
2
]
!=
'None'
:
...
...
tracking/scripts/AB3DMOT_libs/model_2.py
0 → 100644
View file @
e020501d
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import
numpy
as
np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from
scipy.optimize
import
linear_sum_assignment
from
AB3DMOT_libs.bbox_utils
import
convert_3dbox_to_8corner
,
iou3d
from
AB3DMOT_libs.kalman_filter
import
KalmanBoxTracker
TYPE_THRED
=
10
COLOR_THRED
=
10
LICENSE_PLATE_NUMBER_THRED
=
10
NAME_THRED
=
10
def
associate_detections_to_trackers
(
detections
,
trackers
,
iou_threshold
=
0.01
):
"""
Assigns detections to tracked object (both represented as bounding boxes)
detections: N x 8 x 3
trackers: M x 8 x 3
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if
(
len
(
trackers
)
==
0
):
return
np
.
empty
((
0
,
2
),
dtype
=
int
),
np
.
arange
(
len
(
detections
)),
np
.
empty
((
0
,
8
,
3
),
dtype
=
int
)
iou_matrix
=
np
.
zeros
((
len
(
detections
),
len
(
trackers
)),
dtype
=
np
.
float32
)
for
d
,
det
in
enumerate
(
detections
):
for
t
,
trk
in
enumerate
(
trackers
):
iou_matrix
[
d
,
t
]
=
iou3d
(
det
,
trk
)[
0
]
# det: 8 x 3, trk: 8 x 3
# matched_indices = linear_assignment(-iou_matrix)
# hougarian algorithm, compatible to linear_assignment in sklearn.utils
row_ind
,
col_ind
=
linear_sum_assignment
(
-
iou_matrix
)
# hougarian algorithm
matched_indices
=
np
.
stack
((
row_ind
,
col_ind
),
axis
=
1
)
unmatched_detections
=
[]
for
d
,
det
in
enumerate
(
detections
):
if
(
d
not
in
matched_indices
[:,
0
]):
unmatched_detections
.
append
(
d
)
unmatched_trackers
=
[]
for
t
,
trk
in
enumerate
(
trackers
):
if
(
t
not
in
matched_indices
[:,
1
]):
unmatched_trackers
.
append
(
t
)
# filter out matched with low IOU
matches
=
[]
for
m
in
matched_indices
:
if
(
iou_matrix
[
m
[
0
],
m
[
1
]]
<
iou_threshold
):
unmatched_detections
.
append
(
m
[
0
])
unmatched_trackers
.
append
(
m
[
1
])
else
:
matches
.
append
(
m
.
reshape
(
1
,
2
))
if
(
len
(
matches
)
==
0
):
matches
=
np
.
empty
((
0
,
2
),
dtype
=
int
)
else
:
matches
=
np
.
concatenate
(
matches
,
axis
=
0
)
return
matches
,
np
.
array
(
unmatched_detections
),
np
.
array
(
unmatched_trackers
)
class
AB3DMOT
(
object
):
# A baseline of 3D multi-object tracking
# max age will preserve the bbox does not appear no more than 2 frames, interpolate the detection
def
__init__
(
self
,
max_age
=
2
,
min_hits
=
3
):
"""
Sets key parameters for SORT
"""
self
.
max_age
=
max_age
self
.
min_hits
=
min_hits
self
.
trackers
=
[]
self
.
frame_count
=
0
self
.
reorder
=
[
3
,
4
,
5
,
6
,
2
,
1
,
0
]
self
.
reorder_back
=
[
6
,
5
,
4
,
0
,
1
,
2
,
3
]
def
update
(
self
,
dets_all
):
"""
Params:
dets_all: dict
dets - a numpy array of detections in the format [[h,w,l,x,y,z,theta],...]
info: a array of other info for each det
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
dets
,
info
=
dets_all
[
'dets'
],
dets_all
[
'info'
]
# dets: N x 7, float numpy array
# reorder the data to put x,y,z in front to be compatible with the state transition matrix
# where the constant velocity model is defined in the first three rows of the matrix
dets
=
dets
[:,
self
.
reorder
]
# reorder the data to [[x,y,z,theta,l,w,h], ...]
self
.
frame_count
+=
1
trks
=
np
.
zeros
((
len
(
self
.
trackers
),
7
))
# N x 7 , # get predicted locations from existing trackers.
to_del
=
[]
ret
=
[]
for
t
,
trk
in
enumerate
(
trks
):
pos
=
self
.
trackers
[
t
]
.
predict
()
.
reshape
((
-
1
,
1
))
trk
[:]
=
[
pos
[
0
],
pos
[
1
],
pos
[
2
],
pos
[
3
],
pos
[
4
],
pos
[
5
],
pos
[
6
]]
if
(
np
.
any
(
np
.
isnan
(
pos
))):
to_del
.
append
(
t
)
trks
=
np
.
ma
.
compress_rows
(
np
.
ma
.
masked_invalid
(
trks
))
for
t
in
reversed
(
to_del
):
self
.
trackers
.
pop
(
t
)
dets_8corner
=
[
convert_3dbox_to_8corner
(
det_tmp
)
for
det_tmp
in
dets
]
if
len
(
dets_8corner
)
>
0
:
dets_8corner
=
np
.
stack
(
dets_8corner
,
axis
=
0
)
else
:
dets_8corner
=
[]
trks_8corner
=
[
convert_3dbox_to_8corner
(
trk_tmp
)
for
trk_tmp
in
trks
]
if
len
(
trks_8corner
)
>
0
:
trks_8corner
=
np
.
stack
(
trks_8corner
,
axis
=
0
)
matched
,
unmatched_dets
,
unmatched_trks
=
associate_detections_to_trackers
(
dets_8corner
,
trks_8corner
)
# update matched trackers with assigned detections
for
t
,
trk
in
enumerate
(
self
.
trackers
):
if
t
not
in
unmatched_trks
:
d
=
matched
[
np
.
where
(
matched
[:,
1
]
==
t
)[
0
],
0
]
# a list of index
ori_info
=
trk
.
info
cur_info
=
info
[
d
,
:][
0
]
max_type
=
cur_info
[
1
]
if
len
(
trk
.
type_history
)
>=
TYPE_THRED
:
max_type
=
max
(
trk
.
type_history
,
key
=
trk
.
type_history
.
count
)
del
trk
.
type_history
[
0
]
trk
.
type_history
.
append
(
cur_info
[
1
])
cur_info
[
1
]
=
max_type
max_color
=
cur_info
[
-
1
]
if
len
(
trk
.
color_history
)
>=
COLOR_THRED
:
max_color
=
max
(
trk
.
color_history
,
key
=
trk
.
color_history
.
count
)
del
trk
.
color_history
[
0
]
if
cur_info
[
-
1
]
!=
'None'
:
trk
.
color_history
.
append
(
cur_info
[
-
1
])
cur_info
[
-
1
]
=
max_color
max_license_plate_number_history
=
cur_info
[
-
2
]
if
len
(
trk
.
license_plate_number_history
)
>=
LICENSE_PLATE_NUMBER_THRED
:
max_license_plate_number_history
=
max
(
trk
.
license_plate_number_history
,
key
=
trk
.
license_plate_number_history
.
count
)
del
trk
.
license_plate_number_history
[
0
]
if
cur_info
[
-
2
]
!=
'None'
:
trk
.
license_plate_number_history
.
append
(
cur_info
[
-
2
])
cur_info
[
-
2
]
=
max_license_plate_number_history
max_name_history
=
cur_info
[
-
3
]
if
len
(
trk
.
name_history
)
>=
NAME_THRED
:
max_name_history
=
max
(
trk
.
name_history
,
key
=
trk
.
name_history
.
count
)
del
trk
.
name_history
[
0
]
if
cur_info
[
-
3
]
!=
'None'
:
trk
.
name_history
.
append
(
cur_info
[
-
3
])
cur_info
[
-
3
]
=
max_name_history
#if cur_info[1] == ori_info[1]:
# if ori_info[-1] !='None':
# cur_info[-1] = ori_info[-1]
# if ori_info[-2] !='None':
# cur_info[-2] = ori_info[-2]
# if ori_info[-3] !='None':
# cur_info[-3] = ori_info[-3]
trk
.
update
(
dets
[
d
,
:][
0
],
cur_info
)
else
:
trk
.
info
[
0
]
=
info
[
0
][
0
]
# create and initialise new trackers for unmatched detections
for
i
in
unmatched_dets
:
# a scalar of index
trk
=
KalmanBoxTracker
(
dets
[
i
,
:],
info
[
i
,
:])
self
.
trackers
.
append
(
trk
)
i
=
len
(
self
.
trackers
)
for
trk
in
reversed
(
self
.
trackers
):
d
=
trk
.
get_state
()
# bbox location
d
=
d
[
self
.
reorder_back
]
# change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation
=
trk
.
get_orientation
()
if
((
trk
.
time_since_update
<
self
.
max_age
)
and
(
trk
.
hits
>=
self
.
min_hits
or
self
.
frame_count
<=
self
.
min_hits
)):
# if trk.time_since_update < self.max_age:
ret
.
append
(
np
.
concatenate
((
d
,
[
trk
.
id
+
1
],
orientation
,
trk
.
info
))
.
reshape
(
1
,
-
1
))
# +1 as MOT benchmark requires positive
i
-=
1
# remove dead tracklet
if
(
trk
.
time_since_update
>=
self
.
max_age
):
self
.
trackers
.
pop
(
i
)
if
(
len
(
ret
)
>
0
):
return
np
.
concatenate
(
ret
)
# h,w,l,x,y,z,theta, ID, other info, confidence
return
np
.
empty
((
0
,
17
))
def
predict
(
self
,
timestamp
):
rets
=
[]
if
len
(
self
.
trackers
)
==
0
:
return
rets
pre_timestamp
=
int
(
self
.
trackers
[
0
]
.
info
[
0
])
if
(
timestamp
-
pre_timestamp
)
>
450
:
return
rets
count
=
int
(
round
((
timestamp
-
pre_timestamp
)
/
100.0
))
index
=
1
while
index
<
count
:
self
.
frame_count
+=
1
trks
=
np
.
zeros
((
len
(
self
.
trackers
),
7
))
to_del
=
[]
ret
=
[]
for
t
,
trk
in
enumerate
(
trks
):
pos
=
self
.
trackers
[
t
]
.
predict
()
.
reshape
((
-
1
,
1
))
trk
[:]
=
[
pos
[
0
],
pos
[
1
],
pos
[
2
],
pos
[
3
],
pos
[
4
],
pos
[
5
],
pos
[
6
]]
if
(
np
.
any
(
np
.
isnan
(
pos
))):
to_del
.
append
(
t
)
for
t
in
reversed
(
to_del
):
self
.
trackers
.
