Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
J
jfxmap_python
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
oscar
jfxmap_python
Commits
90d534a6
Commit
90d534a6
authored
Jan 19, 2022
by
oscar
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
提交AB3D的iou
parent
6f002650
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
753 additions
and
0 deletions
+753
-0
__init__.py
script/AB3DMOT_libs/__init__.py
+0
-0
bbox_utils.py
script/AB3DMOT_libs/bbox_utils.py
+154
-0
kalman_filter.py
script/AB3DMOT_libs/kalman_filter.py
+138
-0
kitti_utils.py
script/AB3DMOT_libs/kitti_utils.py
+319
-0
model.py
script/AB3DMOT_libs/model.py
+125
-0
utils.py
script/AB3DMOT_libs/utils.py
+17
-0
No files found.
script/AB3DMOT_libs/__init__.py
0 → 100644
View file @
90d534a6
script/AB3DMOT_libs/bbox_utils.py
0 → 100644
View file @
90d534a6
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import
numpy
as
np
,
copy
from
numba
import
jit
from
scipy.spatial
import
ConvexHull
@jit
def
poly_area
(
x
,
y
):
""" Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """
return
0.5
*
np
.
abs
(
np
.
dot
(
x
,
np
.
roll
(
y
,
1
))
-
np
.
dot
(
y
,
np
.
roll
(
x
,
1
)))
@jit
def
box3d_vol
(
corners
):
''' corners: (8,3) no assumption on axis direction '''
a
=
np
.
sqrt
(
np
.
sum
((
corners
[
0
,:]
-
corners
[
1
,:])
**
2
))
b
=
np
.
sqrt
(
np
.
sum
((
corners
[
1
,:]
-
corners
[
2
,:])
**
2
))
c
=
np
.
sqrt
(
np
.
sum
((
corners
[
0
,:]
-
corners
[
4
,:])
**
2
))
return
a
*
b
*
c
@jit
def
convex_hull_intersection
(
p1
,
p2
):
""" Compute area of two convex hull's intersection area.
p1,p2 are a list of (x,y) tuples of hull vertices.
return a list of (x,y) for the intersection and its volume
"""
inter_p
=
polygon_clip
(
p1
,
p2
)
if
inter_p
is
not
None
:
hull_inter
=
ConvexHull
(
inter_p
)
return
inter_p
,
hull_inter
.
volume
else
:
return
None
,
0.0
def
polygon_clip
(
subjectPolygon
,
clipPolygon
):
""" Clip a polygon with another polygon.
Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python
Args:
subjectPolygon: a list of (x,y) 2d points, any polygon.
clipPolygon: a list of (x,y) 2d points, has to be *convex*
Note:
**points have to be counter-clockwise ordered**
Return:
a list of (x,y) vertex point for the intersection polygon.
"""
def
inside
(
p
):
return
(
cp2
[
0
]
-
cp1
[
0
])
*
(
p
[
1
]
-
cp1
[
1
])
>
(
cp2
[
1
]
-
cp1
[
1
])
*
(
p
[
0
]
-
cp1
[
0
])
def
computeIntersection
():
dc
=
[
cp1
[
0
]
-
cp2
[
0
],
cp1
[
1
]
-
cp2
[
1
]]
dp
=
[
s
[
0
]
-
e
[
0
],
s
[
1
]
-
e
[
1
]]
n1
=
cp1
[
0
]
*
cp2
[
1
]
-
cp1
[
1
]
*
cp2
[
0
]
n2
=
s
[
0
]
*
e
[
1
]
-
s
[
1
]
*
e
[
0
]
n3
=
1.0
/
(
dc
[
0
]
*
dp
[
1
]
-
dc
[
1
]
*
dp
[
0
])
return
[(
n1
*
dp
[
0
]
-
n2
*
dc
[
0
])
*
n3
,
(
n1
*
dp
[
1
]
-
n2
*
dc
[
1
])
*
n3
]
outputList
=
subjectPolygon
cp1
=
clipPolygon
[
-
1
]
for
clipVertex
in
clipPolygon
:
cp2
=
clipVertex
inputList
=
outputList
outputList
=
[]
s
=
inputList
[
-
1
]
for
subjectVertex
in
inputList
:
e
=
subjectVertex
if
inside
(
e
):
if
not
inside
(
s
):
outputList
.
append
(
computeIntersection
())
outputList
.
append
(
e
)
elif
inside
(
s
):
outputList
.
append
(
computeIntersection
())
s
=
e
cp1
=
cp2
if
len
(
outputList
)
==
0
:
return
None
return
(
outputList
)
def
iou3d
(
corners1
,
corners2
):
''' Compute 3D bounding box IoU, only working for object parallel to ground
Input:
corners1: numpy array (8,3), assume up direction is negative Y
corners2: numpy array (8,3), assume up direction is negative Y
Output:
iou: 3D bounding box IoU
iou_2d: bird's eye view 2D bounding box IoU
todo (rqi): add more description on corner points' orders.
'''
# corner points are in counter clockwise order
rect1
=
[(
corners1
[
i
,
0
],
corners1
[
i
,
2
])
for
i
in
range
(
3
,
-
1
,
-
1
)]
rect2
=
[(
corners2
[
i
,
0
],
corners2
[
i
,
2
])
for
i
in
range
(
3
,
-
1
,
-
1
)]
area1
=
poly_area
(
np
.
array
(
rect1
)[:,
0
],
np
.
array
(
rect1
)[:,
1
])
area2
=
poly_area
(
np
.
array
(
rect2
)[:,
0
],
np
.
array
(
rect2
)[:,
1
])
# inter_area = shapely_polygon_intersection(rect1, rect2)
_
,
inter_area
=
convex_hull_intersection
(
rect1
,
rect2
)
# try:
# _, inter_area = convex_hull_intersection(rect1, rect2)
# except ValueError:
# inter_area = 0
# except scipy.spatial.qhull.QhullError:
# inter_area = 0
iou_2d
=
inter_area
/
(
area1
+
area2
-
inter_area
)
ymax
=
min
(
corners1
[
0
,
1
],
corners2
[
0
,
1
])
ymin
=
max
(
corners1
[
4
,
1
],
corners2
[
4
,
1
])
inter_vol
=
inter_area
*
max
(
0.0
,
ymax
-
ymin
)
vol1
=
box3d_vol
(
corners1
)
vol2
=
box3d_vol
(
corners2
)
iou
=
inter_vol
/
(
vol1
+
vol2
-
inter_vol
)
return
iou
,
iou_2d
@jit
def
roty
(
t
):
''' Rotation about the y-axis. '''
c
=
np
.
cos
(
t
)
s
=
np
.
sin
(
t
)
return
np
.
array
([[
c
,
0
,
s
],
[
0
,
1
,
0
],
[
-
s
,
0
,
c
]])
def
convert_3dbox_to_8corner
(
bbox3d_input
):
''' Takes an object's 3D box with the representation of [x,y,z,theta,l,w,h] and
convert it to the 8 corners of the 3D box
Returns:
corners_3d: (8,3) array in in rect camera coord
'''
# compute rotational matrix around yaw axis
bbox3d
=
copy
.
copy
(
bbox3d_input
)
R
=
roty
(
bbox3d
[
3
])
# 3d bounding box dimensions
l
=
bbox3d
[
4
]
w
=
bbox3d
[
5
]
h
=
bbox3d
[
6
]
# 3d bounding box corners
x_corners
=
[
l
/
2
,
l
/
2
,
-
l
/
2
,
-
l
/
2
,
l
/
2
,
l
/
2
,
-
l
/
2
,
-
l
/
2
];
y_corners
=
[
0
,
0
,
0
,
0
,
-
h
,
-
h
,
-
h
,
-
h
];
z_corners
=
[
w
/
2
,
-
w
/
2
,
-
w
/
2
,
w
/
2
,
w
/
2
,
-
w
/
2
,
-
w
/
2
,
w
/
2
];
# rotate and translate 3d bounding box
corners_3d
=
np
.
dot
(
R
,
np
.
vstack
([
x_corners
,
y_corners
,
z_corners
]))
#print corners_3d.shape
corners_3d
[
0
,:]
=
corners_3d
[
0
,:]
+
bbox3d
[
0
]
corners_3d
[
1
,:]
=
corners_3d
[
1
,:]
+
bbox3d
[
1
]
corners_3d
[
2
,:]
=
corners_3d
[
2
,:]
+
bbox3d
[
2
]
return
np
.
transpose
(
corners_3d
)
\ No newline at end of file
script/AB3DMOT_libs/kalman_filter.py
0 → 100644
View file @
90d534a6
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import
numpy
as
np
from
filterpy.kalman
import
KalmanFilter
class
KalmanBoxTracker
(
object
):
"""
This class represents the internel state of individual tracked objects observed as bbox.
"""
count
=
0
def
__init__
(
self
,
bbox3D
,
info
):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
self
.
kf
=
KalmanFilter
(
dim_x
=
10
,
dim_z
=
7
)
self
.
kf
.
F
=
np
.
array
([[
1
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
],
# state transition matrix
[
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
],
[
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
1
],
[
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
]])
self
.
kf
.
H
=
np
.
array
([[
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
# measurement function,
[
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
]])
# # with angular velocity
# self.kf = KalmanFilter(dim_x=11, dim_z=7)
# self.kf.F = np.array([[1,0,0,0,0,0,0,1,0,0,0], # state transition matrix
# [0,1,0,0,0,0,0,0,1,0,0],
# [0,0,1,0,0,0,0,0,0,1,0],
# [0,0,0,1,0,0,0,0,0,0,1],
# [0,0,0,0,1,0,0,0,0,0,0],
# [0,0,0,0,0,1,0,0,0,0,0],
# [0,0,0,0,0,0,1,0,0,0,0],
# [0,0,0,0,0,0,0,1,0,0,0],
# [0,0,0,0,0,0,0,0,1,0,0],
# [0,0,0,0,0,0,0,0,0,1,0],
# [0,0,0,0,0,0,0,0,0,0,1]])
# self.kf.H = np.array([[1,0,0,0,0,0,0,0,0,0,0], # measurement function,
# [0,1,0,0,0,0,0,0,0,0,0],
# [0,0,1,0,0,0,0,0,0,0,0],
# [0,0,0,1,0,0,0,0,0,0,0],
# [0,0,0,0,1,0,0,0,0,0,0],
# [0,0,0,0,0,1,0,0,0,0,0],
# [0,0,0,0,0,0,1,0,0,0,0]])
# self.kf.R[0:,0:] *= 10. # measurement uncertainty
self
.
kf
.
P
[
7
:,
7
:]
*=
1000.
# state uncertainty, give high uncertainty to the unobservable initial velocities, covariance matrix
self
.
kf
.
P
*=
10.
# self.kf.Q[-1,-1] *= 0.01 # process uncertainty
self
.
kf
.
Q
[
7
:,
7
:]
*=
0.01
self
.
kf
.
x
[:
7
]
=
bbox3D
.
reshape
((
7
,
1
))
self
.
time_since_update
=
0
self
.
id
=
KalmanBoxTracker
.
count
KalmanBoxTracker
.
count
+=
1
self
.
history
=
[]
self
.
hits
=
1
# number of total hits including the first detection
self
.
hit_streak
=
1
# number of continuing hit considering the first detection
self
.
first_continuing_hit
=
1
self
.
still_first
=
True
self
.
age
=
0
self
.
info
=
info
# other info associated
def
update
(
self
,
bbox3D
,
info
):
"""
Updates the state vector with observed bbox.
"""
self
.
time_since_update
=
0
self
.
history
=
[]
self
.
hits
+=
1
self
.
hit_streak
+=
1
# number of continuing hit
if
self
.
still_first
:
self
.
first_continuing_hit
+=
1
# number of continuing hit in the fist time
######################### orientation correction
if
self
.
kf
.
x
[
3
]
>=
np
.
pi
:
self
.
kf
.
x
[
3
]
-=
np
.
pi
*
2
# make the theta still in the range
if
self
.
kf
.
x
[
3
]
<
-
np
.
pi
:
self
.
kf
.
x
[
3
]
+=
np
.
pi
*
2
new_theta
=
bbox3D
[
3
]
if
new_theta
>=
np
.
pi
:
new_theta
-=
np
.
pi
*
2
# make the theta still in the range
if
new_theta
<
-
np
.
pi
:
new_theta
+=
np
.
pi
*
2
bbox3D
[
3
]
=
new_theta
predicted_theta
=
self
.
kf
.
x
[
3
]
if
abs
(
new_theta
-
predicted_theta
)
>
np
.
pi
/
2.0
and
abs
(
new_theta
-
predicted_theta
)
<
np
.
pi
*
3
/
2.0
:
# if the angle of two theta is not acute angle
self
.
kf
.
x
[
3
]
+=
np
.
pi
if
self
.
kf
.
x
[
3
]
>
np
.
pi
:
self
.
kf
.
x
[
3
]
-=
np
.
pi
*
2
# make the theta still in the range
if
self
.
kf
.
x
[
3
]
<
-
np
.
pi
:
self
.
kf
.
x
[
3
]
+=
np
.
pi
*
2
# now the angle is acute: < 90 or > 270, convert the case of > 270 to < 90
if
abs
(
new_theta
-
self
.
kf
.
x
[
3
])
>=
np
.
pi
*
3
/
2.0
:
if
new_theta
>
0
:
self
.
kf
.
x
[
3
]
+=
np
.
pi
*
2
else
:
self
.
kf
.
x
[
3
]
-=
np
.
pi
*
2
######################### # flip
self
.
kf
.
update
(
bbox3D
)
if
self
.
kf
.
x
[
3
]
>=
np
.
pi
:
self
.
kf
.
x
[
3
]
-=
np
.
pi
*
2
# make the theta still in the rage
if
self
.
kf
.
x
[
3
]
<
-
np
.
pi
:
self
.
kf
.
x
[
3
]
+=
np
.
pi
*
2
self
.
info
=
info
def
predict
(
self
):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
self
.
kf
.
predict
()
if
self
.
kf
.
x
[
3
]
>=
np
.
pi
:
self
.
kf
.
x
[
3
]
-=
np
.
pi
*
2
if
self
.
kf
.
x
[
3
]
<
-
np
.
pi
:
self
.
kf
.
x
[
3
]
+=
np
.
pi
*
2
self
.
age
+=
1
if
(
self
.
time_since_update
>
0
):
self
.
hit_streak
=
0
self
.
still_first
=
False
self
.
time_since_update
+=
1
self
.
history
.
append
(
self
.
kf
.
x
)
return
self
.
history
[
-
1
]
def
get_state
(
self
):
"""
Returns the current bounding box estimate.
"""
return
self
.
kf
.
x
[:
7
]
.
reshape
((
7
,
))
\ No newline at end of file
script/AB3DMOT_libs/kitti_utils.py
0 → 100644
View file @
90d534a6
import
numpy
as
np
,
cv2
,
os
class
Object3d
(
object
):
''' 3d object label '''
def
__init__
(
self
,
label_file_line
):
data
=
label_file_line
.
split
(
' '
)
data
[
1
:]
=
[
float
(
x
)
for
x
in
data
[
1
:]]
# extract label, truncation, occlusion
self
.
type
=
data
[
0
]
# 'Car', 'Pedestrian', ...
self
.
truncation
=
data
[
1
]
# truncated pixel ratio [0..1]
self
.
occlusion
=
int
(
data
[
2
])
# 0=visible, 1=partly occluded, 2=fully occluded, 3=unknown
self
.
alpha
=
data
[
3
]
# object observation angle [-pi..pi]
# extract 2d bounding box in 0-based coordinates
self
.
xmin
=
data
[
4
]
# left
self
.
ymin
=
data
[
5
]
# top
self
.
xmax
=
data
[
6
]
# right
self
.
ymax
=
data
[
7
]
# bottom
self
.
box2d
=
np
.
array
([
self
.
xmin
,
self
.
ymin
,
self
.
xmax
,
self
.
ymax
])
# extract 3d bounding box information
self
.
h
=
data
[
8
]
# box height
self
.
w
=
data
[
9
]
# box width
self
.
l
=
data
[
10
]
# box length (in meters)
self
.
t
=
(
data
[
11
],
data
[
12
],
data
[
13
])
# location (x,y,z) in camera coord.
self
.
ry
=
data
[
14
]
# yaw angle (around Y-axis in camera coordinates) [-pi..pi]
if
len
(
data
)
>
15
:
self
.
score
=
float
(
data
[
15
])
if
len
(
data
)
>
16
:
self
.
id
=
int
(
data
[
16
])
def
print_object
(
self
):
print
(
'Type, truncation, occlusion, alpha:
%
s,
%
d,
%
d,
%
f'
%
(
self
.
type
,
self
.
truncation
,
self
.
occlusion
,
self
.
alpha
))
print
(
'2d bbox (x0,y0,x1,y1):
%
f,
%
f,
%
f,
%
f'
%
(
self
.
xmin
,
self
.
ymin
,
self
.
xmax
,
self
.
ymax
))
print
(
'3d bbox h,w,l:
%
f,
%
f,
%
f'
%
(
self
.
h
,
self
.
w
,
self
.
l
))
print
(
'3d bbox location, ry: (
%
f,
%
f,
%
f),
%
f'
%
(
self
.
t
[
0
],
self
.
t
[
1
],
self
.
t
[
2
],
self
.
ry
))
def
convert_to_str
(
self
):
return
'
%
s
%.2
f
%
d
%.2
f
%.2
f
%.2
f
%.2
f
%.2
f
%.2
f
%.2
f
%.2
f
%.2
f
%.2
f
%.2
f
%.2
f'
%
\
(
self
.
type
,
self
.
truncation
,
self
.
occlusion
,
self
.
alpha
,
self
.
xmin
,
self
.
ymin
,
self
.
xmax
,
self
.
ymax
,
self
.
h
,
self
.
w
,
self
.
l
,
self
.
t
[
0
],
self
.
t
[
1
],
self
.
t
[
2
],
self
.
ry
)
class
Calibration
(
object
):
''' Calibration matrices and utils
3d XYZ in <label>.txt are in rect camera coord.
2d box xy are in image2 coord
Points in <lidar>.bin are in Velodyne coord.
y_image2 = P^2_rect * x_rect
y_image2 = P^2_rect * R0_rect * Tr_velo_to_cam * x_velo
x_ref = Tr_velo_to_cam * x_velo
x_rect = R0_rect * x_ref
P^2_rect = [f^2_u, 0, c^2_u, -f^2_u b^2_x;
0, f^2_v, c^2_v, -f^2_v b^2_y;
0, 0, 1, 0]
= K * [1|t]
image2 coord:
----> x-axis (u)
|
|
v y-axis (v)
velodyne coord:
front x, left y, up z
rect/ref camera coord:
right x, down y, front z
Ref (KITTI paper): http://www.cvlibs.net/publications/Geiger2013IJRR.pdf
TODO(rqi): do matrix multiplication only once for each projection.
'''
def
__init__
(
self
,
calib_filepath
,
from_video
=
False
):
if
from_video
:
calibs
=
self
.
read_calib_from_video
(
calib_filepath
)
else
:
calibs
=
self
.
read_calib_file
(
calib_filepath
)
# Projection matrix from rect camera coord to image2 coord
self
.
P
=
calibs
[
'P2'
]
self
.
P
=
np
.
reshape
(
self
.
P
,
[
3
,
4
])
# Rigid transform from Velodyne coord to reference camera coord
self
.
V2C
=
calibs
[
'Tr_velo_to_cam'
]
self
.
V2C
=
np
.
reshape
(
self
.
V2C
,
[
3
,
4
])
self
.
C2V
=
inverse_rigid_trans
(
self
.
V2C
)
# Rotation from reference camera coord to rect camera coord
self
.
R0
=
calibs
[
'R0_rect'
]
self
.
R0
=
np
.
reshape
(
self
.
R0
,[
3
,
3
])
# Camera intrinsics and extrinsics
self
.
c_u
=
self
.
P
[
0
,
2
]
self
.
c_v
=
self
.
P
[
1
,
2
]
self
.
f_u
=
self
.
P
[
0
,
0
]
self
.
f_v
=
self
.
P
[
1
,
1
]
self
.
b_x
=
self
.
P
[
0
,
3
]
/
(
-
self
.
f_u
)
# relative
self
.
b_y
=
self
.
P
[
1
,
3
]
/
(
-
self
.
f_v
)
def
read_calib_file
(
self
,
filepath
):
''' Read in a calibration file and parse into a dictionary.
Ref: https://github.com/utiasSTARS/pykitti/blob/master/pykitti/utils.py
'''
data
=
{}
with
open
(
filepath
,
'r'
)
as
f
:
for
line
in
f
.
readlines
():
line
=
line
.
rstrip
()
if
len
(
line
)
==
0
:
continue
key
,
value
=
line
.
split
(
':'
,
1
)
# The only non-float values in these files are dates, which
# we don't care about anyway
try
:
data
[
key
]
=
np
.
array
([
float
(
x
)
for
x
in
value
.
split
()])
except
ValueError
:
pass
return
data
def
read_calib_from_video
(
self
,
calib_root_dir
):
''' Read calibration for camera 2 from video calib files.
there are calib_cam_to_cam and calib_velo_to_cam under the calib_root_dir
'''
data
=
{}
cam2cam
=
self
.
read_calib_file
(
os
.
path
.
join
(
calib_root_dir
,
'calib_cam_to_cam.txt'
))
velo2cam
=
self
.
read_calib_file
(
os
.
path
.
join
(
calib_root_dir
,
'calib_velo_to_cam.txt'
))
Tr_velo_to_cam
=
np
.
zeros
((
3
,
4
))
Tr_velo_to_cam
[
0
:
3
,
0
:
3
]
=
np
.
reshape
(
velo2cam
[
'R'
],
[
3
,
3
])
Tr_velo_to_cam
[:,
3
]
=
velo2cam
[
'T'
]
data
[
'Tr_velo_to_cam'
]
=
np
.
reshape
(
Tr_velo_to_cam
,
[
12
])
data
[
'R0_rect'
]
=
cam2cam
[
'R_rect_00'
]
data
[
'P2'
]
=
cam2cam
[
'P_rect_02'
]
return
data
def
cart2hom
(
self
,
pts_3d
):
''' Input: nx3 points in Cartesian
Oupput: nx4 points in Homogeneous by pending 1
'''
n
=
pts_3d
.
shape
[
0
]
pts_3d_hom
=
np
.
hstack
((
pts_3d
,
np
.
ones
((
n
,
1
))))
return
pts_3d_hom
# ===========================
# ------- 3d to 3d ----------
# ===========================
def
project_velo_to_ref
(
self
,
pts_3d_velo
):
pts_3d_velo
=
self
.
cart2hom
(
pts_3d_velo
)
# nx4
return
np
.
dot
(
pts_3d_velo
,
np
.
transpose
(
self
.
V2C
))
def
project_ref_to_velo
(
self
,
pts_3d_ref
):
pts_3d_ref
=
self
.
cart2hom
(
pts_3d_ref
)
# nx4
return
np
.
dot
(
pts_3d_ref
,
np
.
transpose
(
self
.
C2V
))
def
project_rect_to_ref
(
self
,
pts_3d_rect
):
''' Input and Output are nx3 points '''
return
np
.
transpose
(
np
.
dot
(
np
.
linalg
.
inv
(
self
.
R0
),
np
.
transpose
(
pts_3d_rect
)))
def
project_ref_to_rect
(
self
,
pts_3d_ref
):
''' Input and Output are nx3 points '''
return
np
.
transpose
(
np
.
dot
(
self
.
R0
,
np
.
transpose
(
pts_3d_ref
)))
def
project_rect_to_velo
(
self
,
pts_3d_rect
):
''' Input: nx3 points in rect camera coord.
Output: nx3 points in velodyne coord.
'''
pts_3d_ref
=
self
.
project_rect_to_ref
(
pts_3d_rect
)
return
self
.
project_ref_to_velo
(
pts_3d_ref
)
def
project_velo_to_rect
(
self
,
pts_3d_velo
):
pts_3d_ref
=
self
.
project_velo_to_ref
(
pts_3d_velo
)
return
self
.
project_ref_to_rect
(
pts_3d_ref
)
# ===========================
# ------- 3d to 2d ----------
# ===========================
def
project_rect_to_image
(
self
,
pts_3d_rect
):
''' Input: nx3 points in rect camera coord.
Output: nx2 points in image2 coord.
'''
pts_3d_rect
=
self
.
cart2hom
(
pts_3d_rect
)
pts_2d
=
np
.
dot
(
pts_3d_rect
,
np
.
transpose
(
self
.
P
))
# nx3
pts_2d
[:,
0
]
/=
pts_2d
[:,
2
]
pts_2d
[:,
1
]
/=
pts_2d
[:,
2
]
return
pts_2d
[:,
0
:
2
]
def
project_velo_to_image
(
self
,
pts_3d_velo
):
''' Input: nx3 points in velodyne coord.
Output: nx2 points in image2 coord.
'''
pts_3d_rect
=
self
.
project_velo_to_rect
(
pts_3d_velo
)
return
self
.
project_rect_to_image
(
pts_3d_rect
)
# ===========================
# ------- 2d to 3d ----------
# ===========================
def
project_image_to_rect
(
self
,
uv_depth
):
''' Input: nx3 first two channels are uv, 3rd channel
is depth in rect camera coord.
Output: nx3 points in rect camera coord.
'''
n
=
uv_depth
.
shape
[
0
]
x
=
((
uv_depth
[:,
0
]
-
self
.
c_u
)
*
uv_depth
[:,
2
])
/
self
.
f_u
+
self
.
b_x
y
=
((
uv_depth
[:,
1
]
-
self
.
c_v
)
*
uv_depth
[:,
2
])
/
self
.
f_v
+
self
.
b_y
pts_3d_rect
=
np
.
zeros
((
n
,
3
))
pts_3d_rect
[:,
0
]
=
x
pts_3d_rect
[:,
1
]
=
y
pts_3d_rect
[:,
2
]
=
uv_depth
[:,
2
]
return
pts_3d_rect
def
project_image_to_velo
(
self
,
uv_depth
):
pts_3d_rect
=
self
.
project_image_to_rect
(
uv_depth
)
return
self
.
project_rect_to_velo
(
pts_3d_rect
)
def
inverse_rigid_trans
(
Tr
):
''' Inverse a rigid body transform matrix (3x4 as [R|t])
[R'|-R't; 0|1]
'''
inv_Tr
=
np
.
zeros_like
(
Tr
)
# 3x4
inv_Tr
[
0
:
3
,
0
:
3
]
=
np
.
transpose
(
Tr
[
0
:
3
,
0
:
3
])
inv_Tr
[
0
:
3
,
3
]
=
np
.
dot
(
-
np
.
transpose
(
Tr
[
0
:
3
,
0
:
3
]),
Tr
[
0
:
3
,
3
])
return
inv_Tr
def
read_label
(
label_filename
):
lines
=
[
line
.
rstrip
()
for
line
in
open
(
label_filename
)]
# if mask: objects = [Object3d_Mask(line) for line in lines]
objects
=
[
Object3d
(
line
)
for
line
in
lines
]
return
objects
def
compute_box_3d
(
obj
,
P
):
''' Takes an object and a projection matrix (P) and projects the 3d
bounding box into the image plane.
Returns:
corners_2d: (8,2) array in left image coord.
corners_3d: (8,3) array in in rect camera coord.
'''
# compute rotational matrix around yaw axis
R
=
roty
(
obj
.
ry
)
# 3d bounding box dimensions
l
=
obj
.
l
;
w
=
obj
.
w
;
h
=
obj
.
h
;
# 3d bounding box corners
x_corners
=
[
l
/
2
,
l
/
2
,
-
l
/
2
,
-
l
/
2
,
l
/
2
,
l
/
2
,
-
l
/
2
,
-
l
/
2
];
y_corners
=
[
0
,
0
,
0
,
0
,
-
h
,
-
h
,
-
h
,
-
h
];
z_corners
=
[
w
/
2
,
-
w
/
2
,
-
w
/
2
,
w
/
2
,
w
/
2
,
-
w
/
2
,
-
w
/
2
,
w
/
2
];
# rotate and translate 3d bounding box
corners_3d
=
np
.
dot
(
R
,
np
.
vstack
([
x_corners
,
y_corners
,
z_corners
]))
#print corners_3d.shape
corners_3d
[
0
,:]
=
corners_3d
[
0
,:]
+
obj
.
t
[
0
];
corners_3d
[
1
,:]
=
corners_3d
[
1
,:]
+
obj
.
t
[
1
];
corners_3d
[
2
,:]
=
corners_3d
[
2
,:]
+
obj
.
t
[
2
];
# print('cornsers_3d: ', corners_3d)
# TODO: bugs when the point is behind the camera, the 2D coordinate is wrong
# only draw 3d bounding box for objs in front of the camera
if
np
.
any
(
corners_3d
[
2
,:]
<
0.1
):
corners_2d
=
None
return
corners_2d
,
np
.
transpose
(
corners_3d
)
# project the 3d bounding box into the image plane
corners_2d
=
project_to_image
(
np
.
transpose
(
corners_3d
),
P
);
#print 'corners_2d: ', corners_2d
return
corners_2d
,
np
.
transpose
(
corners_3d
)
def
project_to_image
(
pts_3d
,
P
):
''' Project 3d points to image plane.
Usage: pts_2d = projectToImage(pts_3d, P)
input: pts_3d: nx3 matrix
P: 3x4 projection matrix
output: pts_2d: nx2 matrix
P(3x4) dot pts_3d_extended(4xn) = projected_pts_2d(3xn)
=> normalize projected_pts_2d(2xn)
<=> pts_3d_extended(nx4) dot P'(4x3) = projected_pts_2d(nx3)
=> normalize projected_pts_2d(nx2)
'''
n
=
pts_3d
.
shape
[
0
]
pts_3d_extend
=
np
.
hstack
((
pts_3d
,
np
.
ones
((
n
,
1
))))
# print(('pts_3d_extend shape: ', pts_3d_extend.shape))
pts_2d
=
np
.
dot
(
pts_3d_extend
,
np
.
transpose
(
P
))
# nx3
pts_2d
[:,
0
]
/=
pts_2d
[:,
2
]
pts_2d
[:,
1
]
/=
pts_2d
[:,
2
]
return
pts_2d
[:,
0
:
2
]
def
draw_projected_box3d
(
image
,
qs
,
color
=
(
255
,
255
,
255
),
thickness
=
4
):
''' Draw 3d bounding box in image
qs: (8,2) array of vertices for the 3d box in following order:
1 -------- 0
/| /|
2 -------- 3 .
| | | |
. 5 -------- 4
|/ |/
6 -------- 7
'''
if
qs
is
not
None
:
qs
=
qs
.
astype
(
np
.
int32
)
for
k
in
range
(
0
,
4
):
i
,
j
=
k
,(
k
+
1
)
%
4
image
=
cv2
.
line
(
image
,
(
qs
[
i
,
0
],
qs
[
i
,
1
]),
(
qs
[
j
,
0
],
qs
[
j
,
1
]),
color
,
thickness
)
# use LINE_AA for opencv3
i
,
j
=
k
+
4
,(
k
+
1
)
%
4
+
4
image
=
cv2
.
line
(
image
,
(
qs
[
i
,
0
],
qs
[
i
,
1
]),
(
qs
[
j
,
0
],
qs
[
j
,
1
]),
color
,
thickness
)
i
,
j
=
k
,
k
+
4
image
=
cv2
.
line
(
image
,
(
qs
[
i
,
0
],
qs
[
i
,
1
]),
(
qs
[
j
,
0
],
qs
[
j
,
1
]),
color
,
thickness
)
return
image
def
roty
(
t
):
''' Rotation about the y-axis. '''
c
=
np
.
cos
(
t
)
s
=
np
.
sin
(
t
)
return
np
.
array
([[
c
,
0
,
s
],
[
0
,
1
,
0
],
[
-
s
,
0
,
c
]])
script/AB3DMOT_libs/model.py
0 → 100644
View file @
90d534a6
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import
numpy
as
np
# from sklearn.utils.linear_assignment_ import linear_assignment # deprecated
from
scipy.optimize
import
linear_sum_assignment
from
AB3DMOT_libs.bbox_utils
import
convert_3dbox_to_8corner
,
iou3d
from
AB3DMOT_libs.kalman_filter
import
KalmanBoxTracker
def
associate_detections_to_trackers
(
detections
,
trackers
,
iou_threshold
=
0.01
):
"""
Assigns detections to tracked object (both represented as bounding boxes)
detections: N x 8 x 3
trackers: M x 8 x 3
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if
(
len
(
trackers
)
==
0
):
return
np
.
empty
((
0
,
2
),
dtype
=
int
),
np
.
arange
(
len
(
detections
)),
np
.
empty
((
0
,
8
,
3
),
dtype
=
int
)
iou_matrix
=
np
.
zeros
((
len
(
detections
),
len
(
trackers
)),
dtype
=
np
.
float32
)
for
d
,
det
in
enumerate
(
detections
):
for
t
,
trk
in
enumerate
(
trackers
):
iou_matrix
[
d
,
t
]
=
iou3d
(
det
,
trk
)[
0
]
# det: 8 x 3, trk: 8 x 3
# matched_indices = linear_assignment(-iou_matrix) # hougarian algorithm, compatible to linear_assignment in sklearn.utils
row_ind
,
col_ind
=
linear_sum_assignment
(
-
iou_matrix
)
# hougarian algorithm
matched_indices
=
np
.
stack
((
row_ind
,
col_ind
),
axis
=
1
)
unmatched_detections
=
[]
for
d
,
det
in
enumerate
(
detections
):
if
(
d
not
in
matched_indices
[:,
0
]):
unmatched_detections
.
append
(
d
)
unmatched_trackers
=
[]
for
t
,
trk
in
enumerate
(
trackers
):
if
(
t
not
in
matched_indices
[:,
1
]):
unmatched_trackers
.
append
(
t
)
#filter out matched with low IOU
matches
=
[]
for
m
in
matched_indices
:
if
(
iou_matrix
[
m
[
0
],
m
[
1
]]
<
iou_threshold
):
unmatched_detections
.
append
(
m
[
0
])
unmatched_trackers
.
append
(
m
[
1
])
else
:
matches
.
append
(
m
.
reshape
(
1
,
2
))
if
(
len
(
matches
)
==
0
):
matches
=
np
.
empty
((
0
,
2
),
dtype
=
int
)
else
:
matches
=
np
.
concatenate
(
matches
,
axis
=
0
)
return
matches
,
np
.
array
(
unmatched_detections
),
np
.
array
(
unmatched_trackers
)
class
AB3DMOT
(
object
):
# A baseline of 3D multi-object tracking
def
__init__
(
self
,
max_age
=
2
,
min_hits
=
3
):
# max age will preserve the bbox does not appear no more than 2 frames, interpolate the detection
"""
Sets key parameters for SORT
"""
self
.
max_age
=
max_age
self
.
min_hits
=
min_hits
self
.
trackers
=
[]
self
.
frame_count
=
0
self
.
reorder
=
[
3
,
4
,
5
,
6
,
2
,
1
,
0
]
self
.
reorder_back
=
[
6
,
5
,
4
,
0
,
1
,
2
,
3
]
def
update
(
self
,
dets_all
):
"""
Params:
dets_all: dict
dets - a numpy array of detections in the format [[h,w,l,x,y,z,theta],...]
info: a array of other info for each det
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
dets
,
info
=
dets_all
[
'dets'
],
dets_all
[
'info'
]
# dets: N x 7, float numpy array
# reorder the data to put x,y,z in front to be compatible with the state transition matrix
# where the constant velocity model is defined in the first three rows of the matrix
dets
=
dets
[:,
self
.
reorder
]
# reorder the data to [[x,y,z,theta,l,w,h], ...]
self
.
frame_count
+=
1
trks
=
np
.
zeros
((
len
(
self
.
trackers
),
7
))
# N x 7 , # get predicted locations from existing trackers.
to_del
=
[]
ret
=
[]
for
t
,
trk
in
enumerate
(
trks
):
pos
=
self
.
trackers
[
t
]
.
predict
()
.
reshape
((
-
1
,
1
))
trk
[:]
=
[
pos
[
0
],
pos
[
1
],
pos
[
2
],
pos
[
3
],
pos
[
4
],
pos
[
5
],
pos
[
6
]]
if
(
np
.
any
(
np
.
isnan
(
pos
))):
to_del
.
append
(
t
)
trks
=
np
.
ma
.
compress_rows
(
np
.
ma
.
masked_invalid
(
trks
))
for
t
in
reversed
(
to_del
):
self
.
trackers
.
pop
(
t
)
dets_8corner
=
[
convert_3dbox_to_8corner
(
det_tmp
)
for
det_tmp
in
dets
]
if
len
(
dets_8corner
)
>
0
:
dets_8corner
=
np
.
stack
(
dets_8corner
,
axis
=
0
)
else
:
dets_8corner
=
[]
trks_8corner
=
[
convert_3dbox_to_8corner
(
trk_tmp
)
for
trk_tmp
in
trks
]
if
len
(
trks_8corner
)
>
0
:
trks_8corner
=
np
.
stack
(
trks_8corner
,
axis
=
0
)
matched
,
unmatched_dets
,
unmatched_trks
=
associate_detections_to_trackers
(
dets_8corner
,
trks_8corner
)
# update matched trackers with assigned detections
for
t
,
trk
in
enumerate
(
self
.
trackers
):
if
t
not
in
unmatched_trks
:
d
=
matched
[
np
.
where
(
matched
[:,
1
]
==
t
)[
0
],
0
]
# a list of index
trk
.
update
(
dets
[
d
,
:][
0
],
info
[
d
,
:][
0
])
# create and initialise new trackers for unmatched detections
for
i
in
unmatched_dets
:
# a scalar of index
trk
=
KalmanBoxTracker
(
dets
[
i
,
:],
info
[
i
,
:])
self
.
trackers
.
append
(
trk
)
i
=
len
(
self
.
trackers
)
for
trk
in
reversed
(
self
.
trackers
):
d
=
trk
.
get_state
()
# bbox location
d
=
d
[
self
.
reorder_back
]
# change format from [x,y,z,theta,l,w,h] to [h,w,l,x,y,z,theta]
if
((
trk
.
time_since_update
<
self
.
max_age
)
and
(
trk
.
hits
>=
self
.
min_hits
or
self
.
frame_count
<=
self
.
min_hits
)):
ret
.
append
(
np
.
concatenate
((
d
,
[
trk
.
id
+
1
],
trk
.
info
))
.
reshape
(
1
,
-
1
))
# +1 as MOT benchmark requires positive
i
-=
1
# remove dead tracklet
if
(
trk
.
time_since_update
>=
self
.
max_age
):
self
.
trackers
.
pop
(
i
)
if
(
len
(
ret
)
>
0
):
return
np
.
concatenate
(
ret
)
# h,w,l,x,y,z,theta, ID, other info, confidence
return
np
.
empty
((
0
,
15
))
\ No newline at end of file
script/AB3DMOT_libs/utils.py
0 → 100644
View file @
90d534a6
# Author: Xinshuo Weng
# email: xinshuo.weng@gmail.com
import
yaml
from
easydict
import
EasyDict
as
edict
def
Config
(
filename
):
listfile1
=
open
(
filename
,
'r'
)
listfile2
=
open
(
filename
,
'r'
)
cfg
=
edict
(
yaml
.
safe_load
(
listfile1
))
settings_show
=
listfile2
.
read
()
.
splitlines
()
listfile1
.
close
()
listfile2
.
close
()
return
cfg
,
settings_show
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment