base_box3d.py 16.1 KB
Newer Older
wanghailong's avatar
wanghailong committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from abc import abstractmethod

from mmdet3d.ops.iou3d import iou3d_cuda
from .utils import limit_period, xywhr2xyxyr


class BaseInstance3DBoxes(object):
    """Base class for 3D Boxes.

    Note:
        The box is bottom centered, i.e. the relative position of origin in
        the box is (0.5, 0.5, 0).

    Args:
        tensor (torch.Tensor | np.ndarray | list): a N x box_dim matrix.
        box_dim (int): Number of the dimension of a box.
            Each row is (x, y, z, x_size, y_size, z_size, yaw).
            Default to 7.
        with_yaw (bool): Whether the box is with yaw rotation.
            If False, the value of yaw will be set to 0 as minmax boxes.
            Default to True.
        origin (tuple[float]): The relative position of origin in the box.
            Default to (0.5, 0.5, 0). This will guide the box be converted to
            (0.5, 0.5, 0) mode.

    Attributes:
        tensor (torch.Tensor): Float matrix of N x box_dim.
        box_dim (int): Integer indicating the dimension of a box.
            Each row is (x, y, z, x_size, y_size, z_size, yaw, ...).
        with_yaw (bool): If True, the value of yaw will be set to 0 as minmax
            boxes.
    """

    def __init__(self, tensor, box_dim=7, with_yaw=True, origin=(0.5, 0.5, 0)):
        if isinstance(tensor, torch.Tensor):
            device = tensor.device
        else:
            device = torch.device('cpu')
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
            # Use reshape, so we don't end up creating a new tensor that
            # does not depend on the inputs (and consequently confuses jit)
            tensor = tensor.reshape((0, box_dim)).to(
                dtype=torch.float32, device=device)
        assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size()

        if tensor.shape[-1] == 6:
            # If the dimension of boxes is 6, we expand box_dim by padding
            # 0 as a fake yaw and set with_yaw to False.
            assert box_dim == 6
            fake_rot = tensor.new_zeros(tensor.shape[0], 1)
            tensor = torch.cat((tensor, fake_rot), dim=-1)
            self.box_dim = box_dim + 1
            self.with_yaw = False
        else:
            self.box_dim = box_dim
            self.with_yaw = with_yaw
        self.tensor = tensor.clone()

        if origin != (0.5, 0.5, 0):
            dst = self.tensor.new_tensor((0.5, 0.5, 0))
            src = self.tensor.new_tensor(origin)
            self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)

    @property
    def volume(self):
        """torch.Tensor: A vector with volume of each box."""
        return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5]

    @property
    def dims(self):
        """torch.Tensor: Corners of each box with size (N, 8, 3)."""
        return self.tensor[:, 3:6]

    @property
    def yaw(self):
        """torch.Tensor: A vector with yaw of each box."""
        return self.tensor[:, 6]

    @property
    def height(self):
        """torch.Tensor: A vector with height of each box."""
        return self.tensor[:, 5]

    @property
    def top_height(self):
        """torch.Tensor: A vector with the top height of each box."""
        return self.bottom_height + self.height

    @property
    def bottom_height(self):
        """torch.Tensor: A vector with bottom's height of each box."""
        return self.tensor[:, 2]

    @property
    def center(self):
        """Calculate the center of all the boxes.

        Note:
            In the MMDetection3D's convention, the bottom center is
            usually taken as the default center.

            The relative position of the centers in different kinds of
            boxes are different, e.g., the relative center of a boxes is
            (0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar.
            It is recommended to use ``bottom_center`` or ``gravity_center``
            for more clear usage.

        Returns:
            torch.Tensor: A tensor with center of each box.
        """
        return self.bottom_center

    @property
    def bottom_center(self):
        """torch.Tensor: A tensor with center of each box."""
        return self.tensor[:, :3]

    @property
    def gravity_center(self):
        """torch.Tensor: A tensor with center of each box."""
        pass

    @property
    def corners(self):
        """torch.Tensor: a tensor with 8 corners of each box."""
        pass

    @abstractmethod
    def rotate(self, angle, points=None):
        """Rotate boxes with points (optional) with the given angle or \
        rotation matrix.

        Args:
            angle (float | torch.Tensor | np.ndarray):
                Rotation angle or rotation matrix.
            points (torch.Tensor, numpy.ndarray, :obj:`BasePoints`, optional):
                Points to rotate. Defaults to None.
        """
        pass

    @abstractmethod
    def flip(self, bev_direction='horizontal'):
        """Flip the boxes in BEV along given BEV direction."""
        pass

    def translate(self, trans_vector):
        """Translate boxes with the given translation vector.

        Args:
            trans_vector (torch.Tensor): Translation vector of size 1x3.
        """
        if not isinstance(trans_vector, torch.Tensor):
            trans_vector = self.tensor.new_tensor(trans_vector)
        self.tensor[:, :3] += trans_vector

    def in_range_3d(self, box_range):
        """Check whether the boxes are in the given range.

        Args:
            box_range (list | torch.Tensor): The range of box
                (x_min, y_min, z_min, x_max, y_max, z_max)

        Note:
            In the original implementation of SECOND, checking whether
            a box in the range checks whether the points are in a convex
            polygon, we try to reduce the burden for simpler cases.

        Returns:
            torch.Tensor: A binary vector indicating whether each box is \
                inside the reference range.
        """
        in_range_flags = ((self.tensor[:, 0] > box_range[0])
                          & (self.tensor[:, 1] > box_range[1])
                          & (self.tensor[:, 2] > box_range[2])
                          & (self.tensor[:, 0] < box_range[3])
                          & (self.tensor[:, 1] < box_range[4])
                          & (self.tensor[:, 2] < box_range[5]))
        return in_range_flags

    @abstractmethod
    def in_range_bev(self, box_range):
        """Check whether the boxes are in the given range.

        Args:
            box_range (list | torch.Tensor): The range of box
                in order of (x_min, y_min, x_max, y_max).

        Returns:
            torch.Tensor: Indicating whether each box is inside \
                the reference range.
        """
        pass

    @abstractmethod
    def convert_to(self, dst, rt_mat=None):
        """Convert self to ``dst`` mode.

        Args:
            dst (:obj:`Box3DMode`): The target Box mode.
            rt_mat (np.ndarray | torch.Tensor): The rotation and translation
                matrix between different coordinates. Defaults to None.
                The conversion from `src` coordinates to `dst` coordinates
                usually comes along the change of sensors, e.g., from camera
                to LiDAR. This requires a transformation matrix.

        Returns:
            :obj:`BaseInstance3DBoxes`: The converted box of the same type \
                in the `dst` mode.
        """
        pass

    def scale(self, scale_factor):
        """Scale the box with horizontal and vertical scaling factors.

        Args:
            scale_factors (float): Scale factors to scale the boxes.
        """
        self.tensor[:, :6] *= scale_factor
        self.tensor[:, 7:] *= scale_factor

    def limit_yaw(self, offset=0.5, period=np.pi):
        """Limit the yaw to a given period and offset.

        Args:
            offset (float): The offset of the yaw.
            period (float): The expected period.
        """
        self.tensor[:, 6] = limit_period(self.tensor[:, 6], offset, period)

    def nonempty(self, threshold: float = 0.0):
        """Find boxes that are non-empty.

        A box is considered empty,
        if either of its side is no larger than threshold.

        Args:
            threshold (float): The threshold of minimal sizes.

        Returns:
            torch.Tensor: A binary vector which represents whether each \
                box is empty (False) or non-empty (True).
        """
        box = self.tensor
        size_x = box[..., 3]
        size_y = box[..., 4]
        size_z = box[..., 5]
        keep = ((size_x > threshold)
                & (size_y > threshold) & (size_z > threshold))
        return keep

    def __getitem__(self, item):
        """
        Note:
            The following usage are allowed:
            1. `new_boxes = boxes[3]`:
                return a `Boxes` that contains only one box.
            2. `new_boxes = boxes[2:10]`:
                return a slice of boxes.
            3. `new_boxes = boxes[vector]`:
                where vector is a torch.BoolTensor with `length = len(boxes)`.
                Nonzero elements in the vector will be selected.
            Note that the returned Boxes might share storage with this Boxes,
            subject to Pytorch's indexing semantics.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new object of  \
                :class:`BaseInstances3DBoxes` after indexing.
        """
        original_type = type(self)
        if isinstance(item, int):
            return original_type(
                self.tensor[item].view(1, -1),
                box_dim=self.box_dim,
                with_yaw=self.with_yaw)
        b = self.tensor[item]
        assert b.dim() == 2, \
            f'Indexing on Boxes with {item} failed to return a matrix!'
        return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw)

    def __len__(self):
        """int: Number of boxes in the current object."""
        return self.tensor.shape[0]

    def __repr__(self):
        """str: Return a strings that describes the object."""
        return self.__class__.__name__ + '(\n    ' + str(self.tensor) + ')'

    @classmethod
    def cat(cls, boxes_list):
        """Concatenate a list of Boxes into a single Boxes.

        Args:
            boxes_list (list[:obj:`BaseInstance3DBoxes`]): List of boxes.

        Returns:
            :obj:`BaseInstance3DBoxes`: The concatenated Boxes.
        """
        assert isinstance(boxes_list, (list, tuple))
        if len(boxes_list) == 0:
            return cls(torch.empty(0))
        assert all(isinstance(box, cls) for box in boxes_list)

        # use torch.cat (v.s. layers.cat)
        # so the returned boxes never share storage with input
        cat_boxes = cls(
            torch.cat([b.tensor for b in boxes_list], dim=0),
            box_dim=boxes_list[0].tensor.shape[1],
            with_yaw=boxes_list[0].with_yaw)
        return cat_boxes

    def to(self, device):
        """Convert current boxes to a specific device.

        Args:
            device (str | :obj:`torch.device`): The name of the device.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new boxes object on the \
                specific device.
        """
        original_type = type(self)
        return original_type(
            self.tensor.to(device),
            box_dim=self.box_dim,
            with_yaw=self.with_yaw)

    def clone(self):
        """Clone the Boxes.

        Returns:
            :obj:`BaseInstance3DBoxes`: Box object with the same properties \
                as self.
        """
        original_type = type(self)
        return original_type(
            self.tensor.clone(), box_dim=self.box_dim, with_yaw=self.with_yaw)

    @property
    def device(self):
        """str: The device of the boxes are on."""
        return self.tensor.device

    def __iter__(self):
        """Yield a box as a Tensor of shape (4,) at a time.

        Returns:
            torch.Tensor: A box of shape (4,).
        """
        yield from self.tensor

    @classmethod
    def height_overlaps(cls, boxes1, boxes2, mode='iou'):
        """Calculate height overlaps of two boxes.

        Note:
            This function calculates the height overlaps between boxes1 and
            boxes2,  boxes1 and boxes2 should be in the same type.

        Args:
            boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
            boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
            mode (str, optional): Mode of iou calculation. Defaults to 'iou'.

        Returns:
            torch.Tensor: Calculated iou of boxes.
        """
        assert isinstance(boxes1, BaseInstance3DBoxes)
        assert isinstance(boxes2, BaseInstance3DBoxes)
        assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \
            f'be in the same type, got {type(boxes1)} and {type(boxes2)}.'

        boxes1_top_height = boxes1.top_height.view(-1, 1)
        boxes1_bottom_height = boxes1.bottom_height.view(-1, 1)
        boxes2_top_height = boxes2.top_height.view(1, -1)
        boxes2_bottom_height = boxes2.bottom_height.view(1, -1)

        heighest_of_bottom = torch.max(boxes1_bottom_height,
                                       boxes2_bottom_height)
        lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height)
        overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0)
        return overlaps_h

    @classmethod
    def overlaps(cls, boxes1, boxes2, mode='iou'):
        """Calculate 3D overlaps of two boxes.

        Note:
            This function calculates the overlaps between ``boxes1`` and
            ``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.

        Args:
            boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
            boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
            mode (str, optional): Mode of iou calculation. Defaults to 'iou'.

        Returns:
            torch.Tensor: Calculated iou of boxes' heights.
        """
        assert isinstance(boxes1, BaseInstance3DBoxes)
        assert isinstance(boxes2, BaseInstance3DBoxes)
        assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \
            f'be in the same type, got {type(boxes1)} and {type(boxes2)}.'

        assert mode in ['iou', 'iof']

        rows = len(boxes1)
        cols = len(boxes2)
        if rows * cols == 0:
            return boxes1.tensor.new(rows, cols)

        # height overlap
        overlaps_h = cls.height_overlaps(boxes1, boxes2)

        # obtain BEV boxes in XYXYR format
        boxes1_bev = xywhr2xyxyr(boxes1.bev)
        boxes2_bev = xywhr2xyxyr(boxes2.bev)

        # bev overlap
        overlaps_bev = boxes1_bev.new_zeros(
            (boxes1_bev.shape[0], boxes2_bev.shape[0])).cuda()  # (N, M)
        iou3d_cuda.boxes_overlap_bev_gpu(boxes1_bev.contiguous().cuda(),
                                         boxes2_bev.contiguous().cuda(),
                                         overlaps_bev)

        # 3d overlaps
        overlaps_3d = overlaps_bev.to(boxes1.device) * overlaps_h

        volume1 = boxes1.volume.view(-1, 1)
        volume2 = boxes2.volume.view(1, -1)

        if mode == 'iou':
            # the clamp func is used to avoid division of 0
            iou3d = overlaps_3d / torch.clamp(
                volume1 + volume2 - overlaps_3d, min=1e-8)
        else:
            iou3d = overlaps_3d / torch.clamp(volume1, min=1e-8)

        return iou3d

    def new_box(self, data):
        """Create a new box object with data.

        The new box and its tensor has the similar properties \
            as self and self.tensor, respectively.

        Args:
            data (torch.Tensor | numpy.array | list): Data to be copied.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new bbox object with ``data``, \
                the object's other properties are similar to ``self``.
        """
        new_tensor = self.tensor.new_tensor(data) \
            if not isinstance(data, torch.Tensor) else data.to(self.device)
        original_type = type(self)
        return original_type(
            new_tensor, box_dim=self.box_dim, with_yaw=self.with_yaw)