pop
(
t
)
for
trk
in
reversed
(
self
.
trackers
):
d
=
trk
.
get_state
()
# bbox location
d
=
d
[
self
.
reorder_back
]
# change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation
=
trk
.
get_orientation
()
trk
.
info
[
0
]
=
pre_timestamp
+
100
*
index
ret
.
append
(
np
.
concatenate
((
d
,
[
trk
.
id
+
1
],
orientation
,
trk
.
info
))
.
reshape
(
1
,
-
1
))
# +1 as MOT benchmark requires positive
rets
.
append
(
np
.
concatenate
(
ret
))
index
+=
1
return
rets
tracking/scripts/AB3DMOT_libs/model_3.py
0 → 100755
View file @
e020501d
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import
numpy
as
np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from
scipy.optimize
import
linear_sum_assignment
from
AB3DMOT_libs.bbox_utils
import
convert_3dbox_to_8corner
,
iou3d
from
AB3DMOT_libs.kalman_filter
import
KalmanBoxTracker
TYPE_THRED
=
10
COLOR_THRED
=
10
LICENSE_PLATE_NUMBER_THRED
=
10
NAME_THRED
=
10
def
associate_detections_to_trackers
(
detections
,
trackers
,
iou_threshold
=
0.01
):
"""
Assigns detections to tracked object (both represented as bounding boxes)
detections: N x 8 x 3
trackers: M x 8 x 3
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if
(
len
(
trackers
)
==
0
):
return
np
.
empty
((
0
,
2
),
dtype
=
int
),
np
.
arange
(
len
(
detections
)),
np
.
empty
((
0
,
8
,
3
),
dtype
=
int
)
iou_matrix
=
np
.
zeros
((
len
(
detections
),
len
(
trackers
)),
dtype
=
np
.
float32
)
for
d
,
det
in
enumerate
(
detections
):
for
t
,
trk
in
enumerate
(
trackers
):
iou_matrix
[
d
,
t
]
=
iou3d
(
det
,
trk
)[
0
]
# det: 8 x 3, trk: 8 x 3
# matched_indices = linear_assignment(-iou_matrix)
# hougarian algorithm, compatible to linear_assignment in sklearn.utils
row_ind
,
col_ind
=
linear_sum_assignment
(
-
iou_matrix
)
# hougarian algorithm
matched_indices
=
np
.
stack
((
row_ind
,
col_ind
),
axis
=
1
)
unmatched_detections
=
[]
for
d
,
det
in
enumerate
(
detections
):
if
(
d
not
in
matched_indices
[:,
0
]):
unmatched_detections
.
append
(
d
)
unmatched_trackers
=
[]
for
t
,
trk
in
enumerate
(
trackers
):
if
(
t
not
in
matched_indices
[:,
1
]):
unmatched_trackers
.
append
(
t
)
# filter out matched with low IOU
matches
=
[]
for
m
in
matched_indices
:
if
(
iou_matrix
[
m
[
0
],
m
[
1
]]
<
iou_threshold
):
unmatched_detections
.
append
(
m
[
0
])
unmatched_trackers
.
append
(
m
[
1
])
else
:
matches
.
append
(
m
.
reshape
(
1
,
2
))
if
(
len
(
matches
)
==
0
):
matches
=
np
.
empty
((
0
,
2
),
dtype
=
int
)
else
:
matches
=
np
.
concatenate
(
matches
,
axis
=
0
)
return
matches
,
np
.
array
(
unmatched_detections
),
np
.
array
(
unmatched_trackers
)
class
AB3DMOT
(
object
):
# A baseline of 3D multi-object tracking
# max age will preserve the bbox does not appear no more than 2 frames, interpolate the detection
def
__init__
(
self
,
max_age
=
2
,
min_hits
=
3
):
"""
Sets key parameters for SORT
"""
self
.
max_age
=
max_age
self
.
min_hits
=
min_hits
self
.
trackers
=
[]
self
.
frame_count
=
0
self
.
reorder
=
[
3
,
4
,
5
,
6
,
2
,
1
,
0
]
self
.
reorder_back
=
[
6
,
5
,
4
,
0
,
1
,
2
,
3
]
def
update
(
self
,
dets_all
):
"""
Params:
dets_all: dict
dets - a numpy array of detections in the format [[h,w,l,x,y,z,theta],...]
info: a array of other info for each det
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
dets
,
info
=
dets_all
[
'dets'
],
dets_all
[
'info'
]
# dets: N x 7, float numpy array
# reorder the data to put x,y,z in front to be compatible with the state transition matrix
# where the constant velocity model is defined in the first three rows of the matrix
dets
=
dets
[:,
self
.
reorder
]
# reorder the data to [[x,y,z,theta,l,w,h], ...]
self
.
frame_count
+=
1
trks
=
np
.
zeros
((
len
(
self
.
trackers
),
7
))
# N x 7 , # get predicted locations from existing trackers.
to_del
=
[]
ret
=
[]
for
t
,
trk
in
enumerate
(
trks
):
pos
=
self
.
trackers
[
t
]
.
predict
()
.
reshape
((
-
1
,
1
))
trk
[:]
=
[
pos
[
0
],
pos
[
1
],
pos
[
2
],
pos
[
3
],
pos
[
4
],
pos
[
5
],
pos
[
6
]]
if
(
np
.
any
(
np
.
isnan
(
pos
))):
to_del
.
append
(
t
)
trks
=
np
.
ma
.
compress_rows
(
np
.
ma
.
masked_invalid
(
trks
))
for
t
in
reversed
(
to_del
):
self
.
trackers
.
pop
(
t
)
dets_8corner
=
[
convert_3dbox_to_8corner
(
det_tmp
)
for
det_tmp
in
dets
]
if
len
(
dets_8corner
)
>
0
:
dets_8corner
=
np
.
stack
(
dets_8corner
,
axis
=
0
)
else
:
dets_8corner
=
[]
trks_8corner
=
[
convert_3dbox_to_8corner
(
trk_tmp
)
for
trk_tmp
in
trks
]
if
len
(
trks_8corner
)
>
0
:
trks_8corner
=
np
.
stack
(
trks_8corner
,
axis
=
0
)
matched
,
unmatched_dets
,
unmatched_trks
=
associate_detections_to_trackers
(
dets_8corner
,
trks_8corner
)
# update matched trackers with assigned detections
for
t
,
trk
in
enumerate
(
self
.
trackers
):
if
t
not
in
unmatched_trks
:
d
=
matched
[
np
.
where
(
matched
[:,
1
]
==
t
)[
0
],
0
]
# a list of index
ori_info
=
trk
.
info
cur_info
=
info
[
d
,
:][
0
]
if
len
(
trk
.
type_history
)
<
TYPE_THRED
:
trk
.
type_history
.
append
(
cur_info
[
1
])
else
:
max_type
=
max
(
trk
.
type_history
,
key
=
trk
.
type_history
.
count
)
cur_info
[
1
]
=
max_type
if
len
(
trk
.
color_history
)
<
COLOR_THRED
:
if
cur_info
[
-
1
]
!=
'None'
:
trk
.
color_history
.
append
(
cur_info
[
-
1
])
else
:
max_color
=
max
(
trk
.
color_history
,
key
=
trk
.
color_history
.
count
)
cur_info
[
-
1
]
=
max_color
if
len
(
trk
.
license_plate_number_history
)
<
LICENSE_PLATE_NUMBER_THRED
:
if
cur_info
[
-
2
]
!=
'None'
:
trk
.
license_plate_number_history
.
append
(
cur_info
[
-
2
])
else
:
max_license_plate_number_history
=
max
(
trk
.
license_plate_number_history
,
key
=
trk
.
license_plate_number_history
.
count
)
cur_info
[
-
2
]
=
max_license_plate_number_history
if
len
(
trk
.
name_history
)
<
NAME_THRED
:
if
cur_info
[
-
3
]
!=
'None'
:
trk
.
name_history
.
append
(
cur_info
[
-
3
])
else
:
max_name_history
=
max
(
trk
.
name_history
,
key
=
trk
.
name_history
.
count
)
cur_info
[
-
3
]
=
max_name_history
#if cur_info[1] == ori_info[1]:
# if ori_info[-1] !='None':
# cur_info[-1] = ori_info[-1]
# if ori_info[-2] !='None':
# cur_info[-2] = ori_info[-2]
# if ori_info[-3] !='None':
# cur_info[-3] = ori_info[-3]
trk
.
update
(
dets
[
d
,
:][
0
],
cur_info
)
else
:
trk
.
info
[
0
]
=
info
[
0
][
0
]
# create and initialise new trackers for unmatched detections
for
i
in
unmatched_dets
:
# a scalar of index
trk
=
KalmanBoxTracker
(
dets
[
i
,
:],
info
[
i
,
:])
self
.
trackers
.
append
(
trk
)
i
=
len
(
self
.
trackers
)
for
trk
in
reversed
(
self
.
trackers
):
d
=
trk
.
get_state
()
# bbox location
d
=
d
[
self
.
reorder_back
]
# change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation
=
trk
.
get_orientation
()
if
((
trk
.
time_since_update
<
self
.
max_age
)
and
(
trk
.
hits
>=
self
.
min_hits
or
self
.
frame_count
<=
self
.
min_hits
)):
# if trk.time_since_update < self.max_age:
ret
.
append
(
np
.
concatenate
((
d
,
[
trk
.
id
+
1
],
orientation
,
trk
.
info
))
.
reshape
(
1
,
-
1
))
# +1 as MOT benchmark requires positive
i
-=
1
# remove dead tracklet
if
(
trk
.
time_since_update
>=
self
.
max_age
):
self
.
trackers
.
pop
(
i
)
if
(
len
(
ret
)
>
0
):
return
np
.
concatenate
(
ret
)
# h,w,l,x,y,z,theta, ID, other info, confidence
return
np
.
empty
((
0
,
17
))
def
predict
(
self
,
timestamp
):
rets
=
[]
if
len
(
self
.
trackers
)
==
0
:
return
rets
pre_timestamp
=
int
(
self
.
trackers
[
0
]
.
info
[
0
])
if
(
timestamp
-
pre_timestamp
)
>
450
:
return
rets
count
=
int
(
round
((
timestamp
-
pre_timestamp
)
/
100.0
))
index
=
1
while
index
<
count
:
self
.
frame_count
+=
1
trks
=
np
.
zeros
((
len
(
self
.
trackers
),
7
))
to_del
=
[]
ret
=
[]
for
t
,
trk
in
enumerate
(
trks
):
pos
=
self
.
trackers
[
t
]
.
predict
()
.
reshape
((
-
1
,
1
))
trk
[:]
=
[
pos
[
0
],
pos
[
1
],
pos
[
2
],
pos
[
3
],
pos
[
4
],
pos
[
5
],
pos
[
6
]]
if
(
np
.
any
(
np
.
isnan
(
pos
))):
to_del
.
append
(
t
)
for
t
in
reversed
(
to_del
):
self
.
trackers
.
pop
(
t
)
for
trk
in
reversed
(
self
.
trackers
):
d
=
trk
.
get_state
()
# bbox location
d
=
d
[
self
.
reorder_back
]
# change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation
=
trk
.
get_orientation
()
trk
.
info
[
0
]
=
pre_timestamp
+
100
*
index
ret
.
append
(
np
.
concatenate
((
d
,
[
trk
.
id
+
1
],
orientation
,
trk
.
info
))
.
reshape
(
1
,
-
1
))
# +1 as MOT benchmark requires positive
rets
.
append
(
np
.
concatenate
(
ret
))
index
+=
1
return
rets
tracking/scripts/AB3DMOT_libs/model_4.py
0 → 100755
View file @
e020501d
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import
numpy
as
np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from
scipy.optimize
import
linear_sum_assignment
from
AB3DMOT_libs.bbox_utils
import
convert_3dbox_to_8corner
,
iou3d
from
AB3DMOT_libs.kalman_filter
import
KalmanBoxTracker
TYPE_THRED
=
10
COLOR_THRED
=
10
LICENSE_PLATE_NUMBER_THRED
=
10
NAME_THRED
=
10
def
associate_detections_to_trackers
(
detections
,
trackers
,
iou_threshold
=
0.01
):
"""
Assigns detections to tracked object (both represented as bounding boxes)
detections: N x 8 x 3
trackers: M x 8 x 3
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if
(
len
(
trackers
)
==
0
):
return
np
.
empty
((
0
,
2
),
dtype
=
int
),
np
.
arange
(
len
(
detections
)),
np
.
empty
((
0
,
8
,
3
),
dtype
=
int
)
iou_matrix
=
np
.
zeros
((
len
(
detections
),
len
(
trackers
)),
dtype
=
np
.
float32
)
for
d
,
det
in
enumerate
(
detections
):
for
t
,
trk
in
enumerate
(
trackers
):
iou_matrix
[
d
,
t
]
=
iou3d
(
det
,
trk
)[
0
]
# det: 8 x 3, trk: 8 x 3
# matched_indices = linear_assignment(-iou_matrix)
# hougarian algorithm, compatible to linear_assignment in sklearn.utils
row_ind
,
col_ind
=
linear_sum_assignment
(
-
iou_matrix
)
# hougarian algorithm
matched_indices
=
np
.
stack
((
row_ind
,
col_ind
),
axis
=
1
)
unmatched_detections
=
[]
for
d
,
det
in
enumerate
(
detections
):
if
(
d
not
in
matched_indices
[:,
0
]):
unmatched_detections
.
append
(
d
)
unmatched_trackers
=
[]
for
t
,
trk
in
enumerate
(
trackers
):
if
(
t
not
in
matched_indices
[:,
1
]):
unmatched_trackers
.
append
(
t
)
# filter out matched with low IOU
matches
=
[]
for
m
in
matched_indices
:
if
(
iou_matrix
[
m
[
0
],
m
[
1
]]
<
iou_threshold
):
unmatched_detections
.
append
(
m
[
0
])
unmatched_trackers
.
append
(
m
[
1
])
else
:
matches
.
append
(
m
.
reshape
(
1
,
2
))
if
(
len
(
matches
)
==
0
):
matches
=
np
.
empty
((
0
,
2
),
dtype
=
int
)
else
:
matches
=
np
.
concatenate
(
matches
,
axis
=
0
)
return
matches
,
np
.
array
(
unmatched_detections
),
np
.
array
(
unmatched_trackers
)
class
AB3DMOT
(
object
):
# A baseline of 3D multi-object tracking
# max age will preserve the bbox does not appear no more than 2 frames, interpolate the detection
def
__init__
(
self
,
max_age
=
2
,
min_hits
=
3
):
"""
Sets key parameters for SORT
"""
self
.
max_age
=
max_age
self
.
min_hits
=
min_hits
self
.
trackers
=
[]
self
.
frame_count
=
0
self
.
reorder
=
[
3
,
4
,
5
,
6
,
2
,
1
,
0
]
self
.
reorder_back
=
[
6
,
5
,
4
,
0
,
1
,
2
,
3
]
def
update
(
self
,
dets_all
):
"""
Params:
dets_all: dict
dets - a numpy array of detections in the format [[h,w,l,x,y,z,theta],...]
info: a array of other info for each det
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
dets
,
info
=
dets_all
[
'dets'
],
dets_all
[
'info'
]
# dets: N x 7, float numpy array
# reorder the data to put x,y,z in front to be compatible with the state transition matrix
# where the constant velocity model is defined in the first three rows of the matrix
dets
=
dets
[:,
self
.
reorder
]
# reorder the data to [[x,y,z,theta,l,w,h], ...]
self
.
frame_count
+=
1
trks
=
np
.
zeros
((
len
(
self
.
trackers
),
7
))
# N x 7 , # get predicted locations from existing trackers.
to_del
=
[]
ret
=
[]
for
t
,
trk
in
enumerate
(
trks
):
pos
=
self
.
trackers
[
t
]
.
predict
()
.
reshape
((
-
1
,
1
))
trk
[:]
=
[
pos
[
0
],
pos
[
1
],
pos
[
2
],
pos
[
3
],
pos
[
4
],
pos
[
5
],
pos
[
6
]]
if
(
np
.
any
(
np
.
isnan
(
pos
))):
to_del
.
append
(
t
)
trks
=
np
.
ma
.
compress_rows
(
np
.
ma
.
masked_invalid
(
trks
))
for
t
in
reversed
(
to_del
):
self
.
trackers
.
pop
(
t
)
dets_8corner
=
[
convert_3dbox_to_8corner
(
det_tmp
)
for
det_tmp
in
dets
]
if
len
(
dets_8corner
)
>
0
:
dets_8corner
=
np
.
stack
(
dets_8corner
,
axis
=
0
)
else
:
dets_8corner
=
[]
trks_8corner
=
[
convert_3dbox_to_8corner
(
trk_tmp
)
for
trk_tmp
in
trks
]
if
len
(
trks_8corner
)
>
0
:
trks_8corner
=
np
.
stack
(
trks_8corner
,
axis
=
0
)
matched
,
unmatched_dets
,
unmatched_trks
=
associate_detections_to_trackers
(
dets_8corner
,
trks_8corner
)
# update matched trackers with assigned detections
for
t
,
trk
in
enumerate
(
self
.
trackers
):
if
t
not
in
unmatched_trks
:
d
=
matched
[
np
.
where
(
matched
[:,
1
]
==
t
)[
0
],
0
]
# a list of index
ori_info
=
trk
.
info
cur_info
=
info
[
d
,
:][
0
]
max_type
=
cur_info
[
1
]
if
len
(
trk
.
type_history
)
>=
TYPE_THRED
:
max_type
=
max
(
trk
.
type_history
,
key
=
trk
.
type_history
.
count
)
del
trk
.
type_history
[
0
]
trk
.
type_history
.
append
(
cur_info
[
1
])
cur_info
[
1
]
=
max_type
max_color
=
cur_info
[
-
1
]
if
len
(
trk
.
color_history
)
>=
COLOR_THRED
:
max_color
=
max
(
trk
.
color_history
,
key
=
trk
.
color_history
.
count
)
del
trk
.
color_history
[
0
]
if
cur_info
[
-
1
]
!=
'None'
:
trk
.
color_history
.
append
(
cur_info
[
-
1
])
cur_info
[
-
1
]
=
max_color
max_license_plate_number_history
=
cur_info
[
-
2
]
if
len
(
trk
.
license_plate_number_history
)
>=
LICENSE_PLATE_NUMBER_THRED
:
max_license_plate_number_history
=
max
(
trk
.
license_plate_number_history
,
key
=
trk
.
license_plate_number_history
.
count
)
del
trk
.
license_plate_number_history
[
0
]
if
cur_info
[
-
2
]
!=
'None'
:
trk
.
license_plate_number_history
.
append
(
cur_info
[
-
2
])
cur_info
[
-
2
]
=
max_license_plate_number_history
max_name_history
=
cur_info
[
-
3
]
if
len
(
trk
.
name_history
)
>=
NAME_THRED
:
max_name_history
=
max
(
trk
.
name_history
,
key
=
trk
.
name_history
.
count
)
del
trk
.
name_history
[
0
]
if
cur_info
[
-
3
]
!=
'None'
:
trk
.
name_history
.
append
(
cur_info
[
-
3
])
cur_info
[
-
3
]
=
max_name_history
#if cur_info[1] == ori_info[1]:
# if ori_info[-1] !='None':
# cur_info[-1] = ori_info[-1]
# if ori_info[-2] !='None':
# cur_info[-2] = ori_info[-2]
# if ori_info[-3] !='None':
# cur_info[-3] = ori_info[-3]
trk
.
update
(
dets
[
d
,
:][
0
],
cur_info
)
else
:
trk
.
info
[
0
]
=
info
[
0
][
0
]
# create and initialise new trackers for unmatched detections
for
i
in
unmatched_dets
:
# a scalar of index
trk
=
KalmanBoxTracker
(
dets
[
i
,
:],
info
[
i
,
:])
self
.
trackers
.
append
(
trk
)
i
=
len
(
self
.
trackers
)
for
trk
in
reversed
(
self
.
trackers
):
d
=
trk
.
get_state
()
# bbox location
d
=
d
[
self
.
reorder_back
]
# change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation
=
trk
.
get_orientation
()
if
((
trk
.
time_since_update
<
self
.
max_age
)
and
(
trk
.
hits
>=
self
.
min_hits
or
self
.
frame_count
<=
self
.
min_hits
)):
# if trk.time_since_update < self.max_age:
ret
.
append
(
np
.
concatenate
((
d
,
[
trk
.
id
+
1
],
orientation
,
trk
.
info
))
.
reshape
(
1
,
-
1
))
# +1 as MOT benchmark requires positive
i
-=
1
# remove dead tracklet
if
(
trk
.
time_since_update
>=
self
.
max_age
):
self
.
trackers
.
pop
(
i
)
if
(
len
(
ret
)
>
0
):
return
np
.
concatenate
(
ret
)
# h,w,l,x,y,z,theta, ID, other info, confidence
return
np
.
empty
((
0
,
17
))
def
predict
(
self
,
timestamp
):
rets
=
[]
if
len
(
self
.
trackers
)
==
0
:
return
rets
pre_timestamp
=
int
(
self
.
trackers
[
0
]
.
info
[
0
])
if
(
timestamp
-
pre_timestamp
)
>
450
:
return
rets
count
=
int
(
round
((
timestamp
-
pre_timestamp
)
/
100.0
))
index
=
1
while
index
<
count
:
self
.
frame_count
+=
1
trks
=
np
.
zeros
((
len
(
self
.
trackers
),
7
))
to_del
=
[]
ret
=
[]
for
t
,
trk
in
enumerate
(
trks
):
pos
=
self
.
trackers
[
t
]
.
predict
()
.
reshape
((
-
1
,
1
))
trk
[:]
=
[
pos
[
0
],
pos
[
1
],
pos
[
2
],
pos
[
3
],
pos
[
4
],
pos
[
5
],
pos
[
6
]]
if
(
np
.
any
(
np
.
isnan
(
pos
))):
to_del
.
append
(
t
)
for
t
in
reversed
(
to_del
):
self
.
trackers
.
pop
(
t
)
for
trk
in
reversed
(
self
.
trackers
):
d
=
trk
.
get_state
()
# bbox location
d
=
d
[
self
.
reorder_back
]
# change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
orientation
=
trk
.
get_orientation
()
trk
.
info
[
0
]
=
pre_timestamp
+
100
*
index
ret
.
append
(
np
.
concatenate
((
d
,
[
trk
.
id
+
1
],
orientation
,
trk
.
info
))
.
reshape
(
1
,
-
1
))
# +1 as MOT benchmark requires positive
rets
.
append
(
np
.
concatenate
(
ret
))
index
+=
1
return
rets
tracking/scripts/listener.py
View file @
e020501d
...
...
@@ -51,6 +51,7 @@ def rotz(t):
def
callback
(
msgs
):
log_file
=
open
(
log_file_path
,
'a'
)
ori_log_file
=
open
(
ori_log_file_path
,
'a'
)
cloud_pub
=
rospy
.
Publisher
(
"tracking_cloud"
,
PointCloud2
,
queue_size
=
10
)
cloud_pub
.
publish
(
msgs
.
cloud
)
...
...
@@ -77,6 +78,12 @@ def callback(msgs):
info
=
[
msg
.
frame
,
msg
.
type
,
msg
.
score
,
msg
.
name
,
msg
.
license_plate_number
,
msg
.
color_name
]
dets
.
append
(
det
)
infos
.
append
(
info
)
ori_log_file
.
write
(
'
%
u,
%
u,
%
f,
%
f,
%
f,
%
f,
%
f,
%
f,
%
f,
%
f,
%
d,
%
f,
%
f,
%
f,
%
f,
%
f,
%
f,
%.8
f,
%.8
f,
%.8
f,
%.8
f,
%
s,
%
s,
%
s
\n
'
%
(
msg
.
frame
,
msg
.
type
,
msg
.
score
,
msg
.
h
,
msg
.
w
,
msg
.
l
,
msg
.
x
,
msg
.
y
,
msg
.
z
,
msg
.
rot_y
,
msg
.
obj_id
,
msg
.
v_x
,
msg
.
v_y
,
msg
.
v_z
,
msg
.
loc_x
,
msg
.
loc_y
,
msg
.
loc_z
,
0
,
0
,
0
,
0
,
msg
.
name
,
msg
.
license_plate_number
,
msg
.
color_name
))
ori_log_file
.
close
()
dets_all
=
{
'dets'
:
np
.
asarray
(
dets
),
'info'
:
np
.
asarray
(
infos
)}
trackers
=
mot_tracker
.
update
(
dets_all
)
...
...
@@ -203,7 +210,7 @@ def callback(msgs):
t_marker
.
color
.
g
=
1.0
t_marker
.
color
.
b
=
0
t_marker
.
lifetime
=
rospy
.
Duration
(
0.5
)
t_marker
.
text
=
'id:{0},type:{1},
v:{2:.2f}m/s,No:{3}'
.
format
(
msg
.
obj_id
,
msg
.
name
,
math
.
sqrt
(
msg
.
v_x
*
msg
.
v_x
+
msg
.
v_y
*
msg
.
v_y
)
*
10
,
msg
.
license_plate_number
)
t_marker
.
text
=
'id:{0},type:{1},
type_name:{2},v:{3:.2f}m/s,No:{4}
\n
color_name:{5},frame:{6}'
.
format
(
msg
.
obj_id
,
msg
.
type
,
msg
.
name
,
math
.
sqrt
(
msg
.
v_x
*
msg
.
v_x
+
msg
.
v_y
*
msg
.
v_y
)
*
10
,
msg
.
license_plate_number
,
msg
.
color_name
,
msg
.
frame
)
marker_arr
.
markers
.
append
(
t_marker
)
i
+=
1
...
...
@@ -232,16 +239,20 @@ def listener():
if
__name__
==
'__main__'
:
global
mot_tracker
,
log_file_path
global
mot_tracker
,
log_file_path
,
ori_log_file_path
mot_tracker
=
AB3DMOT
(
max_age
=
3
,
min_hits
=
3
)
cur_time
=
time
.
strftime
(
'
%
Y
%
m
%
d_
%
H:
%
M:
%
S'
,
time
.
localtime
(
time
.
time
()))
log_file_path
=
'src/tracking/logs/'
+
cur_time
+
'.txt'
if
not
os
.
path
.
exists
(
'src/tracking/logs/'
):
os
.
mkdir
(
'src/tracking/logs/'
)
ori_log_file_path
=
'src/tracking/logs/'
+
cur_time
+
'_ori.txt'
if
not
os
.
path
.
exists
(
'src/tracking/logs'
):
os
.
mkdir
(
'src/tracking/logs'
)
with
open
(
log_file_path
,
'w'
)
as
f
:
f
.
write
(
"frame,type,score,h,w,l,x,y,z,rot_y,obj_id,v_x,v_y,v_z,loc_x,loc_y,loc_z,Lat,Long,center_Lat,center_Long,name,license_plate_number,color_name
\n
"
)
with
open
(
ori_log_file_path
,
'w'
)
as
f
:
f
.
write
(
"frame,type,score,h,w,l,x,y,z,rot_y,obj_id,v_x,v_y,v_z,loc_x,loc_y,loc_z,Lat,Long,center_Lat,center_Long,name,license_plate_number,color_name
\n
"
)
listener
()
...
...
tracking/scripts/listener_10fps.py
View file @
e020501d
...
...
@@ -51,6 +51,7 @@ def rotz(t):
def
callback
(
msgs
):
log_file
=
open
(
log_file_path
,
'a'
)
ori_log_file
=
open
(
ori_log_file_path
,
'a'
)
cloud_pub
=
rospy
.
Publisher
(
"tracking_cloud"
,
PointCloud2
,
queue_size
=
10
)
cloud_pub
.
publish
(
msgs
.
cloud
)
...
...
@@ -111,6 +112,12 @@ def callback(msgs):
info
=
[
msg
.
frame
,
msg
.
type
,
msg
.
score
,
msg
.
name
,
msg
.
license_plate_number
,
msg
.
color_name
]
dets
.
append
(
det
)
infos
.
append
(
info
)
ori_log_file
.
write
(
'
%
u,
%
u,
%
f,
%
f,
%
f,
%
f,
%
f,
%
f,
%
f,
%
f,
%
d,
%
f,
%
f,
%
f,
%
f,
%
f,
%
f,
%.8
f,
%.8
f,
%.8
f,
%.8
f,
%
s,
%
s,
%
s
\n
'
%
(
msg
.
frame
,
msg
.
type
,
msg
.
score
,
msg
.
h
,
msg
.
w
,
msg
.
l
,
msg
.
x
,
msg
.
y
,
msg
.
z
,
msg
.
rot_y
,
msg
.
obj_id
,
msg
.
v_x
,
msg
.
v_y
,
msg
.
v_z
,
msg
.
loc_x
,
msg
.
loc_y
,
msg
.
loc_z
,
0
,
0
,
0
,
0
,
msg
.
name
,
msg
.
license_plate_number
,
msg
.
color_name
))
ori_log_file
.
close
()
dets_all
=
{
'dets'
:
np
.
asarray
(
dets
),
'info'
:
np
.
asarray
(
infos
)}
trackers
=
mot_tracker
.
update
(
dets_all
)
...
...
@@ -237,7 +244,7 @@ def callback(msgs):
t_marker
.
color
.
g
=
1.0
t_marker
.
color
.
b
=
0
t_marker
.
lifetime
=
rospy
.
Duration
(
0.5
)
t_marker
.
text
=
'id:{0},type:{1},
v:{2:.2f}m/s,No:{3}'
.
format
(
msg
.
obj_id
,
msg
.
name
,
math
.
sqrt
(
msg
.
v_x
*
msg
.
v_x
+
msg
.
v_y
*
msg
.
v_y
)
*
10
,
msg
.
license_plate_number
)
t_marker
.
text
=
'id:{0},type:{1},
type_name:{2},v:{3:.2f}m/s,No:{4}
\n
color_name:{5},frame:{6}'
.
format
(
msg
.
obj_id
,
msg
.
type
,
msg
.
name
,
math
.
sqrt
(
msg
.
v_x
*
msg
.
v_x
+
msg
.
v_y
*
msg
.
v_y
)
*
10
,
msg
.
license_plate_number
,
msg
.
color_name
,
msg
.
frame
)
marker_arr
.
markers
.
append
(
t_marker
)
i
+=
1
...
...
@@ -266,16 +273,20 @@ def listener():
if
__name__
==
'__main__'
:
global
mot_tracker
,
log_file_path
global
mot_tracker
,
log_file_path
,
ori_log_file_path
mot_tracker
=
AB3DMOT
(
max_age
=
3
,
min_hits
=
3
)
cur_time
=
time
.
strftime
(
'
%
Y
%
m
%
d_
%
H:
%
M:
%
S'
,
time
.
localtime
(
time
.
time
()))
log_file_path
=
'src/tracking/logs/'
+
cur_time
+
'.txt'
if
not
os
.
path
.
exists
(
'src/tracking/logs/'
):
os
.
mkdir
(
'src/tracking/logs/'
)
ori_log_file_path
=
'src/tracking/logs/'
+
cur_time
+
'_ori.txt'
if
not
os
.
path
.
exists
(
'src/tracking/logs'
):
os
.
mkdir
(
'src/tracking/logs'
)
with
open
(
log_file_path
,
'w'
)
as
f
:
f
.
write
(
"frame,type,score,h,w,l,x,y,z,rot_y,obj_id,v_x,v_y,v_z,loc_x,loc_y,loc_z,Lat,Long,center_Lat,center_Long,name,license_plate_number,color_name
\n
"
)
with
open
(
ori_log_file_path
,
'w'
)
as
f
:
f
.
write
(
"frame,type,score,h,w,l,x,y,z,rot_y,obj_id,v_x,v_y,v_z,loc_x,loc_y,loc_z,Lat,Long,center_Lat,center_Long,name,license_plate_number,color_name
\n
"
)
listener
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment